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Abstract: In the era of deepfakes and AI-generated content, digital image manipulation
poses significant challenges to image authenticity, creating doubts about the credibility
of images. Traditional image forensics techniques often struggle to detect sophisticated
tampering, and passive detection approaches are reactive, verifying authenticity only after
counterfeiting occurs. In this paper, we propose a novel full-resolution secure learned
image codec (SLIC) designed to proactively prevent image manipulation by creating self-
destructive artifacts upon re-compression. Once a sensitive image is encoded using SLIC,
any subsequent re-compression or editing attempts will result in visually severe distor-
tions, making the image’s tampering immediately evident. Because the content of an SLIC
image is either original or visually damaged after tampering, images encoded with this
secure codec hold greater credibility. SLIC leverages adversarial training to fine-tune a
learned image codec that introduces out-of-distribution perturbations, ensuring that the
first compressed image retains high quality while subsequent re-compressions degrade
drastically. We analyze and compare the adversarial effects of various perceptual quality
metrics combined with different learned codecs. Our experiments demonstrate that SLIC
holds significant promise as a proactive defense strategy against image manipulation, offer-
ing a new approach to enhancing image credibility and authenticity in a media landscape
increasingly dominated by AI-driven forgeries.

Keywords: secure learned image codec; non-idempotent codec; image authentication;
image manipulation defense

1. Introduction
In the past, a picture was worth a thousand words, but in the modern era of deepfakes

and manipulated media, a picture now leads to a thousand doubts. Digital image manipu-
lation has long posed a security threat to images shared on social media, causing people to
increasingly distrust sensitive images circulating on these platforms, often requiring them
to re-confirm the image source. Detecting forged images from simple editing operations,
such as splicing and copy–move, remains challenging due to the increasing sophistication
of these techniques. The rise of deepfakes [1] has further worsened the credibility issue of
social media images, as tampering and counterfeiting are no longer limited to experts.

Image forensics techniques [2,3] are considered passive approaches to proving content
authenticity because they detect tampering by detecting signal inconsistencies in the image.
These altered images are redistributed in either lossless or lossy formats. For lossless-
encoded images, pixel-based characteristics such as noise [4], patterns [5], and camera
properties [6,7] are analyzed to detect local inconsistencies and identify image forgery. In
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the case of lossy image codecs like JPEG, methods [8,9] exist to detect double JPEG com-
pression, as JPEG exhibits specific characteristics in its DCT coefficients that help identify
possible manipulated images. Active approaches, such as trustworthy cameras [10,11] or
fragile digital watermarking [12,13], attempt to authenticate the image upon creation and
detect later modifications by verifying embedded signatures or watermarks. These are
considered active because any break in the signature or watermark serves as solid evidence
of tampering. However, authenticity verification typically occurs only after counterfeiting
has taken place.

We propose a novel proactive approach, the secure learned image codec (SLIC), de-
signed to prevent image manipulation from the outset. Figure 1 demonstrates the self-
destruction effects of our proposed SLIC, which forces a malicious actor to obtain severely
degraded visual content after re-compression. Once the content owner releases a sensitive
image in SLIC format, the content is protected, as any subsequent re-compression—even
after image editing—will result in eye-catching artifacts. In other words, SLIC is a non-
idempotent codec. Because the content of an SLIC image is either original with good quality
or visually damaged after tampering, images encoded with this secure codec hold greater
credibility. If the public tends to trust only SLIC images, malicious actors will be forced
to fabricate fake images in SLIC format to gain trust, a task that is considered non-trivial.
Thus, counterfeiting can be prevented from the outset.

Figure 1. The proposed secure learned image codec (SLIC) will be self-destroyed after re-compression.
Top images from left to right: the first encoded image, blurred encoded image, JPEG compressed
image, affine transformed image (shifted 10 pixels, rotated 5◦, scaled 95%), face-swapped image, and
inpainted image. The bottom re-compressed images are severely damaged.

Designing a secure codec based on conventional codecs is challenging because most of
them rely on linear and unitary transforms such as the Discrete Cosine Transform (DCT). In
contrast, the non-linear transform employed by a learned image codec has the potential to
have a “destroy after re-compression” effect, as adversarial examples are known to neural
networks. Adversarial attacks can introduce imperceptible perturbations into input images,
leading to file size expansion [14] or significant quality degradation [15]. We think there
are two approaches to developing a secure learned codec:

1. Watermarking a learned image codec in the compressed domain [16] as a universal
adversarial attack so that the watermark added in the latent vector will cause out-of-
distribution perturbations in the reconstructed image.

2. Training a neural codec whose decoder will generate out-of-distribution perturbations
not seen in the training dataset.

The first approach has been validated in [16] but is limited to a fixed image resolution
and watermark secret bit length. In this work, we achieve the second approach by gen-
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eralizing the SLIC in full resolution and providing instant content protection right after
compression. We summarize the contributions of this paper as follows:

• We introduce the full-resolution SLIC, which verifies content authenticity through
destructive re-compression. The SLIC internally applies a universal adversarial attack
to its output. We think developing a non-idempotent codec as a secure codec for
authenticity verification will be a new area to explore to counter manipulated images.

• We propose using perceptual quality metrics in the adversarial loss to fine-tune a
learned image codec that effectively generates out-of-distribution perturbations in the
decoder output. We analyze and compare the antagonistic effects of various perceptual
quality metrics.

• We point out the research opportunity of designing an efficient and effective perceptual
metric to maximize perceptual loss. This may be an interesting topic for the study of
adversarial attacks on learned image codecs.

2. Related Works
2.1. Watermarking to Defend against Image Manipulation

Ensuring digital image integrity has long been a critical issue due to the widely
available image manipulation software. Therefore, watermarking has become a popular
technique for copyright enforcement and image authentication [17]. The invention of
deepfakes [1] further exacerbated the credibility issue because generative models to swap
facial identities or revise the attributes of faces are also widely available on the internet.

Adversarial attacks [18] against generative models and adversarial watermarking [19,20]
are well-known active defense strategies against deepfakes. Lv [19] proposed an adversarial
attack-based smart watermark model to exploit deepfake models. When deepfakes manipulate
their watermarked images, the output images become blurry and easily recognized by humans.
Yu et al. [21] took a different approach by embedding watermarks as fingerprints in the
training data for a generative model. They discovered the transferability of such fingerprints
from training data to generative models, thereby enabling deepfake attribution through model
fingerprinting. Wang et al. [22] proposed an invisible adversarial watermarking framework
to enhance the copyright protection efficacy of watermarked images by misleading classifiers
and disabling watermark removers. Zhang et al. [23] developed a recoverable generative
adversarial network to generate self-recoverable adversarial examples for privacy protection in
social networks. More recently, EditGuard [20] utilizes image steganography and watermarking
techniques to unify copyright protection and tamper-agnostic localization.

These adversarial watermarking approaches are successful but focus on the image
content without considering the image format, i.e., the container of the image content
during transmission. We take a step further to develop a secure image codec with a learned
image codec, which injects adversarial perturbations into the image content during the
initial encoding and decoding process. The originality of the image is authenticated by its
visual quality because any subsequent compressions after image editing will lead to severe
quality degradation, as demonstrated in Figure 1.

2.2. Learned Image Compression

The learned image compression (LIC) technique is an end-to-end approach that auto-
matically learns a pair of image encoders and decoders from a collection of images without
the need for the hand-crafted design of coding tools. This field of learned image com-
pression has witnessed significant advancements [24–27] in the past few years, surpassing
traditional expert-designed image codecs. Several comprehensive surveys and introductory
papers [28–30] have summarized these achievements.
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However, by default, neural network-based codecs do not consider idempotence like
traditional image codecs. Idempotence refers to image quality stability after a series of
re-compressions, which is crucial to practical image codecs. Kim et al. [31] first identified
the instability issue of successive deep image compression and proposed including feature
identity loss to mitigate it. Specific methods, such as invertible networks [32,33], have
been proposed to improve the idempotence of neural codecs. Recent work from Xu
et al. [34] further proves that the conditional generative model-based perceptual codec
satisfies idempotence.

Meanwhile, neural image codecs are no exception to adversarial attacks. Liu et al. [14]
investigated the robustness of learned image compression, where imperceptibly manipu-
lated inputs can significantly increase the compressed bitrate. Such attacks can potentially
exhaust the storage or network bandwidth of computing systems. Chen and Ma [15] exam-
ined the robustness of learned image codecs and investigated various defense strategies
against adversarial attacks to improve robustness.

A non-idempotent image codec is not practical in image applications but is worth ex-
ploring for image authentication. If a neural codec could be self-destructive in quality after
re-compression, it would be a roadblock for image tampering in this format. Thus, we can
accumulate trust in such secure learned image codecs and deter counterfeiting behaviors.

2.3. Perceptual Distance Metrics

The evaluation of image distortion from lossy compression relies on full-reference
image quality assessment metrics, which gauge the similarity between the distorted and the
original images as human observers perceive. In addition to the traditional Mean-Square
Error (MSE), subjective metrics such as SSIM [35], GMSD [36], and NLPD [37] have been
widely employed. These quality metrics somehow represent the signal difference in a
transformed domain (e.g., GMSD from the image gradient), hoping to align with human
perceptual judgment. Recently, new DNN-based methods like VGG loss [38], LPIPS [39],
PIM [40], and DISTS [41] have been proposed. These approaches have demonstrated supe-
rior predictive performance for subjective image quality. Their efficacy has been confirmed
through validation against human judgments on benchmark datasets like BAPPS [39]
and CLIC2021 [42], which comprise a comprehensive collection of two-alternative forced
choice (2AFC) human judgments. More recent works, such as Deep Distance Correlation
(DeepDC) [43], which focuses on feature space comparisons between pre-trained DNNs,
improve on earlier metrics like LPIPS and DISTS by incorporating distance correlation to
handle structure and texture similarities effectively.

In various computer vision tasks, such as style transfer [44], super-resolution [45], and
watermarking [46], these quality metrics are often used in the loss function as perceptual
loss to improve the image quality. In this work, we utilize and compare these quality metrics’
effectiveness as a perceptual loss to maximize the visual divergence as an adversarial attack.

2.4. Adversarial Attacks

Szegedy et al. [47] first introduced the notion of adversarial examples and demon-
strated that neural networks are vulnerable to small perturbations in input data. The goal
of an adversarial attack is to find an adversarial example that is indistinguishable to the
human eye but can lead to significant misclassifications. Adversarial attacks can be either
targeted or untargeted.

Searching for adversarial examples was once considered computationally expensive
because of its optimization nature. Szegedy et al. approximated it using a box-constrained
L-BFGS. Goodfellow et al. [48] proposed the Fast Gradient Sign Method (FGSM), a straight-
forward yet powerful approach for generating adversarial examples. FGSM is computa-
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tionally efficient because it leverages the gradient of the loss function concerning the input
data to create perturbations that maximize the model’s prediction error.

Later, more sophisticated attack techniques were introduced. Kurakin et al. [49]
extended FGSM by developing the iterative method I-FGSM, which applies FGSM mul-
tiple times with small step sizes. Madry et al. [50] substituted FGSM with Projected
Gradient Descent (PGD), which iteratively adjusts the perturbations based on the same
calculation formula as FGSM, but differs in introducing random noise to the original im-
age and constraining total perturbation by clamping the noise in every iteration. Carlini
and Wagner [51] proposed C&W attacks, which optimized a different objective function
to generate adversarial examples. These attacks demonstrated a higher success rate in
bypassing defenses.

Zhu et al. [52] conduct iterative FGSM and PGD attacks on six LIC models and use
PGD training as a defense method to improve the robustness. Chen and Ma [15] propose
the Fast Threshold-constrained Distortion Attack (FTDA) approach to generate adversarial
examples with balanced performance and complexity compared to methods like C&W
or I-FGSM. It is known that “adversarial examples are not bugs but features of neural
networks”. However, in the context of developing an SLIC, it is not effective to perform an
adversarial attack on a per-image basis or even learn a universal adversarial perturbation
to exploit the re-compression quality.

3. Proposed Method
3.1. Idempotence of Image Codec

The idempotence of an image codec refers to the codec’s stability to re-compression.
For any input image x ∈ X , the neural encoder ge transforms x into a latent representation
y = ge(x). The neural decoder gd reconstructs an estimation of x as x̂n = gd(y). Here, we
denote x̂n as the n-th compression result of x and Ged as the composition of the encode-
then-decode function. We use a perceptual metric P to measure the distortion caused by
a lossy image codec. A lossy image codec usually ensures P(x, x̂1) → 0. We say that an
image codec is idempotent if

P(x̂n,Ged(x̂n)) = P(x̂n, x̂n+1) = · · · = P(x̂1, x̂2) = P(x, x̂1) → 0. (1)

That is, an idempotent codec always produces the same result when re-compressing a
prior reconstruction. To create a non-idempotent image codec as a secure codec, we wish to
make a visually destroyed second compressed image x̂2, which satisfies

P(x̂1, x̂2) = P(x̂1,Ged(x̂1)) → ∞, (2)

but its first compressed image x̂1 remains perceptually close to the original image x as

P(x, x̂1) → 0. (3)

3.2. Adversarial Loss for Perceptual Divergence

We fine-tune a neural encoder/decoder pair ge and gd with model parameters θe and
θd to obtain an SLIC codec, such that the perceptual distance P between x̂1 and x̂2 diverges
as much as possible, that is,

arg max
θe ,θd

P(x̂1, x̂2), (4)

where x̂1 = Ged(x) and x̂2 = Ged(x̂1) are the first and second compression results, the
perceptual distance P can be any previously discussed quality metrics, such as PLPIPS or
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PGMSD. Ideally, the perceptual distance of P(x, x̂1) is minimized through the rate–distortion
optimization process. Figure 2 shows the SLIC training flow.

Our loss function to fine-tune the SLIC is defined as:

L = R+ λD+ αLA, (5)

where λ and α are hyper-parameters that control the trade-off between bitrate, distortion,
and the loss caused by the adversarial re-compression, LA. The bitrate of the transformed
discrete code y = ge(x), R, is lower-bounded by the entropy of the discrete probability
distribution H(Py). Here, we estimate the discrete probability distribution Py using a neural
network and then encode it into a bitstream with an entropy coder. The distortion D is
measured using a distance metric d(x, x̂), where MSE or SSIM is commonly used. We add
the adversarial re-compression loss in the training flow as follows:

LA = ReLU(τ −P(x̂1, x̂2)) + ReLU(τ −P(x̂′1, x̂′2)), (6)

where P is the perceptual distance, such as LPIPS or GMSD mentioned in Section 2.3. A
smaller distance represents a similar image pair, where a zero distance means identical
images. To divert the perceptual quality of x̂2 from x̂1, we design the adversarial loss
function as a constant τ minus perceptual distance, passing through the ReLU function.
When the ReLU function reaches its minimal value at zero, the perceptual distance P(·, ·)
approaches the constant τ. The design of the adversarial loss function stabilizes the loss
during training and provides better control over adversarial trade-offs.

Figure 2. The SLIC training flow. In a rate–distortion optimized neural codec, we introduce the
adversarial re-compression and the adversarial noised re-compression losses.

Except for modeling the divergence between the encoded x̂1 and re-compressed x̂2,
we treat any possible image editing operation that comes with image tampering as a
noise attack and use a noise-adding attacker u to simulate it. The noised encoded image
x̂′1 = u(x̂1) and the noised second re-compression image x̂′2 = Ged(x̂′1) are also considered in
the adversarial loss function. As indicated in Figure 2, we denote the first and second terms
of Equation (6) as adversarial re-compression loss and adversarial noised re-compression
loss, respectively.

With the adversarial re-compression loss LA, we fine-tune the image codec to attack
itself by generating invisible adversarial perturbation in the reconstructed image x̂1. As a
result, when the reconstructed image x̂1 is re-compressed, it exploits the image encoder ge
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and produces a severely damaged image x̂2. The SLIC’s coding efficiency, i.e., the bitrate, is
maintained by the rate–distortion loss R+ λD during the fine-tuning process.

3.3. Noise Attack Simulation

In practical scenarios, the published SLIC-encoded image may undergo various editing
operations such as cropping, scaling, rotation, and lighting adjustment before the tampering
behavior. These edits are considered noise attacks to the SLIC-encoded image, and our
SLIC should be robust to these attacks. To simulate noise attacks, we use an attacker u
similar to [53] and derive the noised encoded image as x̂′1 = u(x̂1), then re-compress it
as x̂′2 = Ged(x̂′1). We define eight types of editing operations commonly used in creating
spliced fake images, including crop, Gaussian blur, median filtering, lightening, sharpening,
histogram equalization, affine transform, and JPEG compression. We then test the resilience
of our first encoded image against these image manipulations and evaluate the effectiveness
of the SLIC upon re-compression.

Surprisingly, our SLIC demonstrates robustness against non-filtering editing oper-
ations such as lightening, sharpening, and histogram equalization, even without noise
attack simulation. These attacks tend to increase rather than decrease the magnitude of the
adversarial perturbation. We classify Gaussian blur, median filtering, affine transform, and
JPEG compression as filtering editing operations. These adversarial perturbations added
to the first encoded image are partially filtered due to resampling. Therefore, to enhance
robustness, we simulate three types of noise attacks in fine-tuning:

Gaussian blur: We randomly apply Gaussian blur with a kernel size of 3 and variance
ranging from 0.1 to 1.5 to the first encoded images.

Affine transform: We randomly rotate the encoded images from −10 to 10 degrees,
translate them from 0% to 10% on both axes, and scale them from 90% to 110%.

JPEG compression: We re-compress the encoded images with random JPEG quality
from 70 to 95. Although differentiable JPEG quantization simulations have been proposed,
such as mask-and-drop [54] and cubic rounding [55], we use an image transformation task
to simulate the JPEG compression effects because of better robustness. More details are
given in Appendix A.1.

During training, the noise attacker u(·) will randomly apply one of the above noise
attacks. We do not simulate other attacks because, through experiments, we found that
randomly alternating these three attacks enhances the robustness of the eight pre-defined
noise attacks. Further discussion on this is provided in Section 4.4.

4. Experimental Results
We implemented our SLIC using the CompressAI [56] release of neural codecs [24–26],

denoted as Balle2018, Minnen2018, and Cheng2020. The MSE-optimized pre-trained
models from CompressAI were used for fine-tuning. For training, we randomly selected
90% of the images from the COCO dataset [57] as the training set and the remaining
10% as the validation set. We employed the PyTorch 2.0.0 built-in Adam optimizer with
a 5 × 10−5 learning rate to fine-tune a pre-trained LIC mode for 100 epochs. An early
stopping criterion was implemented during training if the learning rate decayed lower
than 10−8. Training images were randomly cropped as 256 × 256 patches with a batch
size of 12 using an NVIDIA GeForce RTX 4090 GPU. We set τ = 1.0 in the adversarial
loss function from Equation (6). In the overall rate–distortion adversarial loss function
from Equation (5), we follow the same λ value setting as CompressAI and tweak the α

hyper-parameter, as shown in Table 1. We report the experimental numbers using a high
bitrate setting as quality scale 8. However, the destructive re-compression effect can be
observed for all quality settings.
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Table 1. The α values for different LIC quality scales.

Quality 1 2 3 4 5 6 7 8

α 0.2 0.3 0.45 0.6 0.8 1 1.75 2.5

We evaluated our SLIC on the Kodak [58], FFHQ [59], and DIV2K [60] datasets. We
used the original-resolution images from Kodak (768 × 512) and FFHQ (1024 × 1024). Due
to GPU memory constraints, we resized the DIV2K images to around 800× 800 and padded
the size with a multiple of 32 using replication mode. To evaluate our SLIC’s robustness,
we defined eight types of editing operations commonly mixed with image tampering: crop,
Gaussian blur, median filtering, lightening, sharpening, histogram equalization, affine
transform, and JPEG compression. The parameter settings are listed in Table 2.

Table 2. Parameter settings of editing operations used for evaluation.

Editing Operation Setting

Crop Crop center 80% of rectangle and paste into another blank image.
Gaussian Blur Gaussian blur with window size of 5 × 5 and σ = 2.
Median Filtering Median filtering with window size of 5 × 5.
Lightening Increase luminance by 150%.
Sharpening Sharpen image with filter kernel [[−1,−1,−1], [−1, 9,−1], [−1,−1,−1]]
Histogram Equalization Histogram equalization in RGB channel.
Affine Transform Rotate image by 10◦, translate 10 pixels, and scale to 95%.
JPEG Compression JPEG compression with quality of q = 85.

4.1. Perceptual Metrics Comparison

Since our adversarial re-compression loss leverages the perceptual metric P to divert
the perceptual distance between re-compression results, we first tested different perceptual
metrics with the Balle2018 codec to observe the adversarial effects. The last two rows of
Table 3 show that the traditional metrics PMSE and PMS-SSIM are unsuccessful in achieving
this goal. Their re-compression PSNR values are high, so the visual quality remains
indistinguishable to the human eye. During the training, the adversarial loss of MSE
and MS-SSIM in Figure 3a and re-compression PSNR in Figure 3b remain flat. We think
this is because the MSE is a summation-based metric, and the SSIM operates on a small
local window with luminance, contrast, and structure components. Minimizing MSE or
MS-SSIM for a reconstruction-based neural network is straightforward and efficient. Still,
these pixel-based metrics cannot provide helpful perceptual features for the neural network
to divert the re-compression quality.

Table 3. The re-compression quality degradation in PSNR of the SLICs. We used Balle2018 as the
primary codec with different perceptual metrics to fine-tune the SLICs. A significantly low PSNR
indicates the destructiveness of re-compression.

SLIC Kodak FFHQ DIV2K
(x, x̂1) ↑ (x̂1, x̂2) ↓ (x, x̂1) ↑ (x̂1, x̂2) ↓ (x, x̂1) ↑ (x̂1, x̂2) ↓

Balle2018 + PLPIPS 39.74 5.68 40.83 5.56 38.28 5.26
Balle2018 + PDISTS 39.81 5.11 40.95 4.96 38.25 5.41
Balle2018 + PGMSD 39.74 8.42 40.86 7.62 38.31 8.17
Balle2018 + PNLPD 40.67 30.64 41.33 19.16 38.92 25.81
Balle2018 + PVGGLoss 40.72 43.05 41.38 31.33 39.01 44.53
Balle2018 + PMSE 40.70 47.87 41.36 47.30 39.02 47.86
Balle2018 + PMS-SSIM 40.60 47.27 41.20 46.70 38.97 47.46

The PSNR values highlighted in bold represent the effective destructiveness of re-compression.
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Then, we tested the DNN-based perceptual metrics PLPIPS and PVGGLoss. The VG-
GLoss uses the intermediate feature activations of a pre-trained VGG network (precisely,
layers like conv1_2, conv2_2, conv3_3, and conv4_3) to compute the perceptual loss, which
captures image quality more effectively than simple pixel-wise losses. The LPIPS metric
builds on a pre-trained VGG network and adds a linear layer as weights to re-calibrate
each feature map’s importance with a human-rated ground truth. From Figure 3a, the use
of PLPIPS and PVGGLoss in the adversarial loss is efficient, as the loss decreases obviously
through epochs. We observe a similar loss pattern on a recently developed DNN-based
metric, DISTS.

However, the quality result from the PSNR value of PVGGLoss differs greatly from that
of PLPIPS and PDISTS, where its re-compression quality remains indistinguishable from the
first compression result. The re-compression PSNR value of PLPIPS or PDISTS, shown in
Table 3, is significantly lower, so the SLIC trained with perceptual metric PLPIPS or PDISTS

effectively degrades visual quality. We think this is because both LPIPS and DISTS learn a
weighting layer on top of the VGG feature maps with a human-rated perceptual dataset, so
the two metrics weigh more on features that are sensitive to human perception. As a result,
a tiny invisible perturbation added to the compressed output will trigger a change in a
perceptual sensitive feature map that causes severe quality damage in the re-compression.
As for VGGLoss, feature maps are learned specifically for object detection purposes, and
the magnitude of feature map coefficients highly impacts the calculation of VGGLoss (L1
or L2 norm). Therefore, we can observe that the adversarial loss of PVGGLoss decreases
(which means increased quality divergence) during training in Figure 3b, but the PSNR
values remain high and less changed in Figure 3a throughout the training process. That
is, the increased distance of VGGLoss does not divert the actual perceptual distance of
two images.

(a) (b)

Figure 3. The trends of (a) adversarial loss LA and (b) re-compression PSNR among various percep-
tual metrics during training.

In addition to the DNN-based perceptual metric, we include the test with the better-
developed traditional quality metrics GMSD and NLPD to compare their ability to divert
the re-compression quality. The Gradient Magnitude Similarity Deviation (GMSD) [36] is
designed to measure perceptual similarity and focus on gradient information in both the
x and y directions, as human vision is highly sensitive to edges and gradient changes in
images. The Normalized Laplacian Pyramid Distance (NLPD) [37] is rooted in Laplacian
Pyramid decomposition, which captures image details at multiple scales and mimics the
multi-scale nature of human visual perception. Table 3 shows that both GMSD and NLPD
reduce the PSNR of re-compression image x̂2 notably compared to MSE and MS-SSIM.
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However, the adversarial effect of NLPD is not robust to various editing operations like
GMSD, which is showcased in Section 4.3. We can think of NLPD as a metric scored from
a simplified shallow network with Laplacian filters compared to the VGGLoss from a
deep VGG network that learns filter maps from ImageNet. This may explain the lesser
effectiveness of NLPD as a perceptual metric to divert the visual quality.

As GMSD computes the gradient magnitude similarity (GMS) between two images
and uses the standard deviation of the GMS values to measure the difference, a minor
update on the standard deviation of GMS may lead to regions of significant perceptual
differences due to gradient change. This is why the GMSD is quite effective in diverting
the visual quality as PSNR decreases, as shown in Figure 3b.

4.2. Destructive-Compression Effects

We present the qualitative re-compression results of x̂2 in Figure 4. In the second
and third rows of Figure 4, the re-compression quality of the SLIC codec trained with the
perceptual metrics PLPIPS and PDISTS is almost destroyed and unrecognizable from the
prior compressed x̂1, which aligns with the low averaged PSNR value of around 5 in Table 3.
The quality damage introduced by the perceptual metrics LPIPS and DISTS are far more
severe than artifacts caused by other adversarial attacks [15,52]. It is interesting to note
that LPIPS and DISTS have different artifact patterns, probably due to the design nature of
the perceptual metric. The re-compression artifacts caused by the metric PLPIPS combined
with the neural codecs Balle2018, Minnen2018, and Cheng2020 are presented in Figures 5,
A2 and A3, respectively. Their artifact patterns are similar except for the overflowed and
truncated pixel colors, which should be affected by the randomness of image batches when
we fine-tune the neural codec.

Figure 4. The re-compression visual quality of the SLICs. The top row shows the source images and
the remaining rows are the re-compressed images x̂2 of Balle2018 codecs, adversarially trained with
different perceptual metrics.
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Figure 5. The re-compressed results of Balle2018 + PLPIPS SLIC images after various editing opera-
tions.

The re-compression artifacts caused by the metric PGMSD have easily visible uniform
vertical black-and-white stripes, as shown in the fourth row of Figure A1. We think the
pattern may come from the image gradients in the x direction. The metric PNLPD causes
fewer artifacts than PGMSD but with similar vertical thicker red and light blue strips. The
last row in Figure 4 shows the re-compression result of metric PVGGLoss. The VGGLoss
metric causes very few artifacts near image borders, like the “48970” image of the FFHQ
dataset, which echoes the findings we mentioned in the previous section; the VGGLoss is
not an adequate metric to exploit the neural encoder for a degraded re-compression result.

We provide more destructive-compression results in Appendix A.2. Pursuing a perfect
perceptual metric that 100% matches human visual judgment is a holy grail of the image
quality assessment research field. Most studies focus on minimizing perceptual loss, but
almost zero studies have been conducted on effectively diverting one perceptual quality
from another. This may be an interesting research topic for studying adversarial attacks on
learned image codecs.

4.3. Robustness Against Editing Operations

Due to the original image being manipulated for counterfeiting, which will undergo
various image distortions, the SLIC must be robust enough for possible image editing. We
present our SLIC’s robustness against eight pre-defined editing operations in Table 4. We
tested three selected neural codecs with the perceptual metrics PLPIPS and PDISTS, and
the PSNR values were less than 10 in general across the tested SLICs. Figure 5 shows the
Balle2018 + PLPIPS codec’s re-compression quality degradation as an example; more results
are listed in Appendix A.2.

The robustness of cropping proves that the adversarial perturbations added to the com-
pressed output are translation-invariant. Our SLIC is not impacted by possible distortions
such as sharpening, lighting adjustment, and color adjustment during image tampering
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because these edits will not smooth out the adversarial perturbations but magnify them.
Filtering editing operations such as Gaussian blur, median filtering, affine transform, and
JPEG compression, will partially filter out adversarial perturbations. Still, the noise attacker
simulates this kind of distortion during training. Therefore, our SLIC can still destroy the
visual quality after re-compression given challenging distortions such as blurring, rotation,
scaling, and JPEG compression. The qualitative results in Figure 5 demonstrate our SLIC’s
robustness in being used as a secure image codec.

Table 4. The re-compression quality degradation on edited images in PSNR. The SLICs were trained
using different neural codecs and perceptual metrics and evaluated on test datasets.

SLIC (x, x̂1) ↑ (x̂1, x̂2) ↓
Re-Compress x̂1 After

Crop↓ G.Blur↓ M.Filter↓ Sharp↓ Light↓ H.Equ.↓ Affine↓ JPEG↓

Kodak

Balle2018 + PLPIPS 39.74 5.68 7.20 6.62 5.75 5.89 5.75 5.22 6.54 8.69
Balle2018 + PDISTS 39.81 5.11 6.50 7.48 6.04 5.14 6.44 5.37 9.68 7.29
Minnen2018 + PLPIPS 40.35 5.52 6.99 6.39 6.07 6.77 5.72 6.07 7.89 11.55
Minnen2018 + PDISTS 40.21 4.80 6.09 6.98 5.83 4.54 5.35 4.92 9.23 8.00
Cheng2020 + PLPIPS 39.53 5.79 5.85 7.41 6.81 6.99 7.17 5.83 6.42 8.19
Cheng2020 + PDISTS 37.82 5.96 5.98 7.10 6.04 5.28 4.33 4.76 6.08 7.11

FFHQ

Balle2018 + PLPIPS 40.83 5.56 6.45 6.44 5.64 5.51 5.40 5.04 6.24 8.49
Balle2018 + PDISTS 40.95 4.96 5.84 8.19 6.18 4.77 6.31 5.25 10.16 7.55
Minnen2018 + PLPIPS 40.86 5.06 6.00 5.76 5.38 5.55 5.37 5.57 7.32 12.20
Minnen2018 + PDISTS 40.84 4.59 5.19 6.23 4.93 4.44 5.33 4.92 8.91 7.24
Cheng2020 + PLPIPS 40.59 5.34 4.05 6.56 6.03 5.46 5.61 4.94 6.46 7.40
Cheng2020 + PDISTS 40.38 5.55 5.75 5.79 5.58 5.26 3.88 4.78 5.77 6.56

DIV2K

Balle2018 + PLPIPS 38.28 5.26 7.08 7.18 5.56 6.11 5.59 5.80 7.64 15.00
Balle2018 + PDISTS 38.25 5.41 7.18 8.76 6.81 5.50 6.71 5.99 11.40 10.25
Minnen2018 + PLPIPS 38.82 5.67 7.14 6.71 6.44 8.01 6.61 7.67 9.34 24.20
Minnen2018 + PDISTS 38.64 4.59 5.79 6.77 5.44 4.58 5.29 5.08 9.87 21.11
Cheng2020 + PLPIPS 37.62 5.59 4.97 9.19 6.82 7.05 6.69 7.00 6.98 9.80
Cheng2020 + PDISTS 37.16 5.41 5.70 7.30 5.53 4.76 4.11 4.79 5.79 8.26

As JPEG is a well-known traditional re-compression attack, we wondered whether our
SLIC can resist the re-compression attack from modern neural image codecs. We conducted
a re-compression attack on the SLIC images x̂1 using the original neural image codecs and
present the result in Table 5. From Table 5, the adversarially trained SLICs, Balle2018 +
PDISTS and Minnen2018 + PDISTS, are robust to vanilla neural codecs, except for Cheng2020.
The Balle2018 and Minnen2018 re-compressed SLIC image x̂1 will lead to a low PSNR
value around 17 with noticeable artifacts. A neural codec with a superior compression
rate like Cheng2020 will filter out adversarial perturbations in SLIC images and invalidate
security protection. However, if an SLIC is trained with a high-compression-rate codec, e.g.,
Cheng2020 + PDISTS SLIC, its adversarial perturbation will resist all other neural codecs, as
indicated in the last row of Table 5.

Table 5. The re-compression quality degradation of SLICs in PSNR. We use the original LIC to
re-compress x̂1 as a kind of re-compression attack.

SLIC (x, x̂1) ↑ (x̂1, x̂2) ↓
Re-Compress x̂1 After

Balle2018↓ Minnen2018↓ Cheng2020↓

Kodak

Balle2018 + PDISTS 39.81 5.20 14.69 15.59 40.74
Minnen2018 + PDISTS 40.20 4.80 17.20 21.51 42.52
Cheng2020 + PDISTS 37.85 5.96 18.86 19.25 25.61

The PSNR values highlighted in bold represent the effective destructiveness of re-compression.
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Our preliminary result for neural codec re-compression robustness is encouraging, as
we do not simulate the neural re-compression attack during training. Future work could
consider how to incorporate neural compressor attacks in the attacker network for a more
robust SLIC.

4.4. Robustness Against GenAI

In the era of AI-generated content, generative AI (GenAI) tools can manipulate images
conveniently and provide more realistic outputs than traditional image editing software.
For deepfakes, research efforts like FaceShifter [61] have developed methods to transfer a
target face onto a victim’s image, producing highly realistic results. Online tools such as
Remaker AI [62] provide vivid face swap tools that are freely available to the public. We
tested our SLIC with Remaker AI face swap and Stable Diffusion Inpaint [63] to validate its
robustness against GenAI tools. Figure 6 demonstrates that our SLIC can still damage the
image quality of a GenAI-manipulated image after re-compression.

Figure 6. The results of the Balle2018 + PLPIPS SLIC images were re-compressed after GenAI manipu-
lation: faceswap and stable diffusion inpainting.

We provide two face swap results and two inpainting results in Figure 6. After re-
compression, only the implanted regions with the target face or generated background
are kept; the remaining areas are destroyed with adversarial artifacts. The last column
of Figure 6 shows our SLIC’s robustness in dealing with compound editing, in which an
image is rotated, scaled, and then inpainted. If an image is encoded in SLIC format, the
whole image is protected unless the tampering behavior transplants a large portion of
the region. In that case, almost all the essential information in the protected image is lost,
which also means the integrity of the image is protected.

However, if the SLIC-encoded image contains a face we want to protect, the adversarial
effect is lost after the victim’s face is re-generated onto the target image. In Figure 7, the
tampered image in the third column comprises a non-SLIC encoded image and an SLIC-
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encoded face. The adversarial perturbations on the victim’s face are transformed by the
generative model’s encoder to a latent space representation and re-generated, aligned, and
blended onto the target image. Face-swapping eliminates adversarial perturbations, so
the re-compression result remains high-quality. Preserving the adversarial perturbations
through the face re-generation process would be an essential research direction to explore.

Figure 7. The failed case: an SLIC-protected face will lose its adversarial perturbations after deepfake
re-generation of the victim’s face on the target image.

4.5. Coding Efficiency Impact

Conceptually, the proposed SLIC generates out-of-distribution noise signals, as ad-
versarial perturbations in the decoder output will reduce the coding efficiency of natural
images. Therefore, when fine-tuning the neural codec, we keep the rate–distortion function
and jointly optimize it with the adversarial loss. We present the rate–distortion curve of
our SLIC evaluated on the Kodak dataset in Figure 8. Our fine-tuned neural codec as an
SLIC remains optimal in terms of coding efficiency compared to vanilla ones.
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Figure 8. The rate–distortion curve of the SLIC Balle2018 + PLPIPS compared with the original codec.
They were evaluated on the Kodak dataset.

5. Discussion
Our work demonstrated the ability of our SLIC to generate destructive results upon re-

compression, effectively preventing unauthorized image modifications. However, several
areas require further investigation to maximize its effectiveness and practical applicability.
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5.1. Effectiveness of Perceptual Metrics

Our experiments highlighted that different perceptual metrics influence the perfor-
mance of the SLIC in generating destructive-compression effects. We observed that deep-
learning-based metrics like LPIPS and DISTS are more effective in creating visually dis-
ruptive artifacts compared to traditional metrics such as MSE or SSIM. Despite this, the
selection of the most suitable perceptual metric for SLICs remains an open research ques-
tion. Understanding why specific metrics better induce visual distortions requires further
exploration into their internal mechanisms.

5.2. Adversarial Perturbation Preservation

One limitation we identified is the loss of adversarial perturbations when the protected
image undergoes complex manipulations, such as face-swapping or deepfake generation us-
ing generative models. Preserving adversarial perturbations through such transformations
is a critical area for future research. Investigating methods to make these perturbations in-
variant to transformations or exploring how to embed them more deeply within the image’s
feature space could lead to more robust defenses against generative AI manipulations.

5.3. Limitations

Although our SLIC focuses on tampering prevention by generating severely degraded
content upon re-compression, it cannot guarantee that every part of the content will be
destroyed. This limitation is evident in Table 5, where a PSNR of 5 indicates an entirely
unusable image. However, certain unknown editing operations, such as a neural codec
re-compression attack, might produce an image with artifacts and a low PSNR (e.g., a value
of 21) that remains applicable for redistribution. To mitigate this, developing image authen-
tication features for our SLIC is an essential direction for future work. By doing so, we can
achieve both tampering prevention and image authentication. For cases where tampered
images contain artifacts but are still marginally usable, post-authenticity validation can
serve as a complementary measure to address this limitation.

6. Conclusions
In this paper, we proposed a full-resolution secure learned image codec (SLIC) as a

proactive defense mechanism against image manipulation and tampering. Unlike traditional
codecs, SLIC employs adversarial perturbations that degrade image quality upon subsequent
re-compression, ensuring that any edited or tampered image is visually compromised. Our
experiments demonstrate that SLIC effectively creates a non-idempotent codec, where the
first encoded image remains high-quality, while the second re-compressed version exhibits
severe visual degradation. We achieved this by incorporating perceptual quality metrics into
the adversarial loss, which enabled our codec to generate out-of-distribution perturbations.
Among the tested perceptual metrics, LPIPS and DISTS were particularly effective in creating
adversarial artifacts. Additionally, SLIC showed robustness against a variety of common
image editing operations and GenAI-based manipulations, including face-swapping and
inpainting. Our proposed SLIC highlights the potential of integrating adversarial training with
learned image codecs as a novel approach to enhance image authentication and manipulation
resistance. Though it has limitations, we believe this proactive strategy paves a new path
for digital content verification from an image format perspective, restoring trust in image
credibility when faced with advancing image manipulation techniques. We have released
our source code at https://github.com/chenhsiu48/SLIC, accessed on 2 November 2024, to
facilitate reproducibility and enable further validation by the research community.

https://github.com/chenhsiu48/SLIC
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Appendix A
Appendix A.1. UNetJPEG Image Transformation Task

In training our SLIC, we used a UNet-based architecture, UNetJPEG, as an image transfor-
mation task to approximate the effects of JPEG compression while conditioning on a specified
quality factor. Our UNetJPEG is conditioned on the JPEG quality factor. The quality factor,
which typically ranges from 10 to 100, is concatenated as an additional channel to the input
image. This allows the network to adjust its output based on the provided quality factor, simu-
lating the compression artifacts associated with various JPEG quality levels. The concatenated
input is passed through the network, and the decoder reconstructs an image that mimics the
distortions caused by JPEG compression at the given quality. During training, we use the stan-
dard JPEG encoder/decoder to create source and distorted image pairs for the neural network
to approximate. We train the UNetJPEG network for 100 epochs on the COCO dataset.

The architecture of UNetJPEG is summarized in Table A1. The network consists of four
encoding layers, a middle bottleneck, and four decoding layers, each followed by ReLU
activations. Skip connections are added between corresponding encoder and decoder layers,
enabling the network to retain high-frequency details. Max pooling operations are used for
downsampling in the encoder, and bilinear upsampling is employed in the decoder.

Table A1. The architecture of UNetJPEG.

Layer Operation Output Shape

Input Input image + quality factor (4 channels) B × 4 × H × W

Encoder 1 Conv2d (4, 64, 3 × 3) + ReLU B × 64 × H × W
Encoder 2 MaxPool2d + Conv2d (64, 128, 3 × 3) + ReLU B × 128 × H/2 × W/2
Encoder 3 MaxPool2d + Conv2d (128, 256, 3 × 3) + ReLU B × 256 × H/4 × W/4
Encoder 4 MaxPool2d + Conv2d (256, 512, 3 × 3) + ReLU B × 512 × H/8 × W/8

Middle MaxPool2d + Conv2d (512, 1024, 3 × 3) + ReLU B × 1024 × H/16 × W/16

Decoder 4 Upsample + Conv2d (1024, 512, 3 × 3) + ReLU B × 512 × H/8 × W/8
Decoder 3 Upsample + Conv2d (512, 256, 3 × 3) + ReLU B × 256 × H/4 × W/4
Decoder 2 Upsample + Conv2d (256, 128, 3 × 3) + ReLU B × 128 × H/2 × W/2
Decoder 1 Upsample + Conv2d (128, 64, 3 × 3) + ReLU B × 64 × H × W

Output Conv2d (64, 3, 1 × 1) + Sigmoid B × 3 × H × W

Table A2 shows the superior robustness against JPEG compression using UNetJPEG on
three test datasets. A significantly lower PSNR value indicates eye-catching artifacts that
destroy the visual quality after re-compression.
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Table A2. The re-compression robustness comparison against JPEG on different simulation strategies.
Here, the SLIC used is Balle2018 + PLPIPS.

Simulation Kodak FFHQ DIV2K
JPEG↓ JPEG↓ JPEG↓

UNetJPEG 8.69 8.49 15.00
Cubic round [55] 25.89 27.62 36.52

The PSNR values highlighted in bold represent the effective destructiveness of re-compression.

Appendix A.2. More Destructive-Compression Effects

This section presents more qualitative re-compression results of SLICs trained with
different perceptual metrics.

Figure A1. The re-compressed results of Balle2018 + PDISTS SLIC images after various editing operations.

Figure A2. The re-compressed results of Minnen2018 + PLPIPS SLIC images after various editing
operations.
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Figure A3. The re-compressed results of Cheng2018 + PLPIPS SLIC images after various editing operations.
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