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Abstract: Intensive Care Units (ICUs) have been in great demand worldwide since the
COVID-19 pandemic, necessitating organized allocation. The spike in critical care patients
has overloaded ICUs, which along with prolonged hospitalizations, has increased workload
for medical personnel and lead to a significant shortage of resources. The study aimed to
improve resource management by quickly and accurately identifying patients who need
ICU admission. We designed an intelligent decision support system that employs machine
learning (ML) to anticipate COVID-19 ICU admissions in Kuwait. Our algorithm examines
several clinical and demographic characteristics to identify high-risk individuals early
in illness diagnosis. We used 4399 patients to identify ICU admission with predictors
such as shortness of breath, high D-dimer values, and abnormal chest X-rays. Any data
imbalance was addressed by employing cross-validation along with the Synthetic Minority
Oversampling Technique (SMOTE), the feature selection was refined using backward elimi-
nation, and the model interpretability was improved using Shapley Additive Explanations
(SHAP). We employed various ML classifiers, including support vector machines (SVM).
The SVM model surpasses all other models in terms of precision (0.99) and area under
curve (AUC, 0.91). This study investigated the healthcare process during a pandemic,
facilitating ML-based decision-making solutions to confront healthcare problems.

Keywords: COVID-19; feature selection; intensive care unit; machine learning; SMOTE; SHAP

1. Introduction

The COVID-19 pandemic has led to an unprecedented crisis among the human fra-
ternity across the globe in terms of mortality, morbidity, and economic impact. Of the
576.58 million COVID-19 cases registered globally as of 25 July 2022, 6.4 million people
died of the virus [1]. Identifying and targeting those at the highest risk became crucial for
effectively allocating inadequate medical resources [2]. Infectious illness outbreaks can
be predicted at times, but there is always ambiguity about their precise nature. As such,
the resources and knowledge gained while dealing with the COVID-19 pandemic are still
relevant, even though the immediate danger may have subsided. The strategic method-
ologies honed during this recent disaster can help to overcome future health emergencies.
Research conducted during the COVID-19 pandemic aimed to enhance awareness within
the healthcare community and address unforeseen challenges. The advanced predictive
models, cutting-edge techniques, and strategic perspectives developed can serve as crucial
tools for handling health crises in the future.

The data management, predictive analytics, and strategic knowledge skills acquired
over this period may be efficiently repurposed to tackle various illnesses and also to
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mitigate healthcare emergencies [3]. In this context, age, preexisting medical disorders, and
lack of vaccination are significant factors exacerbating viral severity in people [4].

An intensive care unit (ICU) is a specialist critical care unit intended to treat and
manage patients with life-threatening diseases. Admission policies for older adults in ICUs
are carefully considered to improve treatment outcomes and reduce mortality rates in this
population [5]. Research by Olds et al. highlights the need for improved interaction and
translation support for critically ill patients in emergency care [6]. ICU resource allocation
and admission protocols for patients should be observed meticulously by the medical
organization and ought to be impartial and patient-centric [7]. Given that the multiplicity
of virus mutations drastically affects the treatment handling approaches and the vaccination
used for the treatment, data analysis based on mutation types, vaccinations, and treatment
methods can help in understanding essential information and formulating strategic plans
for future pandemics [8].

The interaction between COVID-19 and diabetes significantly impacts disease severity
and has been explored in the literature through both traditional statistical analysis [9-12]
and machine learning (ML) techniques [13,14]. With 19.1% of the population diagnosed
with diabetes and 13.5% as prediabetic, Kuwait faces a considerable burden, making this
investigation particularly relevant [15]. ML enhances the ability to strategically manage
clinical research [16]. Multiple studies have identified risk factors for ICU admission
associated with COVID-19 and employed ML techniques to develop models that predict
disease severity based on data from laboratory tests, imaging, or clinical notes [17,18].

Imbalanced classification presents a challenge in predictive modeling due to skewed
distributions favoring majority classes. This complicates modeling, as most ML algo-
rithms assume equal representation across classes, rendering minority class predictions
less reliable. Moreover, the minority class is often of greater importance and more suscep-
tible to misclassification errors [19,20]. The Synthetic Minority Oversampling Technique
(SMOTE) is a widely-used ML method that addresses this issue [21]. SMOTE creates a
balanced dataset by oversampling minority instances, enhancing machine learning models’
performance on imbalanced data using a simple and efficient augmentation technique [22].

This work examines the use of ML algorithms to create predictive models for ICU
admission, using an extensive array of clinical and laboratory characteristics in COVID-19
patients, including variables that differentiate between those with and without diabetes.
A prevalent issue in medical datasets is class imbalance, characterized by a substantial
underrepresentation of one group (e.g., patients who need ICU care). This disparity
may skew predictive models, resulting in erroneous forecasts, especially for the minority
class. SMOTE is used to create synthetic samples in the feature space, thereby balancing
the minority class and enhancing the model’s fairness and precision. By using these
methodologies, the analysis determines the most essential and informative variables. This
research employed a feature selection strategy to identify the key predictors, since not all
variables are necessary for precise predictions.

The Methods section provides a comprehensive description of the procedures em-
ployed, including SMOTE and feature selection techniques. Utilizing the Population,
Intervention, Comparison, and Outcome (PICO) paradigm, the study questions were
articulated as follows:

= QI: How accurately can various ML models predict ICU admissions in patients
diagnosed with COVID-19?

= Q2: Which important clinical and test factors, when added to a machine learning
model, best predict whether a COVID-19 patient will need to go to the intensive
care unit?
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s Q3: In COVID-19 patients with diabetes, what are the differences in key variables
predicting ICU admission compared to those identified for the general COVID-19
patient population?

This study was motivated by the urgent requirement of accurate and efficient predic-
tive models designed for a specific demographic to improve healthcare responses. The
primary contributions of this paper include:

e  Dataset: A comprehensive and intricate dataset with demographic data and particular
clinical results is presented, constituting one of the most exhaustive compilations of
ICU needs during the COVID-19 epidemic in Kuwait.

e  Feature Selection: To avoid the constraints of unrefined data, backward feature se-
lection with logistic regression is used, enhancing the accuracy and efficacy of the
prediction models. The research employs several ML techniques, including random
forest (RF), extra trees (ET), support vector machine (SVM) with two kernels, logistic
regression (LR), and decision tree (DT).

e  Data Imbalance: Medical datasets often suffer from imbalanced data, which can distort
model predictions. This challenge is addressed using SMOTE, ensuring balanced and
fair model outcomes.

e Transparency: The model focuses on more than just forecasting; it also stresses inter-
pretability. The Shapley Additive Explanations (SHAP) values show how important
each predictor is, which helps us understand the ML results better, especially in a
clinical setting.

The rest of this paper is divided into five sections. The background studies are
explained in Section 2, followed by a detailed explanation of the methodology in Section 3.
The data and model analysis are elaborated in Section 4 and then discussed in Section 5.
Section 6 presents the study conclusions.

2. Background Studies

Effective patient care depends, inter alia, on precisely determining the necessity for
intubation and on treatment timing. Deep learning and ML models, in particular, have
become attractive answers to these problems, according to Ungar et al. [23], with several
medical problems being strongly linked to children with COVID-19 being admitted to
the ICU.

With an eye toward better patient care and outcomes, the work by Li et al. [24]
presents a deep learning method to forecast the requirements for intubation in ICU patients.
The model shows promising findings beyond conventional approaches, emphasizing
the possibilities of artificial intelligence (Al) in healthcare environments. ML algorithms
may lower uncertainty and ambiguity by offering empirical evidence for risk analyzers,
examination, forecasting, and therapies, thus supporting reliable healthcare decisions and
finally resulting in better patient results via superior levels of treatment [25].

The study conducted by Alkhunaizi et al. [26] investigates the effects of corticosteroid
treatment on the clinical results of Saudi Arabia’s patients with COVID-19 in the ICU.
Their result demonstrates that corticosteroid medication is linked to lower death rates,
shorter ICU stays, and a decreased requirement for mechanical ventilation. Also, their
results endorse the utilization of corticosteroids in managing severe COVID-19 in ICU
environments and offer significant perspectives for practical application. Table 1 presents a
review of previous studies on the prediction of ICU admission.
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Table 1. Overview of machine learning models utilized for predictive analysis in healthcare.
Reference and Year Model Target Type Strength Limitation
a dnizzciléitf;ldorfrll(izlit The model achieved good The study focused on
[27]1 2024 XGB . y performance with 88.56% imbalanced data and few
with 1455 COVID-19 .
. accuracy hematological test records
patients
Prediction of [CU vzzferﬁoiiiszggrs’:ﬁieztierfs The study limits the
[28] 2024 XGB admission with 19,155 vere op Hhzing > study
COVID-19 patients simulated annealing and  generalizability of the model
P reached an AUC of 0.89
Prediction of ICU Therr:s(l)gtesl ianC }rif)‘rlteﬁilt)etter The study limits the
[29] 2024 RF mortality with 503 1 morta ity > STuey
. prediction with generalizability of the model
COVID-19 patients o
81.42% accuracy
Prediction of mortality Different ML models were Fl;gitsntjl‘tl)ii,igr?zsf ?gti};:yaﬁf
[25] 2024 KNN with 23 features for 696 ~ compared and achieved an .
COVID-19 patients accuracy of 95.25% has challenges with
’ missing data
Deep neural Intubation in ICU With an AUC score of Data imbalance and
[24] 2024 P . . . 0.895, the study has strong  complexity of the model may
network patients with 55 variables . e
predictive capabilities. affect the performance
In-hospital mortality of The model achieved an The data contain missing
[30] 2023 Ensemble 1176 luIrjl cancer pa t}1] ont | accuracy of 89% with a wide values and limits the
& p range of clinical features generalizability of the study
Icu .trangfer prediction A robust feature selection
with dichotomous . . The data were collected from
[31] 2023 LR variables for 532 for dichotomous variables a sinele hospital
COVID-19 patients with a 0.748 AUC score & P
Predicting intubation risk The model achieved an The data contain missing
[32] 2022 DT with 54 variables for 1225  accuracy of 93.8% with an values and limits the
COVID-19 patients optimization algorithm generalizability of the study
. ICU pr.edlctlon with 53 The model achleoved an The study only employed
[33] 2022 DT algorithms variables for 512 accuracy of 81.9% with different DT algorithms
COVID-19 patients external validation
Survival prediction of . . . .
piEz NN ik emeddahiosdn  Compustenly ievive
326 COVID-19 patients ' 1
Prediction of The model achieved an
deterioration with 33 AUROC score of 0.84 and The dataset has more
(3512022 CatBoost variables for 1079 has performed external negative observations
COVID-19 patients validation.
Prediction of mortality ~ The data includes a diverse Dataset size and missing
[36] 2022 Light GB for 1571 COVID-19 population and achieved  data limit the generalizability
patients an AUC score of 0.88 of the study
Prediction of ICU The model achieved an Missing data and lack of
- . AUROC score of 0.73 and
. admission and mortality some maternal features may
[37] 2022 regression for 793 preenant has developed a impact the model
presh spreadsheet calculator for p
COVID-19 patients prediction performance
fé?il;tigg ?(frlgzg The DT models enhance The data were collected from
[38] 2022 CART C5.0 Mvasthenia eravis clinical decision-making a single health center and
y patientsg with an AUC of 0.814 has missing values
Prediction of ICU . . The data contain missing
- it High predictive | imbal d dat d
[39] 2021 Ensemble admission and mortality performance with an values, imbalanced data, an
for 5308 COVID-19 Fl-score of 0.81 limits the generalizability of
patients ' the study
Pred1ct1on .of mortality The study was cpnducted The study has not included a
[12] 2021 IR with 57 variables for 247 across 10 hospitals and control group for
COVID-19 diabetic and achieved an AUC score . . .
prediabetic patients of 0.889 non-diabetic patients
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Table 1. Cont.

Reference and Year Model Target Type Strength Limitation
Multivariable szcggtsl;)irgl?;zU The model achieved an Dataset size and missing
[40] 2021 . AUC score of 0.77 and data limit the generalizability
LR mortality for 356 employed a risk calculator of the stud
COVID-19 patients ploy y
Prediction of ICU and The model reduced the vaTESsdf;be?;riizlrgzzlzi d
[41] 2021 RF ventilation for 212 features to 5 key variables limit ,the eneralizabili; of
COVID-19 patients with an AUC of 0.80. s the § y
the study
5;:31;;1(;):3f1 tI}E: 54 Different ML models were Data were collected from a
[42] 2021 XGB . compared and achieved an  single health center and has
variables for 1925 AUC score of 0.98 challenges with missing data
COVID-19 patients ' & J
Prediction of ICU with The model achieved an Dataset size and missing
[43] 2021 Ensemble CBC data for 1218 AUC score of 0.88 data limit the generalizability
COVID-19 patients ’ of the study
Prediction of ICU The model achieved an
[44] 2021 XGB admission with 165 AUC of 0.83 and a The data were collected from
variables for 3623 web-based application was a single health center
COVID-19 patients developed
Prediction of mortality The study used an
[14] 2020 CNN for 9954 COVID-19 advanced model and Computational complexity

diabetic patients with
clinical notes

achieved an AUC score
of 0.97

AUC (area under the curve), CBC (complete blood count), DT (decision tree), CatBoost (categorical boosting),
AUROC (area under the receiver operating characteristic curve), RF (random forest), GB (gradient boosting), XGB
(extreme gradient boosting), ANN (artificial neural network), LR (logistic regression), and CART (classification
and regression tree).

Although many studies provide important indicators of COVID-19 aspects, there is
still the pressing need for a consistent approach to feature selection. Most of the models
used several features, which might complicate clinical application. Moreover, the interpre-
tation of features toward prediction was not evaluated in many studies. The difficulty of
class imbalance, especially in mortality and ICU prediction models, has been reported in
numerous studies.

3. Materials and Methods
3.1. Study Design

The use-case scenario illustrated in Figure 1 outlines the context of the study. It
includes actors interacting with the system, its functionality, and the relationships between
them. One key actor is the patient with COVID-19 who is admitted to the hospital, consulted
by doctors, and tested for the virus. Doctors and nurses, as additional actors, record
the patient’s symptoms and clinical data. The medical records, which encompass ICU
admission details, are stored in a database managed by an administrative entity. The
“include” parameter in the connection links indicates a reliance on additional use cases to
fulfill particular tasks. Patients are discharged following the physician’s assessment.

After compiling the dataset, the machine learning model developer processes the data
through cleaning, imputing, and standardization. The backward variable selection method
is employed to select key medical variables. The model parameters are subsequently fine-
tuned, and the optimal configuration is employed for training and validation. Finally, the
trained model is implemented and deployed, ready to predict outcomes for new patient
data in a clinical setting. This deployed model incorporates preprocessing steps, optimal
variables, and the best ML model parameters for precise predictions.
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Figure 1. Use-case scenario.

3.2. The Dataset

Patients hospitalized in Kuwaiti hospitals between 4 May 2020 and 26 August 2020
were the subjects of the data collection. The appropriate legislative bodies authorized
sample collection and patient surveys, and the Permanent Committee acquired the appro-
priate authorization forms for MHRC at the Ministry of Health (MOH). Patient data were
gathered retrospectively, with the validation cohort’s inclusion requirements necessitating
the availability of admission and discharge information. Patients lacking this information
were excluded from the validation group. All patients included in the study had tested
positive for COVID-19 through polymerase chain reaction (PCR) testing.

Data were initially collected from 4555 patients, but 156 were excluded due to ex-
cessive missing values, leaving a final cohort of 4399 patients. The mean age of the
participants was 42 years, with the interquartile range (Q1-Q3) extending from 31 to 54
years. Table 2 presents demographic information such as age and gender, as well as ICU
admission criteria.

Table 2. Study cohort distribution by ICU admission, age, and gender.

Status Age Male Female

Up to 30 7 1

ICU Between 31 and 50 97 6
admission-required Between 51 and 65 91 18
Above 65 46 15
Up to 30 679 380
ICU admission-not Between 31 and 50 1371 489
required Between 51 and 65 569 302

Above 65 173 155
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The variables hypertension and diabetes mellitus (DM) were ascertained according to
defined research conditions. Hypertension is characterized by a systolic blood pressure over
140 mmHg or a diastolic blood pressure surpassing 90 mmHg, with a value of 1 indicating
hypertension and 0 indicating no hypertension. The glucose parameter represented random
glucose levels in hospital patients, measured at any time of the day, not necessarily as a
fasting sample. A patient was classified as having DM (value = 1) if their glucose level
was >11.1 mmol/L or Hbalc was >6.5 mmol/L; otherwise, they were non-diabetic (DM
value = 0). Patients with lower glucose levels but a positive history of DM were considered
under medication [45].

Demographic predictors consisted of gender, age, height, and nationality. Symptoms
recorded during COVID-19 included abdominal pain, fever, a history of bariatric surgery,
asthma, headache, sore throat, expectoration, shortness of breath (SOB), weakness, diarrhea,
and cough. Diabetes status during hospitalization was assessed through hemoglobin Alc
(Hbalc), DM history, and glucose levels. Clinical testing incorporated lactate dehydrogenase
(LDH), total bilirubin (T.Bili), respiratory rate, C-reactive protein (CRP), sodium (Na), serum
albumin (S.Albumin), magnesium (Mg), prothrombin time, creatinine, alkaline phosphatase
(ALP), temperature, pulse, carbon dioxide (CO,), estimated glomerular filtration rate (eGFR),
total protein (T.Protein), calcium (Ca), urate, gamma-glutamyl transferase (GGT), procalcitonin,
ferritin, chloride (Cl), phosphate, activated partial thromboplastin clotting time (APTT),
oximeter readings, alanine transaminase (ALT), international normalized ratio (INR), blood
urea nitrogen (BUN), chest X-ray (CXR), D-dimer, and potassium (K).

Blood test parameters assessed included hematocrit (HCT), hemoglobin (HB), basophils
(%), mean platelet volume (MPV), mean corpuscular volume (MCV), red blood cell (RBC)
count, neutrophils (%), platelet count, white blood cell (WBC) count, mean cell hemoglobin
concentration (MCHC), lactate dehydrogenase (LDH), lymphocytes (%), red cell distribution
width (RDW), eosinophils (%), mean corpuscular hemoglobin (MCH), and monocytes (%).
Table 3 provides a detailed description of each variable included in the study.

Table 3. The specifications of the COVID-19 dataset.

Variables N Col:l/llﬁsmg Data o, Mean =+ Std. Deviation
Eosinophil 4398 1 0 2.27 £2.50
LDH 3861 538 12.2 116.75 £ 406.87
RDW 4383 16 0.4 13.79 £ 2.34
Respiratory rate 1280 3119 70.9 21.96 £5.21
Diarrhea 1513 2886 65.6 -
Fever 1513 2886 65.6 -
Hypertension 1389 3010 68.4 -
BUN 4362 37 0.8 5.87 £7.52
DM 4299 100 2.3 -
Pulse oximetry 1355 3044 69.2 96.41 & 4.95
Na 4356 43 1 137.70 £ 3.98
Hbalc 510 3889 88.4 8.94 £2.44
WBCs 4395 4 0.1 8.03 £4.74
Weakness 1513 2886 65.6 -
Creatinin 3908 491 11.2 96.22 £ 108.81
GGT 3975 424 9.6 4513 £73.21
SBP 1389 3010 68.4 129.94 £+ 18.17
DM history 1513 2886 65.6 -
Pulserate 1435 2964 67.4 87.77 £15.03
MCH 4384 15 0.3 2714 +£2.78
ALP 4321 78 1.8 82.87 £ 69.97
Nationality 4399 0 0 -
T.Bili 4160 239 54 14.38 +22.74

SOB 1513 2886 65.6 -
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Table 3. Cont.

Variables N Coﬁfsmg Data o Mean -+ Std. Deviation
CXR 1462 2937 66.8 -
Phosphate 4258 141 3.2 1.28 £+ 0.40
Mg 4209 190 4.3 0.83 +£0.11
Bariatric Surgery 1513 2886 65.6 -
Urate 4179 220 5 297.94 + 109.26
MCHC 4384 15 0.3 32420 +17.47
Sore throat 1513 2886 65.6 -
Temp 1341 3058 69.5 37.04 + 0.63
T.Protein 4288 111 25 65.12 + 7.36
Lymphocytes 4380 19 0.4 26.01 £ 17.64
Neutrophils 4398 1 0 57.24 + 16.18
Platelets count 4398 1 0 287.35 + 117.14
Ferritin level 3805 594 13.5 102.52 + 259.21
Prothrombin 3233 1166 265 1414 £ 422
Time
INR 3234 1165 26.5 1.05 £ 0.31
Glucose 4282 117 2.7 8.87 +5.10
APTT 3206 1193 27.1 33.46 = 1291
CL 4363 36 0.8 102.77 + 5.53
Abdominal pain 1513 2886 65.6 -
Basophil 4384 15 0.3 0.44 +0.28
S.Albumin 4359 40 0.9 34.84 +£7.41
RBCs 4398 1 0 4.78 +0.89
MCV 4384 15 0.3 83.60 = 7.28
Procalcitonin 1470 2929 66.6 3.57 + 28.46
Cough 1513 2886 65.6 -
DDimer 1223 3176 72.2 539.07 & 1470.42
CO, 4362 37 0.8 25.46 +3.13
Expectoration 1513 2886 65.6 -
CRP 2524 1875 42.6 32.89 £ 74.84
Monocytes 4384 15 0.3 8.79 £3.25
DBP 1388 3011 68.4 76.95 + 10.97
Asthma 1513 2886 65.6 -
Age 4399 0 0 42,16 = 16.73
Gender 4399 0 0 -
Ca 4269 130 3 2.23 +0.19
Headache 1513 2886 65.6 -
HB 4398 1 0 129.08 + 23.76
ALT 4152 247 5.6 47.95 £ 216.65
HCT 4384 15 0.3 0.40 + 0.07
MPV 4248 151 34 10.38 4+ 1.77
eGFR 4043 356 8.1 97.17 £ 29.69
K 4353 46 1 427 +0.54
ICU admission 4399 0 0

Abbreviations: ICU: Intensive Care Unit, WBC: White Blood Cell, MCHC: Mean Cell Hemoglobin Concentration,
RBC: Red Blood Cell, MCH: Mean Corpuscular Hemoglobin, HB: Hemoglobin, HCT: Hematocrit, MCV: Mean
Corpuscular Volume, Na: Sodium, K: Potassium, Cl: Chloride, Ca: Calcium, Mg: Magnesium, CO,: Carbon
Dioxide, SBP: Systolic Blood Pressure, CRP: C-Reactive Protein, T.Protein: Total Protein, T.Bili: Total Bilirubin,
S.Albumin: Serum Albumin, LDH: Lactate Dehydrogenase, MPV: Mean Platelet Volume, DBP: Diastolic Blood
Pressure, Hbalc: Hemoglobin Alc, DM: Diabetes Mellitus, CXR: Chest X-Ray, INR: International Normalized
Ratio, BUN: Blood Urea Nitrogen, ALT: Alanine Transaminase, ALP: Alkaline Phosphatase, GGT: Gamma-
Glutamyl Transferase, RDW: Red Cell Distribution Width, APTT: Activated Partial Thromboplastin Clotting Time,
SOB: Shortness of Breath, eGFR: Estimated Glomerular Filtration Rate.

3.3. Methodology

This section elaborates on the method adopted in this study. The dataset includes
4399 records of COVID-19 patients, containing 66 variable columns that cover various
demographic and clinical data. Initial preprocessing steps such as data cleaning, impu-
tation, and normalization were performed to ensure the dataset’s quality. Only the most
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relevant and non-collinear variables identified were retained using techniques like Pearson
correlation and chi-square tests. The dataset was then split into 60% for training and 40%
as unseen data for testing.

SMOTE was utilized to mitigate class imbalances present in the training dataset.
Various machine learning models were utilized on the processed data, specifically LR,
SVM, DT, ET, and RE. A comprehensive evaluation was conducted utilizing 3-fold cross-
validation (CV) alongside metrics including precision, recall, and F1-score, thereby ensuring
a thorough and methodical analysis, as detailed in the following paragraphs.

Figure 2 presents the approach employed in this study. The dataset comprises mul-
tiple variables, including demographic information such as gender, age, and nationality,
alongside COVID-19 symptoms, blood culture results, chronic diseases, oximeter readings,
diabetes, pulse rate, and additional clinical findings, as outlined in Table 3. Preprocessing
occurred before the application of classification models, and key variables were identified
through a wrapper-based variable selection method.

Cleaning, Imputing,
standardizing

: Backward
Covid-19 Preprocessing the N Foature N SMQTE on
o data s ) Training data
Dataset election
Evaluating the .
model on unseen <«— Result Analysis <— 3-fold Parameter tuning
or new data cross-validation of each model
Accuracy T
Precisi
Ir?e:::s;ﬁn Models: SVM,
Specificity RF, ET, DT, LR
F1-score

Figure 2. Study methodology.

3.4. Data Cleaning and Preprocessing

The initial stage involved cleaning the dataset to prepare it for modeling. Missing
values were then addressed through an imputation method. Variables in Table 3 exhibiting
over 75% missing values were omitted from the analysis [33]. The missing values were
imputed using the K-nearest neighbors (KNN) method [46], an effective algorithm that
utilizes Euclidean distance. This study established the number of neighbors at 5, the default
value in the utilized package. This method substituted missing values with the mean of the
five closest neighbors. The Euclidean distance is mathematically defined in Equation (1) as:

distance = \/weight * squared distance from f (1)

Here, f represents the current feature, and weight is determined as described in Equation (2) as:

total number of features

weight = -
& number of features having values

)

Both missing and attributed data were analyzed to verify reliability. After addressing
the missing values through the KNN method, the dataset underwent additional prepro-
cessing to normalize all variables within a defined range.
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3.5. Variable Selection

After excluding variables with more than 75% missing values, 65 independent vari-
ables and 1 target variable (ICU admission: 1 for required, 0 for not required) were retained.
Utilizing all independent variables might have hindered the predictive performance of the
ML models. To address this, highly correlated variables were identified and removed using
Pearson correlation analysis for continuous variables, as illustrated in Figure 3. Variables
with a correlation coefficient between 0.7 and 1 were considered strongly correlated, either
positively or negatively [47].

Age 1.00

SBP -

DBP -

Temp -

eGFR -

CRP -
Procalcitonin -
Creatinin -
Phosphate -
Urate -
T_PROTEIN -
T_BILI-

S. Albumin -
Respiratory_rate -
Pulse_rate -
Pulse_oximetry -
Prothrombin_Time -
Na -

Mg -

LDH -

K-

INR -

GGT -
Ferritin_level -
D-Dimer -

Co2 -

CL-

Ca-

BUN -

APTT -

ALT -

ALP -

WBCs -
Neutrophils% -
Lymphocyts% -
Monocyte % -
Basophil% -
Eosinophil% -
RBCs -

HB -
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MCV -

MCHC -

MCH -

RDW -

MPV -
Platlets_count -
Glucose -

--0.25

-—0.50

-0.75

—1.00

Urate

T_PROTEIN
Pulse_oxi rr_1etry
Prothrombin_Time
Na

Mg

LDH

RBCs

Procalcitonin
Creatinin
Phosphate

S. Albumin
Respiratory_rate
Pulse_rate
Neutrophils%
Lymphocyts%
Monocyte %
Basophil%
Eosinophil%
Platlets_count
Glucose

Figure 3. Correlation matrix of continuous variables. Toward the red color is positive correlation and
toward the blue color is negative correlation.

A positive correlation indicates that both variables increase or decrease together, while
a negative correlation signifies that one variable increases as the other decreases. Strong
relationships were identified among several pairs of variables, including MCV-MCH,
RBC-HCT, eGFR-creatinine, HB-HCT, prothrombin time-INR, and RBC-HB (as shown in
Figure 3). These strongly correlated variables provided overlapping information, increasing
the risk of overfitting in ML models. Accordingly, the variables MCV, HB, INR, RBC, and
creatinine were removed from the dataset to enhance model performance and reduce
redundancy.

The chi-square test for independence was employed to assess the association and
significance of binary variables listed in Table 3. This test evaluated the relationship
between independent variables, with the null hypothesis stating that there is no statistical
difference between the observed variables. The null hypothesis is accepted when the
p-value exceeds 0.05. The p-values for all binary variables are presented in Appendix A,
Tables A1-A3. Variables such as headache, weakness, abdominal pain, history of bariatric
surgery, diarrhea, and expectoration were removed from the dataset due to p-values greater
than 0.05, indicating no significant difference among these variables.
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For continuous data, a backward elimination wrapper method was used to identify
relevant predictors [48,49]. LR was applied to determine the p-values of variables [50],
assessing their contribution to predicting the target variable. The null hypothesis assumes
no effect of the variable on the target outcome and is accepted when the p-value exceeds
0.05, leading to the variable’s removal. For instance, if the variable “age” has a p-value
of 0.001, it is deemed significant in predicting ICU admission and is retained for the
classification model.

The flowchart in Figure 4 outlines the variable selection process, and the selected
variables were used in the external validation test model. Detailed results from the logistic
regression analysis are provided in Appendix A, Table A4.

. set the significant Fitting the
c(i:g;:tlfgr: co?r?arlg?gs fr:algth Ir)'/es value as 5% model with all
u (p-value=0.05) features

O\ l
4 N\
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y N

Done <—Yes—</if p-value < 0.05 P a— (B EEL e
\\ // max p-value
>
\\\ ///
\[/
No
Remove the Fit the model with
feature remaining features

Figure 4. Flowchart depicting the variable selection process.

3.6. SMOTE and Parameter Tuning

The dataset with selected variables was processed using the train-test split method,
with 60% of the data being employed for training and the remaining 40% kept as unseen
data. Due to the imbalanced nature of the training data, the SMOTE technique was
employed to address class imbalance. SMOTE generates additional instances for the
minority class (ICU admission required) by interpolating existing positive samples within
the variable space, improving model performance through oversampling. The performance
of the ML models was assessed using a 3-fold CV method combined with a grid-search
approach to optimize hyperparameters. The procedure partitions the dataset into three
segments, utilizing two segments for model training and reserving the third for testing.
The procedure was conducted thrice, ensuring each fold was utilized for testing once, with
the final performance assessed by averaging the results across the folds.

The models were optimized using GridSearchCV with a 3-fold CV, and the best
parameters for each classifier were selected based on accuracy scoring. Table 4 presents the
tuned parameters for the models. The model with the best-tuned parameters was used for
testing unseen data.

Table 4. Parameters of Machine Learning Models for Grid-Search with 3-Fold Cross-Validation.

Model Used Tuning Parameters The Range
DT Max-depth Range from 2 to 22
Alpha Range from 0.1to 1 x 1072
-5
SVM-Linear tol Range from 0.1to 1 x 10

C Range from 27! to 24
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Table 4. Cont.
Model Used Tuning Parameters The Range
RE Max-features Auto, sqrt, log2
N-estimator Range from 100 to 500
IR tol Range from 0.1to 1 x 107>
C 0.01,0.1,1,2
Gamma Range from 272 to 27
SVM-RBF C From 20 to 24
ET Max-features Auto, sqrt, log2
N-estimator Range from 100 to 500

3.7. Machine Learning Algorithms and Evaluation

This study utilized several machine learning algorithms, including DT, RE, and SVM
with linear and radial basis function (RBF) kernels, LR, and ET models [51]. The best
parameters were selected based on accuracy and subsequently used for evaluation on the
dataset with stratified 3-fold CV, mitigating the risk of overfitting. Model bias and variance
were also analyzed to ensure robustness. All analyses were implemented using Python and
the Scikit-Learn library [52]. The pseudo-code of the study is shown in Figure 5.

Input: Patients' data with demographic, clinical records, and labels (ICU admission required)
Output: Classifying the ICU admission requirement
begin

) Load and clean the data

> Impute missing values using KNN imputer

=) Remove highly correlated variables
) Perform feature selection
For categorical features:
Perform Chi-Square test
Retain variables with significant association (p-value < 0.05)
For continuous variables:
Perform backward feature selection using Logistic Regression
[ Split the data into training (60%) and testing (40%) sets
> Apply SMOTE on training data to balance the labels
) Define the machine learning models
=) Set up hyperparameter grid for the model
) Perform GridSearchCV with 3-fold cross-validation on the training data
Identify the best model and hyperparameters
> Evaluate the models with best parameter on the unseen 40% testing data
) Calculate performance metrics
end

Figure 5. Pseudo-code of the study.

Model performance was evaluated using precision (positive predictive rate), recall (sen-
sitivity), specificity, accuracy, and F1-score metrics. Accuracy provides an overall measure
of model performance across classes but may be misleading in cases of imbalanced class
distribution. For instance, when non-ICU admissions vastly outnumber ICU admissions, the
model may predict all instances as non-ICU, overlooking actual ICU cases. Thus, additional
metrics like recall, specificity, and F1-score were emphasized to provide a more nuanced
evaluation of the model’s performance. The evaluation equations are provided below:

. trPs
Precision = m 3)
Recall = __frPs (4)

trPs 4+ faNg
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2trPs
F1 - =
SC0Te = B Ps + faPs + faNg ©)
trPs + trNg
A =

CUracY = 4ps + trNg + faPs + faNg ©)

e trNg
ty = —=— 7
Specificity trNg + faPs @

where true positive (tPs), true negative (t¥Ng), false positive (faPs), and false negative
(faNg) are fundamental elements in calculating evaluation metrics. Precision measures the
model’s ability to accurately predict ICU admissions (the positive class) by minimizing
false positives, ensuring that predictions of ICU admission are reliable. Recall assesses
the model’s capacity to identify all true ICU cases, with high recall indicating that the
model successfully captures the majority of ICU patients. Specificity evaluates the model’s
effectiveness in correctly identifying non-ICU cases by minimizing false positives among
negative instances, where high specificity reflects the model’s reliability in recognizing
non-ICU admissions. The Fl-score represents the harmonic mean of precision and recall,
balancing the trade-off between these two metrics to provide a comprehensive measure of
model performance.

The receiver operating characteristic (ROC) curve is a valuable tool for assessing binary
classification models. It plots the true positive rate against the false positive rate across
various thresholds, offering insights into the model’s performance. The area under the
curve (AUC) serves as a summary metric, with values approaching 1 indicating superior
model performance and more effective classification [53]. Additionally, SHAP was utilized
to interpret the contributions of each variable to the predictions. SHAP provides detailed
insights into how individual features influence model outcomes and is compatible with
widely used ML libraries such as Scikit-Learn, TensorFlow, and PyTorch [54].

4. Results
4.1. Data Analysis

The dataset comprised a total of 4399 records, with 31% (1366) of the patients being
female and 69% (3033) male. Among these, 281 patients (6%) required ICU admission,
while 4118 (94%) did not. Missing values within the dataset were addressed using the KNN
imputation method. The imputed and missing data were evaluated using the Hosmer—
Lemeshow test within a logistic regression analysis. A p-value exceeding 0.05 supports the
null hypothesis, demonstrating that the model adequately fits the data. Table 5 provides an
analysis of missing and imputed data, indicating that the Hosmer—Lemeshow test validated
a strong fit between the model and both datasets.

Table 5. Results of the Hosmer—Lemeshow Test for Goodness-of-Fit Analysis Considering Missing

and Imputed Data.
The Dataset df Chi-Square Sig. (p-Value)
With imputed 8 2.583 0.958
With missing 8 6.086 0.638

The data were standardized using the min-max function in Scikit-Learn, normalizing
it based on the mean and variance of the dataset. Sixty percent of the data, comprising
2639 patient records, was allocated for training. Within this training dataset, the target label
included 172 instances of ICU admission required and 2467 instances of ICU not required.
Since under-sampling could result in the loss of valuable information, the SMOTE method
was employed to address class imbalance. Over-sampling was applied to the minority class
(ICU-required) to match the size of the majority class (ICU not required).
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Parameter tuning was conducted using GridSearchCV, and the optimal parameters
for each model were saved. Subsequently, the dataset was evaluated using a stratified
3-fold cross-validation approach, with each classifier being tested using its respective

best parameters.

4.2. Variable Selection and Model Performance

The model was developed using 60% of the dataset based on the selected variables.
To refine the variable set, highly correlated variables were excluded, and a backward
elimination approach employing logistic regression was applied, as illustrated in Figure 4.
This process reduced the number of variables from 65 to 20, based on their statistical
significance (p-value < 0.05). Figure 6 shows the distribution of the selected predictors.
The final variables included DM history, pulse rate, fever, T.Bili, respiratory rate, age, CXR,
gender, MCHC, sore throat, D-dimer, LDH, T.Protein, WBCs, nationality, S.Albumin, DBP,
SOB, pulse oximeter, and HCT.
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Figure 6. Distribution graph of chosen variables.

The models’ parameters were tuned using GridSearchCV with 3-fold cross-validation,
and the best parameters for each classifier were selected, as mentioned in Table 4. For the DT
model, the optimal parameters were a max depth of 20 and an alpha of 1 x 1073, The SVM
with the RBF kernel achieved the best accuracy with C = 2* and gamma = 272. The optimal
number of estimators was 100 for the ET classifier and 350 for the RF classifier, which
also used max feature = log2. Similarly, the LR classifier was tuned with a regularization
parameter of C =2 and a tolerance value (tol) 1 x 10~3. The SVM with the Linear kernel
was trained using C =2 and a tolerance value (tol) 0.0001.

Table 6 summarizes the evaluation results for all metrics of each ML model. All models
underwent training and evaluation with their optimally tuned parameters. The ET classifier
achieved the highest accuracy of 98.09%, exhibiting excellent performance in precision
(0.9816), recall (sensitivity) (0.9809), F1-score (0.9813), and specificity (0.9809).

The confidence intervals (Cls) for each model are explained in Table 7. In addition to
the metrics, 95% CI was calculated in this study to assess the reliability of the measures. CI

is defined as:

(%
Cl=Mn +Z.— 8
n 7 ®)
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where Mn is the mean of the metric (accuracy, precision, recall, and specificity), Z is the
z-score of CI (which is 1.96), ¢ is the standard deviation of the metric, and s is the number
of CV folds.

Table 6. Evaluation Metrics for All Models Utilizing 3-Fold Cross-Validation.

Model Accuracy =+ Std. Precision =+ Std. Specificity & Std. F1-Score + Std. Recall £ Std.
LR 0.901 £ 0.022 0.901 £ 0.018 0.901 £ 0.022 0.901 £ 0.020 0.901 £ 0.022
DT 0.956 + 0.014 0.957 £ 0.019 0.956 £ 0.019 0.956 & 0.019 0.956 & 0.019

SVM-RBF 0.959 + 0.001 0.961 £ 0.024 0.959 + 0.026 0.959 £ 0.025 0.959 £ 0.026
RF 0.974 £ 0.003 0.974 £ 0.016 0.974 £ 0.017 0.974 £+ 0.016 0.974 £+ 0.017
ET 0.981 + 0.003 0.982 + 0.017 0.981 £ 0.018 0.981 £ 0.018 0.981 £ 0.018
SVM-Linear 0.913 £ 0.001 0.914 £ 0.021 0.913 £ 0.026 0.913 £ 0.023 0.913 £ 0.026
Table 7. 95% CI for the performance measures of each training model.

Model Accuracy Precision Specificity F1-Score Recall

LR (0.876,0.926)  (0.881,0.921)  (0.876,0.926)  (0.878,0.924)  (0.876, 0.926)

DT (0.940,0.972)  (0.935,0.979)  (0.934,0.978)  (0.934,0.978)  (0.934, 0.978)

SVM-RBF (0.958,0.960)  (0.934,0.988)  (0.930,0.988)  (0.931,0.987)  (0.930, 0.988)

RF (0.971,0.977)  (0.956,0.992)  (0.955,0.993)  (0.956,0.992)  (0.955, 0.993)

ET (0.978,0.984)  (0.963,1.000)  (0.961,1.000) (0.961,1.000)  (0.961, 1.000)

SVM-Linear  (0.912,0.914) (0.890,0.938)  (0.884,0.942)  (0.887,0.939)  (0.884, 0.942)

The bias and variance of the CV models are illustrated in Figure 7. A low-bias model
is prone to overfitting, leading to inaccurate predictions of new data, whereas a high-bias
model tends to underfit, resulting in consistently poor predictions. Among the models,
RF and ET, both ensemble models, exhibited the lowest variance, making them more
stable compared to other models. The SVM model demonstrated a better fit for complex
data distributions. Conversely, LR and SVM with a linear kernel exhibited increased bias,
resulting in reduced sensitivity to noise within the dataset and lower accuracy on training
data. Figure 8 illustrates the learning curve of the models, depicting misclassification error
or loss throughout the training process.

RF '__'—_. = Variance ® Bias
== —
svuReF [ —
SV Lincar |
e
o ——pl
0.000 0.020 0.040 0.060 0.080 0.100 0.120

Figure 7. Misclassification errors in training and validation of models throughout the cross-validation
process.



Big Data Cogn. Comput. 2025, 9, 13 16 of 29
DT Learning curve ET Learning curve
0.35
\\ —— Training_loss 0.35 4 \ —— Training_loss
0.30 \\ — Validation_loss \ —— Validation_loss
. \\ , 030 \
8025 . 8 \
3 \ 3 025 \
g \ N \
< 020 L e X
2 % §020 N
£ 0.15 S SR
a =
[ 7 0.15 \\\
L kel
£ 0.10 2 ! Ny
s \ £ 010 \\
0.05 | S 0.05 N
N N S
0.00 0.00
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Training_size Training_size
SVM-Linear Learning curve LR Learning curve
N 0.45 A
0.35 . —— Training_loss \\ —— Training_loss
\ — Validation loss | 040  \ —— Validation_loss
, 030 N \
2 9 0.35
S Ne 3 e
£ 025 e 3 \
e . 2 0.301 \
13 g & %
3 \ e N
= 0.20 N\ 5 0.25 1 B
S ® S
£ g N\
a @ 0.204
& 0.15 2 e
. ) 20151 N\
=010 =" \\
0.10 A —
0.05
0.05
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Training size Training_size
RF Learning curve
0404 SVM-RBF Learning curve
\ —— Training_loss 0.404 N\
0.35 \ —— Validation_loss —— Training_loss
\ o— —— Validation_loss
» 0.30 N ’
J \ g 0.30 N\
3 .30 \
£025 N 3 N
.4 \ B N\
c ] \
20.20 \ né 0:25 N
S e 2 N
= ® N\
@ 0.15 g 0201 R
| g & AN
2 \\ 5015 N\
< 0.10 2
\_\ g \\\
0.05 N 0.10 A Ne
0.00 0.05 \v,w\,\ -
500 1000 1500 2000 2500 3000 - - - - - -
Training_size 500 1000 1500 2000 2500 3000

Training_size

Figure 8. The learning curve of an appropriately fitted model.

The models with their best-tuned parameters were tested on external, unseen data
comprising 40% of the original dataset, which comprised 1760 patient records. The SMOTE
method was not applied to this test set, as real-world datasets are typically unbalanced,
reflecting the natural distribution of data. The dataset in question exhibited an imbalance
in the target variable, comprising 1651 instances where ICU admission was not required
and 109 instances where ICU admission was required.

Given the imbalance, evaluation metrics such as recall (sensitivity), precision, F1-score,
and specificity were used to assess model performance. The ET classifier achieved the
highest accuracy at 96.42%, while LR and SVM models exhibited the highest precision
values at 0.99. The complete evaluation results are presented in Table 8.

The ROC curve demonstrates the trade-off between true positives (sensitivity) and
false positives across different classification thresholds. A higher AUC indicates a model’s
superior ability to differentiate between the two classes. Figure 9 displays the AUC scores
for all machine learning models assessed on the unseen test data. The SVM-RBF and LR
models attained the highest AUC scores, each at 0.91.
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Table 8. External validation of the evaluated models using 40% of previously unseen imbalanced data.

Model Accuracy Precision F1-Score Recall Specificity
DT 0.9290 0.9769 0.9616 0.9467 0.6606
RF 0.9574 0.9864 0.9771 0.9679 0.7982
LR 0.8972 0.9940 0.9423 0.8958 0.9174
ET 0.9642 0.9853 0.9808 0.9764 0.7798
SVM-RBF 0.9449 0.9905 0.9700 0.9503 0.8624
SVM-Linear 0.8989 0.9913 0.9435 0.9001 0.8807
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Figure 9. The receiver operating characteristic curve, along with the AUC score, is presented for the

unseen test data.

The Friedman test was utilized to perform statistical significance testing across several
ML models based on their metric values, followed by post-hoc analysis (In case accepted).
The Friedman test is a non-parametric statistical method employed to identify variations in
model performance. It is especially advantageous when the same datasets are employed
for each study. The null hypothesis, which is accepted when the p-value is greater than 0.05,
mentions that there is no difference in the metrics performance of all models. On the other
hand, it is accepted when the p-value is less than 0.05, indicating at least one model has a
different performance. The Friedman test shows a statistical value of 21.33 and a p-value of
0.00027. The average rank between each model is depicted in Table 9.

Table 9. Rank based on the Friedman test for statistical difference between each model.

Model Accuracy Precision F1-Score Recall Specificity AUC Average Rank
DT 4 6 4 4 6 6 5
RF 2 4 2 2 4 4.5 3.08
LR 6 1 6 6 1 15 3.58
ET 1 5 1 1 5 45 292
SVM-RBF 3 3 3 3 3 1.5 2.75
SVM-Linear 5 2 5 5 2 3 3.67

The training and testing time of each model with feature selection is depicted in
Table 10. Choosing a suitable model depending on the amount of the dataset and feature
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dimensions requires knowledge of the computational complexity of the techniques. Al-
though computing cost was considered, the primary focus of this study was obtaining
the most accurate forecasts, especially considering the relevance of correct classification in
ICU prediction.

Table 10. Computational complexity and training and testing time of each model with feature selection.

Model ];rI::I;l;% :(l;:)e F{Ie;tézfogg;e Time Complexity Variables
DT 9.759 0.003 O(f.s.log(s
RF 185.993 0.107 O(Ef{}.s.lci_:;( s))) ) f = number of features
ET 23.366 0.034 O(t.f.s,log(s)) s = number of samples
LR 0.542 0.003 O((f +1)s.E) t = number of trees
SVM-RBF 71.326 0.165 O(s%.d) i 11“3)= elﬁf><(>i§h .
SVM-Linear 5.340 0.003 0 ( 5.d2 ) = number of dimensions

The models were also evaluated with full features. This helped to evaluate the impact
of the feature selection methods employed in the study. The results are shown in Table 11.
The best AUC is 0.89. Compared to this model with full features, there is an enhancement
in the performance of models with feature selection (Table 8 and Figure 9). The AUC
score, which is an effective evaluation metric for binary classification, shows that the
model classifies ICU admission more precisely with the selected features rather than when
utilizing full features.

Table 11. Training and testing results with full features.

Trainin Training Time Testin: Testing Time

Model Accurac?l (In Sec%)nds) Accurafy (In Sefonds) AUC
DT 0.9505 28.01 0.76 0.004 0.6473

RF 0.9594 293.98 0.96 0.095 0.7667

LR 0.9252 1.13 0.86 0.004 0.8924

ET 0.9613 30.18 0.96 0.052 0.8126
SVM-RBF 0.9377 74.48 0.94 0.122 0.7172
SVM-Linear 0.9291 9.96 0.87 0.004 0.8563

5. Discussion

This study aimed to predict ICU admission requirements in COVID-19 patients using
selected clinical parameters. Variables were chosen through LR using a backward selection
method, which reduces the dataset to the most relevant predictors. By eliminating redun-
dant or unnecessary variables, this approach not only accelerates model training but also
enhances performance and mitigates the risk of overfitting [55,56]. The final set of selected
variables included age, DM history, CXR, pulse oximeter, WBCs, respiratory rate, fever,
gender, D-dimer, sore throat, T.Protein, nationality, S.Albumin, HCT, LDH, DBP, MCHC,
pulse rate, SOB, and T.Bili.

The missing values were imputed using a KNN imputer and the Hosmer-Lemeshow
test (Table 5), which showed that the model remains strong with the imputed data. Further
imputation analysis was performed on the missing dataset, which included dropping
the missing values and evaluating the models, imputing the missing values with mean
value, and constant value. The mean and constant values were implemented based on
Simple Imputer from the Scikit-Learn library. The accuracy and AUC score of each model
with different imputing methods are presented in Table 12. The KNN imputing method
outperformed all the other methods tested, and the best result was SVM with a 0.91 AUC
score (as mentioned in Figure 9).
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Table 12. The performance of the models with different imputing methods (with selected features).

Drop Missing Mean Value Constant Value
Model

Accuracy (%) AUC  Accuracy (%) AUC  Accuracy (%) AUC
DT 14 0.50 6 0.50 6 0.50
RF 14 0.50 6 0.50 6 0.50
LR 29 0.58 95 0.80 95 0.80
ET 29 0.58 7 0.50 12 0.53
SVM-RBF 43 0.67 87 0.83 87 0.83
SVM-Linear 21 0.33 95 0.82 95 0.88

The ET model exhibited exceptional performance, attaining an accuracy of 97.64%
and an Fl-score of 0.9808. The SVM-RBF model demonstrated superior precision and
specificity, indicating a more conservative strategy in predicting ICU admissions. While
the SVM-RBF model produced fewer false positives, it was more likely to miss some true
positives compared to the ET model.

The AUC-ROC score was emphasized as a critical metric for evaluating the model’s
ability to distinguish between ICU admission requirements across all possible classification
thresholds. Unlike metrics such as accuracy, recall, or specificity—which depend on a
single threshold—the AUC-ROC score assesses the model’s performance over a range of
thresholds. This flexibility is particularly valuable in medical scenarios where the ideal
decision threshold may vary depending on clinical priorities or ICU resource availability.
The SVM-RBF model achieved the highest AUC score of 0.91, indicating its strong ability to
differentiate ICU admission requirements irrespective of the threshold.

While the SVM-RBF model’s accuracy (94.49%) was not the highest among the studied
models, it did achieve an optimal balance between sensitivity (true positive rate) and
specificity (true negative rate). SVM is widely recognized as a robust ML model [57]. Its
ability to handle high-dimensional data and its resilience to overfitting make it well-suited
for classification problems where classes are separable [58]. By identifying the optimal
hyperplane, SVM effectively classifies data points even in complex distributions. The
confusion matrix of the model used is depicted in Figure 10.

true label

predicted label

Figure 10. Confusion-matrix of the SVM-RBF model with selected features.

The choice of ML models, such as DT, RF, ET, and SVM, was influenced by the dataset
size, problem characteristics, and variable sets [59]. Table 13 provides a comprehensive
summary of previous studies that utilized these ML algorithms, further contextualizing
this study’s findings.
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Table 13. Evaluation of machine learning models for forecasting ICU admissions.
Reference and Year Model Used Dataset Best Results
[25] 2024 KNN 23 features and 696 COVID-19 patients Accuracy is 95.25%
[31]1 2023 LR dichotomous variables with 532 COVID-19 patients AUC =0.748
[33] 2022 DT algorithm J-48 53 variables and 512 COVID-19 patients Accuracy is 81.9%
[39] 2021 Ensemble model 5308 COVID-19 patients Fl-score is 0.81
[40] 2021 Multivariable LR 356 COVID-19 patients AUC s 0.77
[41] 2021 RF 212 COVID-19 patients AUC is 0.80
[43] 2021 Ensemble model CBC data and 1218 COVID-19 patients AUC s 0.88
[44] 2021 XGB 165 variables and 3623 COVID-19 patients AUC s 0.83
[60] 2023 ANN 5 variables and 248 COVID-19 patients Accuracy is 95.97%
. . Fl-score is 0.97
Proposed Study SVM-RBF 20 variables and 4399 COVID-19 patients AUC is 091

The COVID-19 pandemic has posed significant challenges to the global healthcare
sector, leading to shortages in ICU resources and healthcare workers. Developing Al-
based systems to predict ICU admission requirements can assist healthcare providers
in optimizing resource allocation. Numerous studies have explored ICU admission pre-
diction, leveraging demographic information, blood test results, albumin levels, oxygen
saturation, chronic disease history, and chest X-rays (CXR) to assess the need for intensive
care [40,41,43,61]. Additionally, datasets updated during hospitalization have facilitated
early risk detection [35]. Studies on mortality and survival predictions have identified
critical predictors, including chloride, potassium, blood count tests, oxygen levels, D-dimer,
and age, as significantly influencing outcomes [34,36,39,62].

Famiglini et al. [43] conducted a study utilizing SMOTE, focusing exclusively on blood
count data as predictors. Their model employed an ensemble algorithm combining Extreme
Gradient Boosting (XGB), RF, and LR classifiers, achieving an AUC score of 0.88. In another
study, Shanbehzadeh et al. predicted ICU admission using a DT algorithm, resulting in
an AUC of 0.822 [33]. The chi-square test was used to identify significant variables, with
thromboplastin time, age, and diabetes emerging as top predictors. Age, oxygen saturation,
pH, and chloride were also identified as significant factors for ICU admission in a separate
study, where an artificial neural network (ANN) achieved an AUC of 0.917 [34].

For cases involving pregnant women, key variables such as body mass index (BMI),
C-reactive protein (CRP), neutrophil percentage, and respiratory levels were identified as
critical for predicting ICU admission [37]. Additionally, using a nomogram—a graphical
calculation tool—the authors of another study [63] demonstrated effective ICU admission
predictions based on five predictors: CRP, Lymphocytes count, aspartate transaminase
(AST), lactate dehydrogenase (LDH), and platelet count.

Subudhi et al. [39] developed a prediction model using the RF classifier, incorporating
critical markers such as C-reactive protein (CRP), clinical blood test results, oxygen levels,
chloride, D-dimer, and procalcitonin. Some studies have demonstrated that the XGB
algorithm performs better [42,44], achieving AUC scores of 0.98 and 0.83, respectively.
High albumin levels in the body were also identified as a potential factor influencing
ICU admission [64]. Additionally, patient factors such as diabetes mellitus (DM) history,
gender, age, congestive heart failure (CHF), and stroke significantly contribute to prediction
accuracy [65]. LR models have shown noteworthy predictive capabilities, with an AUC
of 0.74 reported in one study [66], highlighting significant markers, including oxygen
levels, procalcitonin, lymphocyte count, and lactate dehydrogenase (LDH). Deep learning
models further enhance prediction by incorporating additional markers such as CRP and
ferritin [67]. Moreover, rather than relying solely on clinical variables, another study [68]
utilized scoring systems like the National Early Warning Score and Rapid Emergency
Medicine Score to predict ICU admission effectively.
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The SHAP plot shown in Figure 11 identifies the contribution of variables to the
prediction of ICU admission. This analysis evaluates the 20 selected variables to determine
their importance and impact on the target variable. The SHAP plot highlights the variables’
importance and the nature of their influence—positive or negative—on ICU admission
predictions. Variables with positive SHAP values positively influence the prediction of ICU

admission, while negative SHAP values indicate the opposite.

High

.
P :‘. sem wam sen seman

|
T+
Feature value

Low

-0.3

-0.2 -0.1 0.0 0.1 0.2
SHAP value (impact on model output)

Figure 11. The SHAP value summary plot of the 20 most important variables for predicting ICU
admission requirements.

The plot also visualizes variable contributions through color coding, where blue
represents low values and red indicates high values. These colors demonstrate how variable
values impact the prediction. The variables are arranged from most to least important, with
the top three predictors being CXR, D-dimer, and SOB. A normal chest X-ray (coded as
one) reduces the likelihood of ICU admission, while an abnormal X-ray (coded as zero)
positively contributes to ICU predictions. Similarly, high values of D-dimer and SOB
strongly favor ICU admission. For instance, a patient with a high D-dimer may be flagged
for ICU admission when considered alongside other factors.

In contrast, variables such as T.Protein, sore throat, HCT, pulse oximeter, S.Albumin,
LDH, gender, DBP, and MCHC negatively contribute to ICU admission when their values
are high, indicating a lower need for ICU care. On the other hand, nationality, WBC,
pulse rate, T.Bili, respiratory rate, fever, age, and DM history positively contribute to ICU
admission when their values are elevated, suggesting a higher likelihood of requiring
intensive care. This detailed variable analysis provides valuable insights into how specific
clinical and demographic factors influence ICU admission prediction.

Certain illnesses and treatments require consideration of gender-specific information.
For instance, men are more prone to cardiac conditions, while women commonly experience
autoimmune disorders [69]. Gender inequalities in disease presentation and treatment
choices, along with cultural norms and socioeconomic inequities, result in a complex
environment that influences ICU utilization. Comprehending these factors is crucial for
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formulating equitable healthcare policies and practices that address the clinical needs
of all patients [70]. Age is another critical factor influencing the prevalence of various
illnesses. Understanding a patient’s nationality can also be essential in diagnosing or
managing specific diseases or treatments. The organization and caliber of healthcare
systems may differ markedly by nation, influencing ICU admission rates. In nations
with well-established healthcare systems, patients may experience enhanced access to
ICU treatment, whereas those in countries with underdeveloped systems may encounter
obstacles that restrict their access.

High blood pressure increases the risk of heart disease, while CXR is valuable in
diagnosing pneumonia and other respiratory disorders. Symptoms like fever, sore throat,
and SOB may indicate infections, viruses, or allergic reactions. RBC breakdown releases
bilirubin, while albumin is crucial in maintaining blood volume and pressure. Low levels
of albumin and total protein, combined with elevated bilirubin, may signal kidney failure
or liver disease.

Patients with elevated respiratory and pulse rates and low pulse oximeter readings
often require ICU admission. High D-dimer levels can indicate the presence of blood clots.
Increased LDH levels are associated with cell injury and linked to conditions such as cardiac
arrest and stroke. Diabetes also heightens the risk of numerous health complications. Low
HCT and MCHC levels can be indicative of anemia, whereas a high WBC count suggests
an ongoing infection

The SHAP plot in Figure 11 indicates that non-Kuwaitis are more likely to require
ICU admission, potentially due to economic, cultural, or other influencing factors. Dif-
ferences in race and ethnicity among non-Kuwaitis, along with health disparities linked
to environmental factors such as heat and air pollution, may contribute to this trend [71].
Additionally, this study aligns with the findings of Lat et al. [72], which shows that men are
more likely to be admitted to an ICU compared to women. Both gender and nationality
were found to have a significant impact on ICU admission outcomes in this study (p < 0.001).
However, larger-scale studies are needed to confirm these results and further explore these
associations, thus offering a potential area for future research and refinement.

The dataset was further divided based on random glucose levels to evaluate the
model’s performance in predicting ICU admission for diabetic and non-diabetic patients.
This analysis examined how ICU requirements differed between the two groups. Among
the COVID-19 patient records, 61% had low random glucose levels, while 39% had high
values and were classified as diabetic.

For the diabetic dataset, the SVM-RBF model achieved an ICU prediction accuracy of
98.60%, while the non-diabetic dataset achieved 97.83% accuracy. The variable contributions
to ICU admission prediction for diabetic patients are illustrated in Figure 12. The top 10
predictors for ICU admission among diabetic patients included high SOB, age, D-dimer,
respiratory rate, low T.Protein, lymphocytes, CRP, low CXR values, and platelet count.
These variables significantly influenced the predicted outcomes for diabetic patients.

This study has several notable strengths. First, the methodology effectively addresses
key challenges: CV mitigates overfitting, while the SMOTE technique resolves class im-
balance, ensuring accurate classification of both majority and minority classes. Second,
the study incorporates a wide and comprehensive range of health-related data, including
specific clinical and demographic details, for ICU admission prediction.

Variable importance and contribution are analyzed using the SHAP plot, providing
valuable insights into each predictor’s impact. Missing data are handled robustly through
the KNN imputation method, maintaining dataset integrity. Additionally, backward vari-
able elimination ensures that only the most relevant variables are included in the final
prediction model, enhancing efficiency and accuracy.
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The developed SVM model offers practical benefits by enabling timely alerts for health-
care workers to prepare ICU resources for COVID-19 patients. This proactive approach
ensures that ICU resources are utilized effectively and efficiently, optimizing healthcare
delivery during critical situations.
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Figure 12. Variable importance for predicting ICU admission in the diabetic patient dataset.

5.1. Scalability of the Study

The proposed model shows a good foundation that can be scaled and modified for
various illnesses and populations. The approaches utilized in the study can be extended to
various infectious illnesses, chronic ailments, and acute medical situations. Data-driven
methodologies could similarly be employed to forecast outcomes in illnesses such as
influenza or pneumonia when prompt action is essential. Parameters such as age, comor-
bidities, and laboratory findings (e.g., blood glucose, D-dimer, LDH, WBC) are essential for
predicting outcomes in patients with diabetes, heart disease, or other chronic conditions.
This similarity enables the exchange of information and model frameworks across various
health problems.

5.2. Practical Implications

The research formulated ML models to anticipate ICU admission needs for COVID-
19 patients, and therefore possesses numerous practical implications for clinical practice,
medical resource utilization, and further research endeavors. ICU physicians can use the
SVM model for decision assistance. ICU admission projections in real time help healthcare
practitioners make better patient management decisions, improving patient outcomes.
Predicting which patients may need ICU hospitalization helps healthcare institutions
allocate resources. ICU resources are scarce during health emergencies like COVID-19,
making this aspect critical. Hospitals can better plan and assign manpower and equipment
by identifying critical care patients earlier.

Training medical professionals on appropriate interpretation and application of the
model’s predictions is necessary. Knowing the outputs of the model and the clinical conse-
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quences of the identified predictors, such as CXR, D-dimer levels, SOB, or S.Albumin find-
ings, will enable doctors to make wiser judgments. This work concentrated on the model’s
creation and validation; nevertheless, its actual implementation necessitates more investi-
gation, encompassing integration into hospital systems and healthcare provider training.

5.3. Limitations and Future Works

Future research will focus on implementing and comparing various feature selection
methods, including filter, wrapper, and embedded techniques, to evaluate their influence
on the performance and robustness of predictive models. Employing these diverse ap-
proaches aims to improve the accuracy and interpretability of the models, providing a more
comprehensive understanding of variables” importance.

Additionally, a promising direction involves developing a model specifically based on
data from Kuwaiti patients with diabetes to assess its clinical relevance within this high-risk
group. This extension will evaluate the model’s effectiveness in predicting ICU admission
for diabetic patients, potentially enabling more personalized healthcare strategies and
optimized resource allocation tailored to this vulnerable population.

Although it is typical of the COVID-19 patient group in Kuwaiti hospitals, the dataset
used in our investigation is small. This limitation can influence the generalizability of
our approach, especially concerning larger populations or other healthcare environments.
Future studies should concentrate on combining other data sources, maybe from several
healthcare facilities, to strengthen the dataset’s resilience and guarantee that the model can
be generalized properly over other demographic and or clinical situations.

6. Conclusions

This study utilized data from Kuwaiti hospitals to develop a predictive model for ICU
admissions among COVID-19 patients. Advanced preprocessing techniques were applied,
including class balancing with SMOTE, variable selection using backward elimination
through logistic regression, and missing value imputation via KNN, validated by the
Hosmer-Lemeshow test. The model demonstrated superior performance, with the SVM
classifier achieving an AUC of 0.91 and an F1-score of 0.97.

In addition to identifying critical predictors for ICU admission, the study enhanced the
interpretability of the machine learning model, aligning with the goals of discovery science
to increase transparency in complex systems. The model’s ability to assist effectively in
ICU resource allocation during health crises underscores the potential of machine learning
to augment healthcare responses and optimize resource utilization. This contribution
represents a significant advancement in the fields of computational scientific discovery and
intelligent data analysis.

The method facilitates the precise identification of patients at elevated risk for ICU
admission, thereby offering essential assistance to healthcare professionals in making in-
formed decisions about resource allocation. This highlights the broader applicability of
machine learning-based models across scientific domains within discovery science. Ul-
timately, this work underscores the transformative role of machine learning in enabling
scientific breakthroughs and enhancing healthcare strategies, offering promising advance-
ments in both discovery science and practical healthcare applications.
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Appendix A

Table Al. Chi-square p-value for the association of independent categorical variables (Gender,
Nationality, CXR, Weakness, Headache, Sore, Throat).

Variables Gender  Nationality CXR Weakness Headache Sore Throat
Gender -
Nationality <0.001 -
CXR 0.006 <0.001 -
Weakness 0.126 0.087 <0.001 -
Headache 0.016 0.275 <0.001 <0.001 -
Sore throat <0.001 <0.001 <0.001 <0.001 <0.001 -
SOB <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Abdominal pain 0.016 0.351 <0.001 <0.001 <0.001 0.255
Fever <0.001 0.002 <0.001 <0.001 <0.001 <0.001
DM history <0.001 0.004 <0.001 <0.001 0.151 <0.001
Diarrhea <0.001 0.006 <0.001 <0.001 <0.001 <0.001
Cough <0.001 0.002 <0.001 <0.001 <0.001 <0.001
Asthma <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Hypertension 0.003 <0.001 <0.001 <0.001 <0.001 <0.001
Bariatric Surgery 0.015 0.122 0.316 <0.001 <0.001 <0.001
Expectoration 0.037 0.076 <0.001 <0.001 <0.001 <0.001
DM <0.001 <0.001 <0.001 <0.001 0.032 <0.001

Table A2. Chi-square p-value for the association between independent categorical variables (SOB,
Abdominal Pain, Fever, Expectoration, Diarrhea, Cough).

Variables SOB Ab(i’(;rir:nal Fever Expectoration = Diarrhea Cough
SOB -
Abdominal pain <1 x 1073 -
Fever <1x107% <1x1073 -
Expectoration <1 x 1073 0.601 <1 x 1073 -
Diarrhea <1x1073 <1x1073 <1x1073 1x1073 -
Cough <1x1073 <1x1073 <1x1073 <1x1073 <1x1073 -
Asthma <1x1073 0.279 <1x1073 1x1073 <1x107% <1x1073
Bariatric Surgery 0.172 <1x1073 <1x1073 0.856 0.177 <1x 1073
Hypertension <1 x107% <1 x 1073 <1x1073 <1x1073 <1x10% <1x1078
DM history <1x 1073 0.843 <1x1073 <1x1073 0.107 <1x 1073
DM <1x1073 0.026 <1x1073 <1x1073 0.269 <1x1073

Table A3. Chi-square p-value for the association of independent categorical variables (Asthma,
Bariatric Surgery, Hypertension, DM History).

Variables Asthma Bariatric Surgery Hypertension DM History
Asthma -
Bariatric Surgery 4 %1073 -
Hypertension <1x 1073 0.033 -
DM history <1x 1073 0.991 <1x1073 -

DM <1x 1073 0.992 <1 %1073 <1 %1073
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Table A4. Logistic regression results from the backward feature elimination method.

. 97% CI
Variable p-Value Coef Std Err Lower Upper
Pulse oximeter 0 3.216 0.798 1.653 x0.428
Nationality 0 0.82 0.2 0.429 3.737
DM history 0 2171 0.466 1.257 4.781
Gender 0 x0.887 0.235 x1.347 1.212
T.Protein 0 x2.509 0.69 x3.861 3.085
D-Dimer 0 4.441 1.16 2.168 x0.428
CXR 0 x3.277 0.43 x4.12 x1.158
Pulse rate 0.003 2.426 0.829 0.801 6.714
S.Albumin 0 x2.05 0.503 x3.036 x2.434
WBCs 0.005 2.425 0.862 0.735 4.052
Sore throat 0.002 x1.331 0.426 x2.165 x1.065
MCHC 0.003 x3.739 1.261 x6.212 4.116
LDH 0 x47.636 12.031 x71.216 x0.497
T.Bili 0.034 5.794 2.729 0.446 x1.267
DBP 0.01 x2.161 0.841 x3.811 x24.055
HCT 0.024 x1.778 0.789 x3.325 11.143
Fever 0.045 0.441 0.221 0.009 x0.513
Kesplratory 0 6.185 1.703 2.847 %0233
SOB 0 1.594 0.213 1.178 0.874
Age 0 2.528 0.617 1.319 9.524
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