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Abstract: Federated learning is an emerging technology that enables the decentralised training of
machine learning-based methods for medical image analysis across multiple sites while ensuring
privacy. This review paper thoroughly examines federated learning research applied to medical
image analysis, outlining technical contributions. We followed the guidelines of Okali and Schabram,
a review methodology, to produce a comprehensive summary and discussion of the literature in
information systems. Searches were conducted at leading indexing platforms: PubMed, IEEE Xplore,
Scopus, ACM, and Web of Science. We found a total of 433 papers and selected 118 of them for
further examination. The findings highlighted research on applying federated learning to neural
network methods in cardiology, dermatology, gastroenterology, neurology, oncology, respiratory
medicine, and urology. The main challenges reported were the ability of machine learning models
to adapt effectively to real-world datasets and privacy preservation. We outlined two strategies to
address these challenges: non-independent and identically distributed data and privacy-enhancing
methods. This review paper offers a reference overview for those already working in the field and an
introduction to those new to the topic.

Keywords: federated learning; medical images; machine learning-based methods

1. Introduction

Federated learning has emerged as a technology to enhance collaboration, sparking
research interest in distributed techniques consisting of training models using computing
resources spread across a network. To set the context of this review paper, we explain that
distributed techniques involve dividing image datasets and machine learning-based image
analysis models among different sites (clients and servers) to facilitate parallel processing
and accelerate model training. Examples of these techniques include distributed learning
and federated learning. In distributed learning [1], a centralised dataset partitions across
multiple clients where the machine learning models train locally; the results are then
combined and consolidated into a server model. In contrast, federated learning [2] keeps
datasets within the clients, continuously training their models and periodically sharing
model updates with a server. The server aggregates these updates to improve its model,
which is then sent back to the clients. It enables all participating clients to benefit from
collective knowledge without sharing their datasets, making federated learning a preferred
choice for privacy-conscious applications (see Figure 1).

Examples of applications have been research in medical specialities including cardiol-
ogy [3], dermatology [4–16], gastroenterology [17], neurology [18–22], oncology [23–25],
respiratory medicine [26–39], and urology [40] (see Tables A2 and A3). The motivation
for embracing federated learning in the medical field stems from two factors. Firstly,
the significant cost associated with acquiring datasets serves as a driving force for increased
collaborations. In certain cases, obtaining datasets, such as magnetic resonance imaging
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and computed tomography scans, necessitates substantial investments in specialised equip-
ment and skilled personnel. With federated learning, clients can pool their resources and
expertise, sharing the burden of acquisition costs while benefiting from a more diverse and
comprehensive dataset. Secondly, the low prevalence of certain diseases also plays a role.
Some medical conditions occur relatively infrequently, making it challenging to gather a
sufficiently large dataset from a single client or geographic location. Federated learning
enables healthcare providers and researchers to overcome this limitation.
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Figure 1. Left: a simplified workflow of federated learning architecture involving four steps. Right:
example of federated learning-based medical image analysis applications.

Research in federated learning demonstrates the benefits of its implementation in
several use cases [6,7,21,23,27,28,30,32–36,41]. Of the challenges documented, we found that
the issues of addressing real-world datasets and privacy preservation appeared frequently.
To set the context for this review paper, we define real-world datasets as those where
medical image datasets do not randomly sample from a homogeneous population; instead,
they sample from distributions that may be dissimilar. In other words, the images are
not distributed identically and are not independent of each other. In real-world federated
learning scenarios, we expect non-independent and identically distributed data (non-IID)
with datasets located across multiple clients, and each client may have a particular dataset
distribution. Privacy preservation refers to protecting sensitive or personal information
from unauthorised access, disclosure, or misuse.

To address these challenges, researchers investigate two main strategies, outlined in
this review paper as (1) non-IID methods [3–5,12,14,17–19,22,29,37,40,42,43], consisting of
data augmentation [44] applied in scenarios of heterogeneity or imbalance datasets, and
semi-supervised learning [9], which is well-suited for scenarios where labelled datasets are
limited or unavailable; (2) privacy-enhancing methods [10,11,15,16,20,26,38,39,45,46]; these
include differential privacy [11], which are methods that add random noise to datasets to
prevent tracing back to specific users, homomorphic encryption [47] that allows computa-
tions on encrypted datasets, and differential privacy [15] that prevents learning unautho-
rised datasets.
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Several researchers have recently published related reviews and survey papers. For ex-
ample, Li et al. [48] and Yang [49] reviewed privacy-preserving computing based on homo-
morphic encryption, secure multi-party computing, and differential privacy. Yang et al. [50]
published a federated learning survey describing methods in terms of dataset partition-
ing and architectures. Yin et al. [51] analysed privacy from the perspective of external
attacks. Some focused on tabular datasets [52]. A few reviews and surveys limited their
literature analysis to the application of federated learning in the medical field [53–55],
lacking technical insight; others, due to the broad scope of the review and survey papers,
dedicated less than 900 words to discuss machine learning-based methods for medical
image analysis [56–60], which is the main focus of our review. Contrary to the above, our
review paper emphasises the technical contributions of the reviewed literature. Our review
aims to answer the research question “What machine learning-based methods research
the analysis of medical images in federated learning?”. It adds to the existing literature by
providing the following elements:

• A comprehensive review highlighting the shortcomings of current federated literature
applied to machine learning-based medical image analysis.

• A taxonomy of federated learning papers on machine learning-based medical image
analysis, including the medical applications, referenced datasets, and methods utilised.

• A summary of open-source frameworks for developing federated learning.

2. Methodology

This review paper follows Okali and Schabram’s methodology [61]. The selected
papers focus on original machine learning-based medical image analysis contributions pub-
lished in journals and conference proceedings written in English. There was no restriction
on the publication year of the retrieved papers.

We used the following keywords: federated learning, image, medicine, healthcare,
disease, well-being, machine learning, artificial intelligence, and expert systems. We
retrieved the literature from four databases: IEEE Xplore, Scopus, ACM, and Web of
Science. The last search update took place in July 2024.

As shown in Figure 2, a total of 433 papers were retrieved. We excluded 31 papers due
to duplication across the databases. Following this, we excluded 132 papers because their
titles and abstracts did not suggest the use of medical image analysis, machine learning
algorithms, or federated learning research strategy. We read the remaining papers in
full, from which we excluded 155 papers for not meeting five quality criteria: (1) the
research objective of the study is clear; (2) the study focused on human medical images;
(3) the use of machine learning algorithms and federated learning techniques is clear;
(4) the study includes sufficient details in the methodology, experiment, and results; and
(5) the study adds technical value to the existing literature or showcases the applicability
of federated learning in the medical field. Finally, we added 3 papers as grey literature,
i.e., papers unintentionally excluded (in previous steps) and found via other methods such
as citation search and expert recommendations. The net result was 118 papers (52 journals,
51 conference proceedings, and 15 reviews/surveys) considered relevant and included in
the review paper.

We then extracted relevant information from journals and conference proceedings in
five categories to make it more accessible for examination and interpretation: application,
dataset, referenced algorithm, key topic, and contribution. The application category de-
notes the medical specialities, including dermatology, neurology, and respiratory medicine.
The dataset category pertains to the datasets employed. The referenced algorithm category
denotes the particular algorithm or method that formed the basis for the technical imple-
mentations. The topic category organises the papers into four groups based on the paper’s
claims: use case, for papers showcasing the benefits of federated learning in scenarios
of distributed datasets; non-IID, for papers with a technical contribution to solving the
problems pertaining to heterogeneity and imbalanced datasets; privacy, for papers with a
technical contribution to addressing the challenges in data privacy preservation; and the
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research category, focused on the contribution of the reviewed papers. We grouped 49 of
the papers in the use case topic category, 40 in the non-IID topic category, and 14 papers in
the privacy topic category.

Database searching

Excluded 31 papers due to 
duplication across databases

Excluded 132 papers after 
assessing the title and abstract

Total = 433 papers

Total = 402 papers

Added 3 papers as grey literature

Total = 270 papers

Total = 115 papers

Total = 118 papers

Journals: 52 papers

Conference:        51 papers

Reviews:               15 papers

Use Case:  49 papers
Non-IID:      40 papers
Privacy:       14 papers

Excluded 155 papers after reading them in full, 
as they did not pass the quality criteria

Figure 2. Flow diagram illustrating the steps in the selection criteria for the papers included in
this review.

During the examination, we grouped the papers that introduced original methods
to discuss them in detail. We assessed originality based on our expertise as authors of
this review paper, considering papers that demonstrated new methods to address the
challenges or significant improvements over existing approaches concerning medical image
analysis. As a result, we selected 19 papers for detailed discussion in Section 3.

We also noted that several selected papers used open-source frameworks as tools.
Hence, in Table A1, we provide a list of the relevant open-source frameworks to help
readers quickly identify and adopt tools ready for use, offering practical utility and imple-
mentation guidance. Furthermore, by promoting open-source frameworks, we trust that the
review paper will foster collaboration and innovation, encourage collective improvement,
and advance the field.

This review paper is structured as follows. In Section 3, we report the newly proposed
methods found in the selected papers, including a briefing of their method, information
about the datasets used during evaluation, results, and a critique of their advantages and
disadvantages. The summary of open-source frameworks is available in Section 4, followed
by discussion and final remarks in Sections 5 and 6, respectively.

3. Strategies in Federated Learning for Machine Learning-Based Image Analysis

The findings highlight challenges, including working with real-world datasets and
preserving privacy. Two strategies are (1) non-IID methods, including data augmenta-
tion, semi-supervised learning, data distribution adjustment, and parameter adaptation,
and (2) privacy-enhancing methods, including differential privacy, model aggregation,
and homomorphic encryption.

3.1. Non-Independent and Identically Distributed Data Methods

In a medical setting, the most common sources of non-IID data are caused by confound-
ing factors, referring to variables that can affect the input datasets, including differences
in image acquisition, image quality, and variation in image appearance. In the context of
confounding factors, non-IID refers to situations where the images are not independent
and identically distributed. Confounding factors can lead to dependencies between images,
resulting in non-identical distribution across different datasets; this can be problematic
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in federated learning, as models trained on non-IID data may not generalise well to new
datasets, leading to poor performance [62]. Research suggests four strategies to address this
issue: data augmentation, data distribution, parameter adaptation, and semi-supervised
methods (Figure 3).

Method A. Generated Adversarial Networks (GANs) 

Method C. Evolutionary 
Computing

Feature Space

Method E. Improve GAN by Client Clustering, Feature 
Interpolation, and Similar Data Distribution

Method D. Suppression of Noisy Clients by Bias 
Identification

Method F. Personalisation using Graph 
Neural Networks

Labelled data

Method B. Dual GAN

…

…

Strategy 1. Data Augmentation Strategy 2. Data Distribution on Client Selection Strategy 3. Parameter Adaptation

Strategy 4. Semi-supervised Methods

Labelled data

Method G. Semi-supervised Learning

Unlabelled data
Model

Figure 3. Diagram illustrating the four strategies to address non-IID: data augmentation, data dis-
tribution, parameter adaptation, and semi-supervised methods. Strategy 1: data augmentation:
methods A and B use GAN networks to generate synthetic images; similarly, Method C involves
adopting evolutionary algorithms. Strategy 2: data distribution: methods D and E use interpola-
tion and data distribution to identify biases and cluster datasets during the training phase of the
client models. Strategy 3: parameter adaptation: method F indicates using a GNN to support the
parameter adaptation of the client models. Strategy 4: semi-supervised learning: method G shows
two sample clients with labelled and unlabelled data that are utilised to train the global model in a
semi-supervised fashion under federated learning settings.

3.1.1. Data Augmentation

Data augmentation is a technique used to artificially increase the training dataset
size. Traditional methods include minor image modifications such as rotation, scaling,
flipping, and applying various filters [63]. While these techniques help preserve the original
data distribution, they do not necessarily enhance model generalisation, as they may
overlook differences in dataset distributions. In contrast, newer methods like generative
adversarial networks (GANs) can generate new data that maintain the original distribution,
thereby improving model performance across diverse datasets [12,40,64]. The reviewed
literature explores two such methods: conditional GANs [22] and dual GANs [65], as well
as evolutionary algorithms [5,66,67].

GAN methods have included techniques to address non-IID data in different ways.
For instance, regularisation methods like virtual adversarial training (VAT) add small
amounts of Gaussian noise to input images, which are then added to the training dataset
to improve the model’s ability to classify unseen images [68]. Zhu and Luo [12] proposed
federated learning with virtual sample synthesis (FedVSS). FedVSS uses ResNet-18 [69]
as a backbone network and applies VAT to the clients’ models, enhancing the generalisa-
tion ability of the server’s model. It generates synthetic training datasets and aligns the
clients’ models with the server’s model by synthesising high-confidence samples from
the server model’s dataset distribution. Both synthesised and original datasets update
the client’s model, enabling FedVSS to achieve more generalised and consistent perfor-
mance. Challenges may lie in the complexity of synthesising high-quality images due
to the computational overhead associated with aligning clients’ models to the server’s
model, requiring substantial resources and coordination among multiple clients. FedVSS
evaluated its performance on the MedMNIST [70] and Camelyon17 [71] datasets, achieving
an F1-score of 81.27 and an accuracy of 75.32 in the method’s effectiveness in synthesising
images and aligning clients’ models to the server’s model.
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Another type of GAN is the conditional generative adversarial network (cGAN),
characterised by providing high-frequency textural information relevant to medical images.
cGAN performs adversarial learning via a pair of networks: a generator and a discriminator.
The generator predicts a synthetic target-contrast image given an acquired source-contrast
image as input, while the discriminator tries to distinguish between actual and synthetic
target-contrast images. To learn image translation, cGAN trains to minimise a loss function
composed of adversarial and pixel-wise terms [72,73].

To address some of the challenges in federated learning, Dalmaz et al. [22] proposed
specificity-preserving federated learning (SPFL-Trans) based on a cGAN. “Specificity”
refers to information or characteristics specific to a particular client’s dataset, such as
computational resources, quality and size of datasets, and disease prevalence. SPFL-Trans,
informed by PatchGAN [74], consists of an adversarial model that adaptively normalises
the feature maps across the generator based on the client’s dataset-specific latent variables
(variables that are not directly observed but inferred from the model). SPFL-Trans consists
of nine residual blocks and a latent parameter space with six dense layers to produce latent
variables. SPFL-Trans takes an image and the client-specific latent variables as input to
generate scale and bias vectors, two learnable parameters in the normalisation layer that
adjust the mean and standard deviation. The outcome is then modulated to the first- and
second-order statistic measures of distribution [75].

SPFL-Trans shows competitive performance compared to a centralised baseline model
while outperforming competing methods (FedGAN [76], FedMRI [77], and FedMedGAN [78])
both visually and quantitatively. However, challenges may arise when the training data are
insufficiently large or diverse. In such cases, the latent space might not effectively capture
the full variability of the data. This challenge stems from the complexity introduced by
using latent parameter spaces with dense layers in combination with residual blocks. SPFL-
Trans evaluated its performance on the IXI [79], BraTS [80], MIDAS [81], and OASIS [82]
datasets. The experiments achieved an average of 25.7 dB for peak signal-to-noise ratio,
88.6% for structural similarity index, and 20.1 points for Fretchet inception distance.

Findings also included the adoption of evolutionary algorithms and dual generative
adversarial networks (DualGANs) [65]. Evolutionary algorithms use iterative processes
to simulate biological mechanisms to find the optimal solution to a problem. The basic
idea is to generate a set of candidate solutions and then use it to produce new candidate
solutions. This process continues until either finding a satisfactory solution or meeting
a predetermined stopping criterion. An example is the knee point-driven evolutionary
algorithm (KnEA), which aims to identify the “knee point” of a trade-off curve, representing
the optimal balance between different objectives [83].

To put DualGAN in context, traditionally, the generator learns to generate synthetic
images from a random initialisation in a GAN architecture. In contrast, the discriminator
learns to distinguish between real and synthetic images. In DualGAN, the generator
translates images from one domain space to another. The discriminator then evaluates
the translated images and provides feedback to the generator, helping it generate more
realistic translations.

Cai et al. [5] proposed the skin cancer detection model based on federated learning
integrated with DualGANs (FDSCDM). This framework integrates KnEA and DualGAN
to address the problem of insufficient datasets. To enhance the number of images gen-
erated through DualGAN, FDSCDM synchronously optimises four metrics using KnEA:
the sharpness of images (the degree of clarity and detail in an image), Frechet inception
distance, image diversity, and loss. Results suggest that using evolutionary algorithms
with DualGAN can help improve performance and efficiency, reduce the need for manual
tuning, increase scalability, and enhance the diversity of generated images by automati-
cally exploring the parameter space. However, generating offspring is yet to be further
researched, as performing non-dominated sorting and environmental selection involves
significant computational resources. Additionally, as the number of objectives and the
size of the population increase, the scalability of evolutionary algorithms may become
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impractical for very large-scale problems or real-time applications where rapid solutions
are needed. FDSCDM evaluated its performance on the ISIC [84] dataset, achieving an
accuracy of 91% and an area under the curve of 88% for a seven-class classification task.

The reviewed literature also revealed a small number of papers suggesting sharing
synthetic datasets as a strategy to address the problems of non-IID data [4,37,40,85]. Al-
though sharing synthetic datasets may not fulfil the definition of federated learning adopted
in this review, such a strategy can be beneficial in several ways. First, it can improve the
performance of the server model by providing additional training datasets that are repre-
sentative of the underlying distribution. Second, it can preserve privacy by reducing the
need for clients to share their real datasets, which may contain sensitive information. Third,
it can enable clients to collaborate more effectively by providing common datasets that they
can use to train their models. However, it is important to note that synthetic datasets may
not always be a perfect substitute for real data [86], as their quality may depend on the
quality of the model used to generate them, and leakage of identifiable information and
biases may arise [87].

3.1.2. Dataset Distribution and Client Selection

Selecting clients for collaboration is particularly relevant in medical imaging, where
we expect dataset imbalance and heterogeneity across clients. Findings suggest two al-
ternatives: adopting distillation [3,88] and performance deterioration recognition meth-
ods [17,89–91].

Distillation methods involve teaching a smaller and simpler machine learning model
(client’s model) to learn from a larger and more complex model (server’s model) by mim-
icking its behaviour [88]. Qi et al. [3] proposed the cross-centre cross-sequence medical
image segmentation FL framework (FedCRLD). This framework uses 3D U-Net [92] as
the basis for the encoder and decoder and comprises two main components: contrastive
re-location (CRL) and momentum distillation (MD). The aim is to correct representation
bias and continually optimise the client’s model. CRL helps transfer only locally correlated
representations from the server model. At the same time, MD builds self-training by dis-
tilling the client model’s history momentum version as additional optimisation guidance
on a dynamically updated momentum bank. The momentum bank is a method used
to accelerate convergence during the training process. It stores a moving average of the
gradients of the neural network parameters used to update them during the optimisation
process [25].

The CRL module corrects representation bias using a contrastive difference metric
of mutual information, improving representation for heterogeneous datasets. However,
the MD component requires maintaining a momentum bank and performing additional
computations to update and distil historical momentums, which may add significant
computational overhead compared to traditional federated learning methods. FedCRLD
evaluated its performance on the M&M [93] and Emidec [94] datasets, achieving an average
Dice score of 85.96% for a segmentation task on cardiac magnetic resonance images.

Performance deterioration recognition detects and corrects errors in machine learning
models before they cause major problems; this requires monitoring the model’s perfor-
mance over time and detecting any decline in accuracy or other metrics that indicate a
decrease in performance. Using noise datasets involves intentionally adding random varia-
tions to the datasets to test the robustness of the machine learning model [17]. Liu et al. [17]
proposed the intervention and interaction FL framework (FedInI). FedInI adopts a structural
causal model (SCM) [95] and a fully convolutional one-stage object detector (FCOS) [96]
to address dataset selection across clients by identifying noisy datasets that lead to perfor-
mance deterioration. SCM is employed for feature extraction and representation, leveraging
its capacity to handle sparse datasets efficiently. Meanwhile, FCOS is utilised for object
detection tasks within the framework, providing a robust and efficient means to localise and
identify anomalies directly in the signals without requiring anchor boxes, thus simplifying
the detection process and improving accuracy. FedInI enhances the training of the server
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model by shuffling and mixing features extracted from different client models to suppress
noise gradually. They propose an interaction strategy to tackle the challenge of the server
model being unaware of local training. This strategy considers training synchronisation
and the noise heterogeneity between datasets and adaptively generates manifold mixup
weights. Performance deterioration recognition is crucial for detecting and correcting errors
before they become severe. However, this can be challenging due to the distributed and
heterogeneous nature of the datasets and models involved. These methods require further
examination to develop specialised techniques to address them effectively. This method
evaluated its performance on the GLRC [97] dataset, achieving an average mAP of 89.91%
and an IOU of 75% for an object detection task.

3.1.3. Parameter Adaptation

Parameter adaptation is a method that involves adjusting the parameters of a model to
improve its performance on a specific task. This method is particularly useful in dynamic
environments where data tend to be non-IID. It typically involves monitoring the model’s
real-time performance and adjusting its parameters accordingly to enhance machine learn-
ing models’ accuracy, efficiency, and robustness [98]. Findings suggest various approaches,
including graph neural networks (GNNs) [42,99], model distillation [19,88,100,101], adap-
tive clustering [14,102–106], using learned intermediate latent features [43], and multivari-
ate analysis [18,107].

GNNs are a type of machine learning model designed to represent and analyse the
relationships between datasets. They use this structure to identify patterns, making them
well-suited for interconnected datasets [99]. Chakravarty et al. [42] trained a server model
in conjunction with a GNN [108] on clients to capture specific variations in dataset distri-
butions. While the server model weights are learned and shared across clients, a separate
GNN is constructed and fine-tuned for each client to leverage the dataset’s client-specific
prevalence and comorbidity statistics, which refer to the frequency and likelihood of medi-
cal conditions. Results demonstrated the effectiveness of GNNs; however, further research
has yet to prove how this method addresses imbalanced class distributions. This approach
evaluated its performance on the CheXpert [109] dataset, achieving an average AUC of
0.79 for a 14-class disease classification task.

Model distillation in federated learning can be conceptualised as a data-private col-
laborative method where participating models leverage the available data by distilling
knowledge through the average prediction scores. Huang et al. [19] proposed the feder-
ated conditional mutual learning (FedCM) framework, which aims to personalise models
to client-specific datasets through distillation. FedCM uses VGG and 3D-CNN [110] as
backbone networks. FedCM allows a subset of each client’s datasets, referred to as public
datasets, to be transmitted across the network of clients in a federated setting; this enables
the server model to benefit from the collective knowledge of the other datasets.

FedCM incorporates a mutual knowledge distillation framework and a condition
monitoring mechanism that assesses performance and probability distribution similarity.
The workflow of the FedCM framework involves three main steps: First, each client
periodically uploads its predicted results and cross-entropy (CE) loss, calculated based
on its private dataset, to the server model. The CE loss provides valuable information for
refining the server model. Second, the server model aggregates all clients’ parameters and
CE losses, excluding the one receiving the update. This step ensures that the receiving
client benefits from the knowledge contributed by the others. Finally, each client uses the
received server model parameters to fine-tune its model with its private data, adapting the
model to the specific features of its dataset. Although FedCM addresses the challenge of
heterogeneous datasets by utilising public datasets for model training, ensuring privacy
while sharing distillation outputs poses challenges that require further research. Careful
handling is needed to prevent data leakage. FedCM evaluated its performance on the
ADNI [111] and OASIS [82] datasets, achieving accuracy rates of 74.5%, 76.0%, and 76.0%
for a three-class classification task.



Big Data Cogn. Comput. 2024, 8, 99 9 of 36

Adaptive hierarchical clustering is a method that organises datasets into a hierarchy
of clusters based on their similarity, with clustering dynamically adjusting to dataset
characteristics [14]. Research has also explored the benefits of combining this clustering
method with meta-learning (learning how to learn rather than just learning a specific task),
which involves adapting and generalising to clustered datasets. This approach includes
learning higher-level abstractions and strategies that can be applied across tasks [112].
For example, Yeganeh et al. [14] proposed federated adaptive personalisation (FedAP).

This adaptive hierarchical clustering method produces intermediate semi-federated
models by forming clusters of datasets using meta-learning. The FedAP framework uses
MobileNet [113] as its backbone network and introduces an adaptive personalisation
mechanism that leverages the information contained within clients. This mechanism allows
the server to selectively incorporate knowledge from specific models most relevant to
a dataset.

The adaptive personalisation process identifies the most relevant models for each
dataset based on their data characteristics. During the dataset selection step, the meta-
model evaluates the relevance of each model to a specific data distribution. By leveraging
learned meta-knowledge, FedAP can determine which models will likely provide the most
valuable insights. This selective incorporation personalises the server’s model better to
suit the characteristics of the client’s dataset. Despite its significant performance, training
FedAP for too many rounds can lead to decreased performance, indicating sensitivity
to overfitting; addressing this issue is a key area for future research. FedAP evaluated
its performance on the HAM10000 [114] dataset, achieving an accuracy of 86.9% for a
seven-class classification task.

Learned intermediate latent features refer to representations acquired by deep neural
networks at layers that are neither the input nor the output layers. These latent features
capture high-level information about the input dataset [43]. Guo et al. [43] introduced the
federated learning-based magnetic resonance reconstruction with cross-client modelling
(FL-MRCM), which employs a U-Net style encoder–decoder architecture for reconstruction
networks. FL-MRCM aligns the learned intermediate latent features from datasets with the
distribution of these features.

The key components of FL-MRCM involve leveraging the encoder part of the recon-
struction networks to project the input dataset onto the latent space of the server’s model.
FL-MRCM incorporates an adversarial domain identifier for each client–server pair to align
the latent space distribution with models trained in an adversarial manner. The FL-MRCM
process includes two optimisation steps. The first step trains the client reconstruction
networks on their respective datasets. The second step aligns the latent space distributions
between the client and server domains. FL-MRCM’s generalisability and computational
overhead in scenarios involving many clients have yet to be fully explored. FL-MRCM eval-
uated its performance on the fastMRI [115], HPKS [116], IXI [79], and BraTS [80] datasets,
achieving a structural similarity index measure of 92.32% and a peak signal-to-noise ratio
of 32.44 dB.

3.1.4. Semi-Supervised Learning

Semi-supervised learning is an approach that combines a small amount of labelled
data with a large amount of unlabelled data during training. In federated semi-supervised
learning (FSSL), most datasets are unlabelled [24]. A straightforward solution might be to
apply centralised semi-supervised methods to federated learning. However, traditional
semi-supervised learning (SSL) methods typically assume a centralised setting where
labelled data are readily accessible to assist in learning from unlabelled data.
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For instance, in consistency-based methods, regularising perturbation-invariant model
predictions require synchronous supervision from labelled datasets to provide the necessary
task knowledge for reliable predictions on unlabelled data. In FSSL, where the clients’
datasets might be entirely unlabelled, this close supervision from labelled data is absent,
causing the client’s model to lose critical task information during consistency-based training
and failing to leverage knowledge from unlabelled datasets. Thus, the main challenge
in FSSL compared to traditional SSL is effectively building interaction between learning
from labelled and unlabelled datasets. The reviewed literature explores solutions such
as dynamic banks [13], consistency regularisation [8,31,117–122], and distillation [88,123]
(see Figure 4).
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Figure 4. Diagram illustrating the two strategies to address the semi-supervised federated learning
method; data consists of semi-labelled datasets in both cases. Method A (1.A–3.A) proposes a dynamic
bank iteratively collecting highly confident samples during the training to estimate the dataset’s class
distribution. Method B (1.B–3.B) illustrates a knowledge distillation technique using teacher and
student models enforcing consistency regularisation over unlabelled samples.

A dynamic bank refers to a mechanism used to store and update the momentum
values of each client model during the training process of a federated learning model.
The momentum values represent the direction and magnitude of the gradient descent
updates of the client model parameters at each client. The dynamic bank is updated
periodically by aggregating the momentum values from the clients participating in the
training process. This mechanism aims to benefit from the knowledge accumulated by
other clients, thus improving the performance and convergence speed of the federated
learning model [13].

Jiang et al. [13] proposed a method consisting of two parts. First, the dynamic bank
construction extracts class proportion information within each sub-bank classification to
enforce the client model to learn different class proportions. The dynamic bank iteratively
collects highly confident samples during training to estimate the dataset’s class distribution
and splits samples into sub-banks with different pseudo-label proportions. Second, a prior
transition function transforms the original classification task into a sub-bank classification
task, using different class proportions to train the client model. This label-proportion-aware
supervision enhances clients’ training by learning different distributions of imbalanced
classes, thus avoiding dominance by the local majority class. The effectiveness of the
method is demonstrated on two large-scale real-world medical datasets. Future research
should explore dynamic bank construction further by incorporating information from other
datasets to address potential limitations in handling severe class imbalances. This method
evaluated its performance on the RSNA ICH [124] and HAM10000 [114] datasets, achieving
an average accuracy of 88.94% and an F1-score of 33.79% for a seven-class classification task.
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Yang et al. [31] showcased the benefits of federated learning in a semi-supervised
setting. They presented work of a centralised semi-supervised strategy for federated
learning using pseudo-labelling and consistency regularisation. Pseudo-labelling is a
self-training process that assigns synthetic labels to unlabelled data samples based on
the predicted class with a softmax probability exceeding a pre-specified threshold; this is
followed by training the model on the labelled and pseudo-labelled samples in a purely
supervised manner. Consistency regularisation is a co-training method that enforces
the condition that augmented versions of the same data sample should yield the same
prediction. The challenge with this method lies in ensuring that these constraints remain
effective and reliable across diverse, heterogeneous, and sometimes noisy data sources.
Further work may consider handling domain shifts, variability in annotation quality,
and integrating unlabelled data to complement supervised learning. This method evaluated
its performance on the LIDC [125] dataset, achieving a dice score of 0.651 for a segmentation
task in 3D computed tomography scans.

Tariq Bdair et al. [8] proposed the peer learning and ensemble averaging for peer
anonymisation method (FedPerl). Peer learning involves using similar peers (client and
server models) to assist with pseudo-labelling. FedPerl combines the learned knowledge
from different models through ensemble averaging before sharing it with other peers,
thereby preserving anonymity. In summary, an anonymised peer aggregates the learned
knowledge from similar peers and shares it with the client to assist in the pseudo-labelling
process. This approach has an advantage over other methods [31] by allowing clients
to gain additional knowledge through collaboration and leveraging unlabelled data for
pseudo-labelling. FedPerl ensembles the results of multiple models, encouraging them to
learn from each other. The peer anonymisation policy, which hides the client’s identities,
helps avoid model inversion and de-anonymisation, thereby preserving privacy. FedPerl
is simple yet effective for anonymising peers, making it less prone to model inversion
or de-anonymisation. Nevertheless, researchers have not thoroughly investigated the
privacy guarantees for aggregated models, leaving it an open issue. FedPerl evaluated its
performance on the LIDC [125] dataset, achieving an average accuracy of 82.75% for an
eight-class classification task.

Saha et al. [123] proposed an isolated federated learning method (IsoFed) that aims
to integrate labelled and unlabelled datasets using both federated learning and transfer
learning. IsoFed first isolates the aggregation of labelled and unlabelled datasets and then
performs self-supervised pretraining of the server models. Specifically, IsoFed employs a
dynamically weighted averaging scheme to separately aggregate the model parameters for
labelled and unlabelled datasets. After this aggregation, IsoFed conducts self-supervised
pretraining on each client’s dataset by optimising an information maximisation loss. This
approach ensures that the server’s model provides individually reliable predictions but
is collectively diverse. Further research is encouraged to demonstrate how IsoFed would
address issues such as weight divergence and domain shift (the difference between the data
distribution in the training set and the data distribution in the real world), as the client’s
model may forget the original task as training progresses. IsoFed evaluated its performance
on the MedMNIST [70] dataset, achieving an average accuracy of 87.10% for a two-class
classification task.

3.2. Privacy-Enhancing Methods

Privacy-enhancing methods are employed to protect the privacy of the data used in
the federated learning process. These methods enable machine learning algorithms to learn
from distributed data while ensuring that sensitive information is not exposed. The strate-
gies discussed in the reviewed literature include differential privacy, model aggregation,
and homomorphic encryption, highlighting methods such as selective content-aware differ-
ential privacy, parameter aggregation, multi-party computation, and blockchain, respec-
tively, (see Figure 5).
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Figure 5. Diagram illustrating three strategies and their methods to address privacy preservation
in federated learning for medical image analysis. Strategy 1 (1.A) includes methods like invertible
neural networks to address content-aware differential privacy. Strategy 2 (1.B) includes methods
like selective parameters and multi-party computation. Strategy 3 (1.C) includes homomorphic
encryption methods like cryptography, blockchain, and smart contracts.

3.2.1. Differential Privacy

Differential privacy methods protect the privacy of sensitive data by adding random
noise to a dataset while still allowing key information to be derived, thus mitigating
confidentiality and privacy issues associated with medical datasets [11,45]. Differential
privacy has been utilised with other methods, such as model aggregation and homomorphic
encryption. Additionally, research has explored the combination of differential privacy
with invertible neural networks (INNs), a type of neural network architecture that can
perform both forward and inverse computations, allowing them to revert their outputs to
the original inputs. The ability of INNs to perform reversible computations is due to the
use of invertible functions in their architecture, such as coupling layers, which enable the
objective transformation of data [38].

Tölle et al. [38] presented a method to achieve differentially private images based
on INNs [126], namely content-aware differential privacy (CADP). They applied this
method to images of patients diagnosed with a disease, ensuring that their pathology was
not changed by conditioning the INN on the class labels. Their experiments on diverse
datasets demonstrated that classifiers trained with CADP-generated data outperformed
conventional approaches significantly. CADP privately alters the content of the input image
to preserve as much information as possible while only modifying dimensions unrelated to
identification, which is crucial for data privacy. However, the extent to which CADP can
modify images while maintaining their informative value and ensuring privacy has not
yet been thoroughly explored. CADP evaluated its performance on X-ray datasets [127],
achieving an average accuracy of 92.94% for a classification task.

3.2.2. Model Aggregation

Model aggregation consists of methods that involve the iterative process of construct-
ing models incrementally over several iterations, where clients share selective information
from their models with the server. Three methods found in the reviewed literature are
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selective parameter updates [20], secure multi-party computation [15], and partial net-
works [26].

Selective parameter updates reduce the amount of information shared between clients
while maintaining high accuracy. The client usually updates all machine learning model
parameters during each training iteration in federated learning. However, with selective
parameter updates, only a subset of the parameters is shared. Updating only a subset
reduces the information transferred between devices, leading to faster training times and
strong protection against indirect data leakage [128]. Li et al. [20] researched the benefits
of combining selective parameter updates with the sparse vector technique (SVT) [129],
which is fundamental for achieving differential privacy. Their selective parameter-sharing
method limits the information a client shares by clipping the client’s model gradients to
a fixed range. The selective parameters are then submitted to a Laplacian-based function
implementing SVT as a differential privacy technique. This method strikes a balance
between ensuring privacy protection and maintaining model performance. While it offers
robust differential privacy protection, further research is needed to evaluate its performance
impact at scale. This method evaluated its performance on the BraTS dataset [80], achieving
an accuracy of 85% for the brain tumour segmentation task.

Secure multi-party computation (SMC) is a cryptographic method that enables mul-
tiple clients to train their models jointly as a cluster. In SMC, each client encrypts their
data and sends them to a server. The server’s model parameters are then returned to the
client, which can decrypt them to update its model [15]. Hosseini et al. [15] used SMC
to develop a framework for cluster training with privacy protection. In their proposed
framework, the clients’ models are grouped into clusters using geographical locations as a
strategy. After training, each client shares its model weights with others in the same cluster.
The clusters of clients sum up the received weights and send the results to the server.
The server aggregates the results, retrieving the average of the models’ weights. Results
showed that, compared to differential privacy, the framework achieves higher accuracy
with no privacy leakage risk, albeit with more communication overhead. The experiment
consisted of six clients grouped into two clusters based on their geographical locations.
However, further research is needed to explore the benefits and drawbacks of adopting a
more sophisticated strategy for clustering clients, such as using data domains. This method
evaluated its performance on the TCGA dataset [130], achieving an F1-score of 79.84% for a
two-class classification task.

Using partial networks involves training smaller versions of a full model on sub-
sets of the dataset and then aggregating the partial networks to form the full model.
Yang et al. [26] proposed a federated learning framework for medical datasets using partial
networks (FLOP). The partial networks are smaller versions of the entire model trained
on subsets of the dataset, aggregated to form the full model and trained on the combined
dataset. This approach allows for better data distribution management and class imbalance
while preserving privacy. The FLOP approach also includes knowledge distillation and
training of the partial networks to mimic the behaviour of the full model; this enables the
partial networks to capture essential data features and contribute to training the entire
model, even with limited data access. However, research has yet to ensure that the design
of partial networks remains accurate and unbiased. FLOP evaluated its performance on the
FMNIST [131], COVIDx [132], and Kvasir [133] datasets, achieving an accuracy of 97.44%
for a 10-class classification task.

3.2.3. Homomorphic Encryption

Homomorphic encryption can be used in federated learning to increase security
between client iterations. With homomorphic encryption, each client encrypts its models
before sharing them. The server then uses the encrypted models on the dataset, generating
encrypted results that the client can decrypt after the computation. Two methods discussed
in the literature are privacy-preserving [46,134–137] and blockchain [16].
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Kaissis et al. [46] presented an end-to-end privacy-preserving method called privacy-
preserving medical image analysis (PriMIA), which is an extension of the PySyft/PyGrid
ecosystem available at https://github.com/OpenMined/PySyft (accessed on 8 August 2024).
PriMIA uses encrypted aggregation of model updates and encrypted inference. They use
augmentation techniques, including MixUp—a method that interpolates pairs of existing
examples and their corresponding labels to generate synthetic datasets in a weighted
manner, which has been shown to enhance privacy attributes [138]. Additionally, they
use a tree-structured Parzen estimator algorithm to efficiently explore the hyperparameter
space and find the optimal set of hyperparameters for a given model [139]. PriMIA enables
homomorphic encryption, allowing computations to occur on encrypted data without
decryption. The encrypted gradients are securely transmitted to the client, aggregated, and
used for model updates. Experiments have shown that PriMIA can protect against gradient-
based model inversion attacks, in which an attacker tries to infer private information
about an individual by using the gradients of a machine learning model trained on that
individual’s data. PriMIA evaluated its performance on the MedNIST [70] and X-ray [127]
datasets, achieving an accuracy of up to 90% for a three-class classification task, which is
25% higher than the performance of a client training only with its dataset.

Blockchain is a distributed ledger technology that enables secure, transparent, and
tamper-proof transactions without intermediaries. While blockchain is commonly used in
serial computing, the benefits of decentralised dataset interaction in blockchain are desirable
in federated learning to preserve dataset privacy during model training. Aggarwal et al. [16]
proposed a privacy-preserving decentralised medical image analysis framework powered
by blockchain technology (DeMed). DeMed comprises two essential components, each
serving a distinct purpose. The first component is a self-supervised learning module
running on the client, obtaining low-dimensional dataset representations. The second
component is the smart contract module, which facilitates the secure transfer and retrieval of
machine learning model results. Smart contracts, self-executing agreements with predefined
conditions encoded on the blockchain, ensure the integrity and immutability of the datasets
and results exchanged within the framework. By leveraging the transparency and security
features of the blockchain, DeMed establishes a trustworthy environment for sharing and
accessing the outputs of machine learning models trained on medical images. However,
these methods have yet to demonstrate their computational cost, which might impact
practical scenarios. For instance, Ethereum, the most commonly used blockchain, has a
significantly high transaction cost, making transmitting models with many parameters
impractical [140]. DeMed evaluated its performance on the Pcam [141] and COVIDx [132]
datasets, achieving an accuracy of 87.3% for a two-class classification task.

4. Open-Source Framework Implementations

Federated learning has gained significant attention as a promising approach to de-
veloping machine learning-based image analysis models while preserving user privacy.
Open-source frameworks have played a crucial role in developing and adopting federated
learning by providing accessible tools to build and test federated learning models. These
frameworks offer a range of features and capabilities to develop and deploy robust and scal-
able federated learning solutions. Examples include FATE [142], FedML [143], Flower [144],
NVFlare [145], OpenFL [146], PaddleFL + PaddlePaddle [147], PySyft + PyGrid [148],
TensorFlow Federated [149], and PriMIA [46]. See Table A1 for details.

FATE integrates homomorphic encryption and multi-party computation. It includes
a scalable serving system for modelling, an end-to-end pipeline platform, a multi-party
communication network, and a managed workload using cloud-native technologies. A cur-
rent limitation of FATE (v1.8.0) is the lack of a core API, requiring developers to modify
the source code to implement their algorithms. FATE does not currently support a decen-
tralised architecture, which may limit its use in certain applications. The source code is
available at https://github.com/FederatedAI/FATE (accessed on 8 August 2024).

https://github.com/OpenMined/PySyft
https://github.com/FederatedAI/FATE
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FedML encompasses a range of capabilities, including model acceleration, computer
resource management, and GPU/CPU compatibility. It supports natural language process-
ing, computer vision, graph neural networks, and the Internet of Things. The source code
is available at https://github.com/FedML-AI/FedML (accessed on 8 August 2024).

Flower is an agnostic framework that allows users to seamlessly leverage their existing
pipelines. Its ability to handle large numbers of clients makes it well-suited for real-world
applications. However, Flower (v1.0.0) requires allocating a fixed amount of memory before
the process begins, which remains allocated until the process exits. The source code is
available at https://github.com/adap/flower (accessed on 8 August 2024).

NVIDIA FLARE offers a high degree of flexibility and customisation. FLARE (v2.1.3)
includes extensible management tools that provide secure provisioning, orchestration,
and monitoring capabilities for federated learning experiments. The rich programmable
APIs allow users to experiment with new workflows and privacy-preserving algorithms.
The source code is available at https://github.com/NVIDIA/NVFlare (accessed on
8 August 2024).

Intel’s Open Federated Learning (OpenFL) provides users with a secure and semi-
automated process. While OpenFL (v1.3.0) officially supports Linux servers, many work-
loads are also unofficially supported on Mac and Windows. The source code is available at
https://github.com/intel/openfl (accessed on 8 August 2024).

PaddleFL provides a flexible and programmable approach to architecting neural
networks, supporting declarative and imperative programming. PaddleFL (v1.2.0) has
specific hardware requirements, including a minimum of 6GB RAM and 100GB of storage
space, which might limit its usage in some scenarios. The source code is available at
https://github.com/PaddlePaddle/PaddleFL (accessed on 8 August 2024).

PySyft and PyGrid enable the implementation of complex privacy-preserving methods,
such as secure multi-party computation and differential privacy. Their deep learning API
offers an accessible and user-friendly interface. At the same time, their ability to operate at
a lower abstraction level provides advanced users greater flexibility and control. The source
code is available at https://github.com/OpenMined/PySyft (accessed on 8 August 2024).

TensorFlow Federated (TFF) enables the local simulation of distributed computing.
TFF (v0.31.0) is only compatible with the TensorFlow framework. Additionally, the de-
centralised architecture for building the system is not supported, which may limit its
usefulness for specific applications. Nonetheless, TFF remains a valuable tool for users
exploring the potential of federated learning and distributed computing. The source code
is available at https://github.com/tensorflow/federated (accessed on 8 August 2024).

Privacy-preserving medical image analysis (PriMIA) enables differentially private
methods, secure data aggregation, and encrypted inference for imaging datasets. The frame-
work integrates cutting-edge privacy preservation techniques from PySyft and enhances
them with features customised for medical imaging. However, deploying PriMIA demands
significant computational resources, and encrypted inference’s latency remains consider-
ably higher than unencrypted inference. The source code is available at
https://github.com/gkaissis/PriMIA (accessed on 8 August 2024).

5. Discussion

The widespread adoption of federated learning technology depends on several factors,
including the availability of suitable infrastructure, the development of robust algorithms,
and the establishment of model-sharing policies and protocols. As these factors continue to
evolve and improve, the adoption of federated learning is expected to increase. Addition-
ally, the increasing awareness of data privacy and security concerns will likely drive the
adoption of federated learning. Furthermore, developing open-source tools and platforms
for federated learning will likely accelerate its adoption. These tools and platforms can
enable users to experiment with federated learning and develop custom solutions that meet
their specific requirements.

https://github.com/FedML-AI/FedML
https://github.com/adap/flower
https://github.com/NVIDIA/NVFlare
https://github.com/intel/openfl
https://github.com/PaddlePaddle/PaddleFL
https://github.com/OpenMined/PySyft
https://github.com/tensorflow/federated
https://github.com/gkaissis/PriMIA
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A common assumption across the reviewed papers was the availability of well-curated
datasets and reliable communication and computational resources, which is unlikely in real-
world scenarios. Papers evaluated their method on different datasets (see Tables A2–A5)
and used different metrics, which made direct comparison challenging. Datasets, for ex-
ample, varied in imaging modalities (e.g., ultrasound, X-rays, MRI), conditions of data
collection (e.g., controlled vs. real-world), and domain distributions (e.g., inter- and intra-
participant, and inter- and intra-medical conditions), and image resolution. What follows
is a summary of the challenges:

• Heterogeneous datasets: Medical image datasets come from different settings (medical
equipment and data management software) where the prevalence of medical condi-
tions and acquisition protocols may vary. Neglecting these variations when designing
machine learning models can lead to performance issues and reduced generalisability
of the models.

• Imbalanced datasets: Medical image datasets can often be imbalanced, with a small
number of pathological cases and mostly healthy cases; this can lead to model general-
isation and performance issues, particularly in scenarios where some rare diseases or
conditions require accurate detection.

• Data privacy and security: Maintaining dataset privacy is paramount, requiring strict
privacy and security measures. Federated implementations must protect patient data
during the model training process.

• Communication: Client communication may be limited due to the high computational
cost of transmitting large models. The client may have limited computational power,
making it challenging to scale and requiring the development of scalable and efficient
machine-learning models that can address large amounts of data. Strategies include
adopting lightweight protocol, semi-synchronisation, and model distribution. It
should be noted that this review omitted this topic because it falls outside the scope of
medical image analysis. However, further details appear in [150].

In alignment with the diversity of medical image modalities, papers addressed the
progress and unique challenges in federated learning for different imaging modalities
and parameters. This is especially critical as medical images can be acquired using vari-
ous modalities (e.g., X-rays, MRI, CT, and ultrasound) and customised parameters (e.g.,
multiband factors in echo-planar imaging acquisition) even within the same modality.

The primary challenge in federated learning for X-ray images is managing the variabil-
ity in image quality, resolution, and anatomical focus across different datasets. Techniques
such as GANs have been instrumental in creating synthetic X-ray images that help balance
the training data across different clients. Conditional GANs (cGANs) [72,73] have been
used to generate high-quality synthetic images that preserve the original data distribution,
improving the model’s generalisation ability across diverse datasets. Virtual adversarial
training (VAT) methods [12] have shown promise in regularising models by introducing
slight perturbations to the input images, which helps in dealing with the non-IID nature of
X-ray datasets in FL settings. However, differences in X-ray machine types and settings
across institutions can lead to significant variability in image characteristics, adversely
affecting model performance if not properly managed. This can be addressed by incorpo-
rating domain adaptation methods in federated learning settings [25,151,152].

The complexity of MRI data, including parameter variations like echo times, repeti-
tion times, and multiband factors, presents significant challenges for federated learning.
Techniques such as SPFL-Trans [22] leverage client-specific latent variables to adaptively
normalise feature maps, thereby preserving important dataset-specific information during
federated learning. Adversarial methods like FedVSS [12] use virtual sample synthesis to
align the clients’ models with the server’s model, enhancing the generalisation capability
by generating synthetic datasets that help bridge the gap between different MRI data
distributions. The variation in MRI acquisition parameters, such as different multiband
factors, necessitates sophisticated models, such as gradient alignment across clients that
can adapt to these variations without losing performance [153].
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The main challenges in applying federated learning to CT scans include handling
large image sizes and managing differences in scanning protocols. Techniques such as
DualGAN [5] combined with evolutionary algorithms have effectively generated diverse
and high-quality synthetic CT images, which help mitigate the effects of non-IID data.
Methods like FedCRLD [3] use contrastive re-location and momentum distillation to correct
representation bias and continually optimise client models, which is particularly use-
ful for handling the large and complex datasets typical of CT scans. A recent work by
Ding et al. [154] mitigates the distribution heterogeneity in CT image-based FL across
clients. It suppresses the inter-client heterogeneity component by proposing a local drift
smoothing (LDS) module that converts the input from feature space to frequency space,
thereby improving model generalisability.

Research on federated learning for ultrasound imaging is still in its early stages.
Although domain gaps due to biases from different imaging devices, frequencies, and vari-
ations in grey distribution and contrast are common in ultrasound datasets from vari-
ous medical centres; current studies do not explicitly address these issues. For instance,
Lee et al. [23] found that the performance of federated learning with decentralised data was
comparable to traditional deep learning with pooled data for cancer classification. Similarly,
Qi et al. [155] implemented four data partitioning strategies and evaluated four federated
learning algorithms to investigate the impact of data distribution on model performance
in detecting stenosis using B-mode ultrasound images. However, they focused on class
distribution mismatch rather than addressing domain gaps.

6. Final Remarks

We conducted a comprehensive review discussing machine learning-based methods
for medical imaging analysis. We provided a taxonomy of selected papers, including medi-
cal applications, referenced datasets, technical methods utilised, and a summary of open-
source frameworks for developing federated learning. The reviewed literature highlighted
two primary challenges: difficulties accessing real-world datasets and preserving privacy.
The strategies discussed included non-IID data handling and privacy-enhancing methods.

Federated learning is still a relatively new technology. Its performance may vary de-
pending on several factors, such as the quality and quantity of available datasets, the com-
plexity of the learning task, the number and computational capabilities, the availability and
quality of the communication network, the level of privacy and security required, and the
efficiency and effectiveness of the federated learning algorithms. Findings in the reviewed
literature suggest that federated learning can accelerate the development of machine learn-
ing models, leading to practical medical applications if appropriately implemented.
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Appendix A

Table A1. Detailed list of open-source federated learning frameworks.

Name Built-In Support Aggregator Security

FATE (1.8.0) [142]
PyTorch
TensorFLow

FedAvg
SecAgg
SecMPC
SecBoost

Public-key Cryptosystems

FedML (0.6.0) [143] PyTorch

FedAvg
FedOpt
FedProx
FedNova
SplitNN
Hierarchical FL

Differential Privacy
Multi-party Computation

Flower (1.0.0) [144]

PyTorch
TensorFlow
JAX
Hugging Face
Scikit-learn
MXNet
PyTorch-Lightning
TFLite

FedAvg
FedAvgM
QFedAvg
FaultTolerantAvg
FedOpt
FedAdagrad
FedAdam
FedYogi

Differential Privacy

NVFlare (2.1.3) [145]
PyTorch
TensorFLow

FedAvg
FedOpt
FedProx

Homomorphic Encryption
Differential Privacy

OpenFL (1.3.0) [146]
PyTorch
TensorFLow

FedAvg
FedProx
FedOpt
FedCurv
FedYogi
FedAdam
FedAdagrad

Mutual Transport Layer Security
Secret-sharing
Differential Privacy

PaddleFL + PaddlePaddle (1.2.0) [147] PyTorch
FedAvg
SecAgg

Public-key Cryptosystems
Differentially Private Stochastic

PySyft + PyGrid (0.6.0) [148]
PyTorch
TensorFLow

FedSGD

Differential Privacy
Multi-Party Computation
Homomorphic Encryption
Public-key Cryptosystems

TensorFlow Federated (0.31.0) [149] TensorFlow

FedAvg
FedSGD
FedProx
FedOpt

Differential Privacy

PriMIA [46] PyTorch
FedAvg
SecAgg

Secure Aggregation
Differential Privacy
Multi-party Computation
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Table A2. Part 1/4 of the detailed literature corpus of the reviewed papers on medical image analysis
research on federated learning.

Paper Medical Data Speciality Referenced Dataset Referenced Algorithm Research Strategy

[3] Cardiology M&M [93]
Emidec [94]

3D U-Net [92] Non-IID

[4] Dermatology HAM10000 [114] PrivGAN [156] Non-IID

[5] Dermatology ISIC [84] DualGAN [65]
KnEA [66]

Non-IID

[6] Dermatology ISIC [84] EfficientNet [157] Use Case

[7] Dermatology AtlasDerm [158]
Dermnet [159]

VGG
AlexNet
FedAvg [160]
FedML

Use Case

[8] Dermatology FMNIST [131] Efficient-Net
FedPerl

Non-IID

[9] Dermatology
RSNA ICH [124]
ISIC [84]

DenseNet [161]
Client Matching

Non-IID

[10] Dermatology Proprietary Data CNN Privacy
[11] Dermatology TCGA [130] DP-SGD [46] Privacy
[14] Dermatology HAM10000 [114] MobileNet [113] Non-IID

[15] Dermatology TCGA [130] DenseNet [161]
MIL [162]

Privacy

[13] Dermatology
Neurology

RSNA ICH [124]
HAM10000 [114]

FedAvg [160] Non-IID

[12]
Dermatology
Oncology
Respiratory Medicine

MedMNIST [70]
Camelyon17 [71]

ResNet Non-IID

[16] Dermatology
Respiratory Medicine

Pcam [141]
COVIDx [132]

MAE [163] Privacy

[107] Dermatology
TCGA [130]
CRC-VAL-HE-7K [164]
NCT-CRC-HE-100K [164]

CycleGAN Non-IID

[165] Dermatology SkinLessions [166]
Monkeypox [167]

MobileNet
ResNet
CycleGAN
ViT [168]

Use Case

[169] Dermatology Proprietary data ResNet Use Case
[170] Dermatology ISIC [84] ResNet Use Case
[171] Dermatology ISIC [84] CNN Use Case
[172] Dermatology HAM10000 [114] CNN Use Case

[106] Dermatology
Miscellaneous (Anatomy Detection)

MNIST [173]
HAM10000 [114]
MedMNIST [70]

CNN Non-IID
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Table A2. Cont.

Paper Medical Data Speciality Referenced Dataset Referenced Algorithm Research Strategy

[103]
Dermatology
Oncology
Respiratory Medicine

MedMNIST [70]
MNIST [173]

ResNet Non-IID

[122]
Dermatology
Oncology

CoNSeP [174]
TCGA [130]
GlaS [175]
CryoNuSeg [176]
Kumar [177]
TNBC [178]

U-Net Non-IID

Table A3. Part 2/4 of the detailed literature corpus of the reviewed papers on medical image analysis
research on federated learning.

Paper Medical Data Speciality Referenced Dataset Referenced Algorithm Research Strategy

[17] Gastroenterology GLRC [97]
SCM [95]
FCOS [96]

Non-IID

[41] Miscellaneous (Anatomy Detection) TCGA [130] MobileNet [113] Use Case

[123] Miscellaneous (Disease Classification) MedMNIST [70]
CNN
FedAvg [160]

Non-IID

[43] Miscellaneous (MRI Reconstruction)

fastMRI [115]
HPKS [116]
IXI [79]
BraTS [80]

U-Net
FedAvg [160]

Non-IID

[23] Miscellaneous (Thyroid Cancer) Proprietary Data
VGG
ResNet

Use Case

[135] Miscellaneous (Anatomy Detection) ACDC [179] U-Net Privacy
[155] Miscellaneous (Anatomy Detection) Proprietary data VGG Use Case

[137] Miscellaneous (Anatomy Detection)
MedMNIST [70]
COVID-CT-dataset [180]
PneumoniaMNIST [181]

ResNet Privacy

[182] Miscellaneous (Anatomy Detection)

Montgomery [183]
India [184]
Shenzhen [183]
TBX11k [185]
TB-Att [186]

ConvNeXt [187] Use Case

[188] Miscellaneous (Anatomy Detection) X-RayKnee [189] DenseNet Use Case
[45] Miscellaneous (Watermark Extraction) Proprietary Data Encoder–Decoders Privacy

[18] Neurology

ADNI [111]
PPMI [190]
MIRIAD [191]
UK BioBank [192]

ENIGMA [193] Non-IID
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Table A3. Cont.

Paper Medical Data Speciality Referenced Dataset Referenced Algorithm Research Strategy

[19] Neurology
ADNI [111]
OASIS [82]

FedCM
VGG
3D-CNN [110]

Non-IID

[20] Neurology BraTS [80]
FedAvg [160]
Encoder–Decoders

Privacy

[21] Neurology BraTS [80] U-Net Use Case

[22] Neurology

IXI [79]
BraTS [80]
MIDAS [81]
OASIS [82]

PatchGAN [74] Non-IID

[194] Neurology OASIS [82] CNN Use Case

[117] Neurology
ADNI [111]
AIBL [195]
AI4AD [196]

ViT [197] Non-IID

[85] Neurology
ABIDE [198]
ADNI [199]

Graph CNN [200] Non-IID

[201] Neurology
LUNA [202]
Proprietary data

VGG Use Case

[203] Neurology
SARTAJ [204]
Br35H [205]

VGG Use Case

[206] Neurology Proprietary data AlexNet Use Case

[207] Neurology
SARTAJ [204]
Br35H [205]

DenseNet Use Case

[121]
Neurology
Miscellaneous (Anatomy Detection)

TCIA [208]
Proprietary Data

Mean Teachers [209] Non-IID

[210]
Neurology
Respiratory Medicine

COVIDCT [211]
COVID-CT-dataset [180]
SARS-CoV-2 [212]

CapsuleNetwork [213] Use Case

Table A4. Part 3/4 of the detailed literature corpus of the reviewed papers on medical image analysis
research on federated learning.

Paper Medical Data Speciality Referenced Dataset Referenced Algorithm Research Strategy

[214] Neurology
Oncology

SRI24 [215]
BraTS [80]

U-Net Use Case

[216] Neurology
Oncology

QUASAR [217]
YCR BCI [218]
BraTS [80]

U-Net Use Case

[219] Oncology
INbreast [220]
VinDr-Mammo [221]
CMMD [222]

CNN Use Case

[223] Oncology DDSM [224] MobileNet
DenseNet

Use Case
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Table A4. Cont.

Paper Medical Data Speciality Referenced Dataset Referenced Algorithm Research Strategy

[134] Oncology BreakHis [225] E-EIE [226] Privacy
[118] Oncology RETOUCH [227] U-Net Non-IID
[102] Oncology DDSM [224] ACO [228] Non-IID
[229] Oncology BreakHis [225] ResNet Use Case
[67] Oncology LC25000 [230] Fuzzy Rough Sets [231]Non-IID
[90] Oncology MultiChole2022 [232] ResNet Non-IID
[104] Oncology Kvasir [233] VGG Non-IID

[100] Oncology
ChestX-ray8 [234]
IQ-OTH/NCCD [235]

ResNet Non-IID

[91] Oncology LC25000 [230] Encoder–Decoders Non-IID

[236] Oncology BHI [237]
ResNet
GaborNet [238]

Use Case

[239] Oncology Microcal [240] EfficientNet [241] Use Case
[242] Oncology Proprietary data CNN Use Case

[243] Oncology
Baheya [244]
BUS-Set [245]

U-Net Use Case

[246] Oncology LC25000 [230] Inception Use Case

[247] Oncology
DDSM [224]
VinDr-Mammo [221]

ResNet Use Case

[248] Oncology MSD [249] U-Net Use Case

[250] Oncology
Thyroid [251]
Thyroid2 [252]

Swin Transformer [253]
Use Case

[89]
Oncology
Miscellaneous (Anatomy Detection)

PBC [254]
HyperKvasir [255]
LiTS [256]

ResNet Non-IID

[24] Oncology
MSD [249]
KITS19 [257]

FedAvg [160] Non-IID

[64] Respiratory Medicine QaTa-COV19-v2 [258] Encoder–Decoders Non-IID

[105] Respiratory Medicine
PneumoniaMNIST [181]
RSNA ICH [124]

ViT [197] Non-IID

[259] Respiratory Medicine SARS-CoV-2 [212] MobileNet Use Case

[260]
Respiratory Medicine
Oncology

VinDr-CXR [261]
UKA-CXR [262] ResNet Use Case

[101] Respiratory Medicine
Oncology

RSNA ICH [124]
CheXpert [109]
ChestX-ray8 [234]

ResNet Non-IID

[263] Respiratory Medicine COVID X-Ray [264]
POCUS [265]

VGG Use Case

[266] Respiratory Medicine CXR [267] Xception Use Case

[268] Respiratory Medicine

SIRM [269]
TCIA [208]
Radiopaedia [270]
PneumoniaMNIST [181]
GitHub [271]

DenseNet Use Case

[136] Respiratory Medicine X-RayTransition [272] VGG Privacy
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Table A5. Part 4/4 of the detailed literature corpus of the reviewed papers on medical image analysis
research on federated learning.

Paper Medical Data Speciality Referenced Dataset Referenced Algorithm Research Strategy

[27] Respiratory Medicine X-Ray [127]

CNN
ResNet
VGG
AlexNet

Use Case

[28] Respiratory Medicine
X-Ray [127]
COVID X-Ray [264]
COVID-19 Radio [273]

CNN Use Case

[42] Respiratory Medicine CheXpert [109] Graph NN Non-IID

[29] Respiratory Medicine
X-Ray [127]
COVID X-Ray [264]
COVID-19 Radio [273]

FedAvg [160] Non-IID

[30] Respiratory Medicine Not Disclosed
SqueezeNet
Glowworm Swarm
CovidNet

Use Case

[31] Respiratory Medicine LIDC [125] 3D U-Net [92]
FedAvg [160]

Non-IID

[32] Respiratory Medicine COVID X-ray [264] ResNet Inception Use Case

[33] Respiratory Medicine Not Disclosed
MobileNet [113]
ResNet
COVID-Net

Use Case

[34] Respiratory Medicine Proprietary Data RetinaNet Use Case
[35] Respiratory Medicine Not Disclosed CNN Use Case

[36] Respiratory Medicine Proprietary Data

ResNeXt
SVM
CNN
RNN

Use Case

[26] Respiratory Medicine
FMNIST [131]
COVIDx [132]
Kvasir [133]

FedAvg [274] Privacy

[37] Respiratory Medicine Montgomery [275]
Shenzhen [276]

StyleGAN [277] Non-IID

[38] Respiratory Medicine X-Ray [127] INN [126] Privacy
[39] Respiratory Medicine PPPD [278] ResNet Privacy

[40] Urology PROSTATEx [279]
WGAN-GP
CycleGAN
FedAvg [160]

Non-IID

[120]
Urology
Miscellaneous (Anatomy Detection)

CVC-ClinicDB [280]
CVC-ColonDB [281]
ETIS [282]
Kvasir [233]
NCI-ISBI 2013 [208]
I2CVB [283]
PROMISE12 [284]

U-Net Non-IID
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Table A5. Cont.

Paper Medical Data Speciality Referenced Dataset Referenced Algorithm Research Strategy

[119]
Urology
Miscellaneous (Anatomy Detection)

RIM-ONE-r3 [285]
Drishti-GS [286]
REFUGE-challenge [287]
NCI-ISBI-2013 [208]
I2CVB [283]
PROMISE12 [284]

FegAvg
MobileNet
DeepLabv3+

Non-IID

[288] Urology FUrology [289] ResNet Use Case
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