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Abstract: For many complex industrial applications, traditional attribute reduction algo-
rithms are often inefficient in obtaining optimal reducts that align with mechanistic analyses
and practical production requirements. To solve this problem, we propose a recursive
attribute reduction algorithm that calculates the optimal reduct. First, we present the
notion of priority sequence to describe the background meaning of attributes and evaluate
the optimal reduct. Next, we define a necessary element set to identify the “individually
necessary” characteristics of the attributes. On this basis, a recursive algorithm is proposed
to calculate the optimal reduct. Its boundary logic is guided by the conflict between the
necessary element set and the core attribute set. The experiments demonstrate the proposed
algorithm’s uniqueness and its ability to enhance the prediction accuracy of the hot metal
silicon content in blast furnaces.
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1. Introduction
Introduced by Pawlak in 1982, rough set theory serves as a mathematical tool for

dealing with vague, imprecise, and uncertain knowledge, garnering increasing attention
in computer sciences, artificial intelligence, medical applications, etc. [1,2]. Attribute re-
duction, a core aspect of rough set theory, simplifies datasets by eliminating irrelevant
attributes, which is commonly known as feature selection in machine learning [3–5]. Over
the last decades, researchers have developed many heuristic reduction algorithms based on
the positive region [6–9], the discernibility matrix [10,11], and information entropy [12–14].
While these algorithms have achieved efficiency in running time and storage, they are
not always effective in obtaining the optimal reduct when used in complex industrial
applications, especially in blast furnace smelting, because they overlook the underlying
industrial mechanisms embedded in the data. Without these mechanistic insights, cur-
rent techniques may discard essential attributes or retain unnecessary ones, leading to
suboptimal reductions with limited practical utility.

Blast furnace smelting is the most energy-consuming process in iron and steel pro-
duction [15,16]. Its internal state is difficult to measure directly because of the influence of
high temperature and high pressure. Fortunately, extensive research has demonstrated that
the silicon content in hot metal exhibits a close relationship with its thermal state [17–19].
Thus, the accurate prediction of the hot metal silicon content is key to the optimal control
of blast furnaces.

As a classical complex industrial process, the accuracy of a silicon content prediction
depends not only on excellent nonlinear models but also on high-quality datasets. However,
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due to the strong parameter coupling and nonlinear characteristics of blast furnace systems,
original datasets often contain a large number of redundant attributes. It is therefore
necessary to calculate a reduction set to improve the training speed and prediction accuracy.

According to rough set theory, there may be multiple complete reduction sets in a
dataset. Traditional algorithms, however, only compute one of them at random. From the
perspective of blast furnace mechanisms, each attribute has its specific physical meaning
and reflects different aspects of the furnace. This means that different reduction sets
represent different information, and there should be an optimal reduction set corresponding
to both the mechanistic analysis and practical production. Therefore, determining the
optimal reduction set represents a meaningful research task.

In addition, how the optimal reduction set of a blast furnace is evaluated is also
necessary to consider. In previous studies, many researchers have used the test costs of
attributes to evaluate a reduction set, believing that the minimum cost is optimal [20–23].
However, related smelting mechanism analyses and practical production experience have
shown that it is hard to set the exact numerical cost for all attributes. Instead, researchers
have achieved better results when analyzing which attributes are more important.

Motivated by the above observations, we suggest an importance sequence, called
the attribute priority sequence, in this paper to describe the background meaning of the
attributes and prior knowledge related to the blast furnace. On this basis, a priority-optimal
reduct is defined, and a novel attribute reduction algorithm using recursion technology
is proposed to calculate it. Some experimental results on UCI datasets show differences
between the proposed algorithm, classical method, and state-of-the-art method. We also
applied this algorithm on a real dataset obtained from a blast furnace, and we trained
a machine learning model to show the proposed algorithm’s performance. The major
contributions of this paper are as follows:

(1) We propose a novel heuristic reduction construction.

Existing heuristic reduction algorithms commonly adopt the following three kinds of
construction: addition–deletion constructions (Algorithm 1), deletion constructions, and
addition constructions. In this paper, we propose a novel recursion construction that is
effective in obtaining special reducts, such as the optimal reduct, minimal reduct, and
minimal cost reduct.

(2) We define a new optimal reduct.

Traditional rough set theories often treat a minimal reduct as optimal because they
ignore related prior knowledge. Many researchers have applied the notion of “cost” to
describe prior knowledge and treated a minimal cost reduct as optimal. As mentioned
above, “cost” is not always effective in complex situations because it is hard to set the exact
costs for all attributes. Therefore, we propose the notion of an attribute priority sequence
and define a priority-optimal reduct to represent an optimal reduct. The new definition of
the optimal reduct is simple and suitable for complex applications.

(3) We provide a recursive reduction algorithm and illustrate its validity based on UCI
datasets and a real application on silicon content prediction.

The proposed algorithm is the first recursion-based reduction algorithm, and the
detailed reasoning, as well as the experimental results, show its validity. Furthermore, the
proposed algorithm heuristically identifies a priority-optimal reduct.

The rest of this study is organized as follows. Section 2 presents some basic knowledge
on Pawlak rough set. Section 3 presents the definition of the priority-optimal reduct and
proposes an attribute reduction algorithm using recursion technology to obtain the priority-
optimal reduct. Section 4 discusses the experiments and results of hot metal silicon content
prediction in blast furnaces.
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Algorithm 1. Traditional heuristic attribute reduction algorithm.

Input: Information table S and priority sequence {c1, c2, . . . , cn}.
Output: Reduct R.
Step 1: Construct the discernibility matrix, M; calculate the core attribute set,
CORE(M); and the delete elements discerned by CORE(M).
Step 2: Delete the attributes belonging to CORE(M) from the priority sequence; then,
the new priority sequence is {ci1, ci2, . . . , cim }.
Step 3: Addition:

R′ = ∅, k = 1.
While R′ is not a super reduct of M, do

R′ = R′ ∪ cik, k = k + 1
End
Step 4: Deletion:
While k > 0, do
If R′ − {cik} is a super reduct then

R′ = R′ − {cik}
End

k = k − 1
End
Step 5: Output R = R′ ∪ CORE(M)

2. Preliminary Knowledge on Pawlak Rough Set
In rough set theory, data are presented in an information table S [7].

S = ⟨U, At, {Va|a ∈ At}, {Ia|a ∈ At}⟩

where U is the universe, At is a finite non-empty set of attributes, Va is a non-empty set
of values of attribute a, and Ia : U → Va is an information function that maps an object in
U to exactly one value in Va. As a special type, an information table S is also referred to
as a decision table if At = C ∪ D, where C = {c1, c2, . . . , cn} is the condition attribute set
and D = {d} is the decision attribute set. A decision table is inconsistent if it contains two
objects with the same condition values but different decision values.

Definition 1. Given a subset of attributes B ⊆ C, an indiscernibility relationship IND(B) is
defined as follows.

IND(B) =
{(

x, x′
)
∈ U2 |∀a ∈ B, Ia(x) = Ia

(
x′
)}

(1)

The equivalence class (or granule) of object x with respect to C is
[x]C = {y ∈ U |(x, y) ∈ IND(C)}. The union of all the granules with respect to C is
referred to as a partition of the universe, described as U/C = {[x]C |x ∈ U}. Granule
[x]C is exact if it has only one decision value; otherwise, it is rough. The union of all
the exact granules with respect to C is referred to as the positive region, described as
POSC (D) = {[x]C||Id([x]C)| = 1}. Based on the indiscernibility relationship and the
positive region, a discernibility matrix is defined as follows.

Definition 2. Given an information table S, a discernibility matrix M based on the positive region
is defined as
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m(i, j) =


{

a ∈ C
∣∣Ia(xi) ̸= Ia

(
xj
)}

, Id(xi) ̸= Id
(
xj
)
∧
(
xi ∈ POSC (D) ∨ xj ∈ POSC (D)

)
∅, else

(2)

Definition 3. Given an information table S, an attribute set R ⊆ At is called a reduct if it satisfies
the following two conditions [7]:

(1) IND(R) = IND(At);
(2) ∀a ∈ R, IND(R − {a}) ̸= IND(At).

If a discernibility matrix M = {m(i, j)} is constructed, then the two conditions mentioned
above can be described as follows:

(1) ∀m(i, j) ̸= ∅ ⇒ R ∩ m(i, j) ̸= ∅ ;
(2) ∀a ∈ R, ∃m(i, j) ̸= ∅∧ m(i, j) ∩ (R − {a}) = ∅.

A reduct is a subset of attributes that is “jointly sufficient and individually necessary”
to represent the knowledge equivalent to the attribute set C. In general, an information
table may have multiple reducts. The set of these reducts is denoted as RED(S), and the in-
tersection of all reducts is the core set, Core(S) = ∩RED(S) or Core(M) = ∪|m(i,j)|=1m(i, j).
If an attribute subset R′ only satisfies the first condition, then it is referred to as a super
reduct, i.e., ∃R ∈ RED(S), R ⊆ R′.

3. Recursive Attribute Reduction Algorithm Based on Priority Sequence
In this section, a priority-optimal reduct is defined first. Subsequently, a heuristic

approach is discussed, and an attribute reduction algorithm based on a priority sequence is
proposed using recursion.

3.1. Priority Sequence and Priority-Optimal Reduct

In this paper, prior knowledge of a blast furnace is treated as a priority sequence of
attributes. For a priority sequence {c1, c2, . . . , cn}, attribute c1 has the highest priority, and
cn has the lowest priority. In practical applications, we can determine this sequence based
on empirical knowledge or mechanistic analysis results. In other words, when assigning
numbers to these attributes, those deemed more important are placed at the front. The
priority-optimal reduct is thus defined as follows.

Definition 4. Given a discernibility matrix M and a priority sequence {c1, c2, . . . , cn}, a
reduct R ∈ RED(M) is called the priority-optimal reduct (POR) if ∀R′ ∈ RED(M) −
R, ∃c ∈ R − (R ∩ R′), so that p(c) > p(c′), where p(c) is the priority of attribute c, and
c′ ∈ R′ − (R ∩ R′).

Based on Definition 4, it is straightforward to conclude that POR is unique for a
given priority sequence. In other words, each priority sequence can accurately map a
corresponding POR. Hence, if the priority sequence represents prior knowledge, then POR
is the optimal solution.

However, even though the priority sequence is taken into account, it is still difficult
for the traditional attribute reduction algorithm (shown in Algorithm 1) to obtain the POR.
A typical example is shown in Example 1.

Example 1. Suppose a discernibility matrix M has four non-empty elements: {a, b}, {a, c}, {b, d},
and {c, d}.
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For a priority sequence {a, b, c, d}, it obtains R′ = {a, b, c} after step 3, and the attribute “a”
is removed in step 4, yielding the reduct {b, c}. However, the matched POR is {a, d} because
attribute “a” has a higher priority.

Example 1 illustrates that the traditional attribute reduction algorithm is not suitable
for calculating POR because high-priority attributes may be removed during the reduction
process. In other words, a combination of lower-priority attributes replaces an attribute
with a higher priority. Therefore, to obtain POR, new approaches are necessary to avoid
this outcome.

3.2. Calculation Method on POR

For a heuristic reduction algorithm, each condition attribute is evaluated in turn
according to the given priority sequence {c1, c2, . . . , cn}. The key challenge is to determine
whether the evaluated condition attribute belongs to POR. Next, we analyze how to identify
the first attribute of POR and the remaining attributes, respectively.

3.2.1. Calculation of the First Attribute of POR

Theorem 1. For a priority sequence {c1, c2, . . . , cn}, if ∃R ∈ RED(M) so that c1 ∈ R, then
c1 ∈ POR.

Proof. For ∀R′ ∈ RED(M), if {c1} ∩ R′ = ∅, it has p(c1) > max(p(c′)), where
c′ ∈ R′ − (R ∩ R′). According to Definition 4, R’ is not the POR. In other words, POR
includes attribute c1. □

According to Theorem 1, the first attribute of POR can be found using the
following approach.

Approach 1. Attribute ci is the first attribute of POR if it satisfies the following two conditions:
∃R ∈ RED(M), ci ∈ R;
∀c ∈ C, i f p(c) > p(ci), then {c} ∩ (∪RED(M)) = ∅.

However, calculating all the reducts RED(M) is impractical in a heuristic algorithm.
Thus, the notions of free matrix and absolute redundant attribute set are proposed in this
paper to identify the first attribute of POR.

Definition 5. The absolute redundant attribute set of a decision table S is defined as

ARAS(S) = {c ∈ C| ∀R ∈ RED(S), c /∈ R} (3)

ARAS(S)is also referred to as ARAS(M) if a discernibility matrix M is considered. Based
on Definition 5, one can derive the following properties:

(1) Core(M) ∩ ARAS(M) = ∅;
(2) ∀c ∈ C, if c /∈ ARAS(M), then ∃R ∈ RED(M), c ∈ R;
(3) ARAS(M) ∩ POR = ∅.

Theorem 2. Given a discernibility matrix M and an attribute priority sequence {c1, c2, . . . , cn}, if
ARAS(M) = ∅, then c1 is the first attribute of POR.

Proof. Based on Definitions 4 and 5, since ARAS(M) = ∅, ∃R ∈ RED(M),c1 ∈ R.
Considering that c1 has the highest priority, c1 must belong to POR, and it is its first attribute.
□
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If ARAS(M) ̸= ∅, one can remove ARAS(M) from the discernibility matrix to cal-
culate the first attribute of POR. The resulting discernibility matrix is referred to as a free
matrix, defined as follows.

Definition 6. Discernibility matrix M is a free matrix if, for any non-empty elements
m(x, y), m(x′, y′) ∈ M, it holds that m(x, y)
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m(x′, y′).

The free matrix M does not contain any absolute redundant attribute, and the relevant
analysis is presented below.

Theorem 3. Given discernibility matrix M, if ∀m(x, y), m(x′, y′) ∈ M, m(x, y)
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m(x′, y′),
then ARAS(M) = ∅.

Proof. For any attribute c ∈ C, if c is a core attribute, then c /∈ ARAS(M). If attribute c
is not a core attribute, let M = Mc + Mc′, where Mc = {m(x, y) ∈ M|c ∈ m(x, y)}, Mc′ =
{m(x, y) ∈ M|c /∈ m(x, y)}. Select an element m(p, q) ∈ Mc and define A = m(p, q)− {c}.
One can construct a new discernibility matrix M′ = {m′(x, y)|m′(x, y) = m(x, y)− A}. Ma-
trix M′ clearly has the following features: (1) attribute c is a core attribute of M′ and (2) un-
der the existing condition (m(x, y)
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m(x′, y′)), |m(x, y) ∪ m(x′, y′)− (m(x, y) ∩ m(x′, y′))| ≥
2. Thus, for any non-empty element m(x, y) ∈ M, m′(x, y) ̸= ∅. Hence, based on Definition
3, C − A is a super reduct of M and ∀R′ ∈ RED(M′), R′ ∈ RED(M). Since c ∈ CORE(M′),
there exists a reduct R′ that includes c. Therefore, attribute c is not a redundant attribute in
R′, and ARAS(M) = ∅. □

Based on Theorems 2 and 3, we obtain an important approach.

Approach 2. The highest priority attribute of a free matrix is the first attribute of POR.

The free matrix is constructed by Algorithm 2.

Algorithm 2. Construct the free matrix.

Input: Discernibility matrix M.
Output: The related free matrix.
Step 1: Sort all the non-empty elements m(x, y) by |m(x, y)|; let num be the number of
non-empty elements.
Step 2:
Set i = 1

While i ≤ num − 1, do
j = i + 1;
While j ≤ num, do
If mi(x, y) ⊂ mj(x, y) then

delete mj(x, y) from M′, num = num − 1
Else

j = j + 1.
End

End
i = i + 1

End
Step 3: Output the free matrix.
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3.2.2. Calculation on Other Attributes of POR

Besides the first attribute, the other attributes of POR are checked according to
Theorem 4.

Theorem 4. For attribute ck+1, if ∃R ∈ RED(M), Bk ∪ {ck+1} ⊆ R, then ck+1 ∈ POR,
where Bk = POR ∩ Ak and Ak = {c1, c2, . . . , ck}.

Proof. Let P = POR− Bk. According to the definition of Bk, the attribute set P is a subset of
C − Ak. Since there exists a reduct R that includes Bk and attribute ck+1, Bk cannot discern
all elements of matrix M, i.e., P ̸= ∅. Suppose ck+1 /∈ POR. In that case, the reduct R is
not POR. However, ∀c ∈ P, ck+1 ∈ R − Bk satisfies p(ck+1) > p(c). This conflicts with
Definition 4. Hence, the above assumption is invalid, implying ck+1 ∈ POR. □

According to Theorem 4, the conclusion is that the key step is to verify whether there
exists a reduct that contains both ck+1 and the attribute set Bk = POR ∩ {c1, c2, . . . , ck}.

Considering that a reduct should be “jointly effective and individually necessary,” we
introduce the notion of the necessary element set to represent “individually necessary.”

Definition 7. Given a discernibility matrix M = {m(x, y)}, the necessary element set (NES) of
attribute c with respect to attribute set B is NESB(c) = {m(x, y)|m(x, y) ∩ B = {c}}.

The notion of NES is similar to that of a core set, since both are related to “necessary”.
The core set represents the attributes that are necessary for all reducts. Meanwhile, NESB(c)
indicates whether attribute c is necessary to attribute set B. It has the following:

(1) CORE(M) = {c ∈ C|NESC(c) ̸= ∅};
(2) If {c} ⊆ A1 ⊆ A2, then NESA2(c) ⊆ NESA1(c).

If NESB(c) ̸= ∅, then the attribute set B −{c} is not a reduct because it cannot discern
the non-empty elements in NESB(c). Conversely, if NESB(c) = ∅, then ∀m(x, y) ∩ {c} ̸=
∅, m(x, y) ∩ (B − {c}) ̸= ∅. This means that all elements discerned by attribute c are also
discerned by B − {c}. Thus, attribute set B is not a reduct.

Based on the above analysis, we redefine the reduct using NES.

Definition 8. An attribute set R is called a reduct if and only if it satisfies the following conditions:

(1) For each non-empty element m(x, y) ∈ M, m(x, y) ∩ R ̸= ∅;
(2) For each attribute c ∈ R, NESR(c) ̸= ∅.

Based on Definition 8, we have the following conclusion about NESB(c).

Theorem 5. Given a discernibility matrix M = {m(x, y)} and an attribute set B ⊆ C, if there
exists a reduct R ∈ RED(M) that includes the attribute set B, then ∀c ∈ B, NESB(c) ̸= ∅.

Proof. Based on Definition 8, R satisfies ∀c ∈ R, NESR(c) ̸= ∅. Because B ⊆ R, we have
∀c ∈ B, NESB(c) ̸= ∅ since NESR(c) ⊆ NESB(c). □

According to Theorem 5, if ∃c ∈ B, NESB(c) = ∅, then no reduct can include B.
Based on the above discussions, we propose a recursive algorithm to determine the

other attributes of POR. Recursion is a kind of self-relation and is represented as a function
capable of calling itself within a program. Once a recursive function calls itself, it reduces a
problem into sub-problems. The recursive call process continues until it reaches an end
point where the sub-problem cannot be reduced further. Thus, there are two elements in
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a recursive method: simple repeated logic and a termination condition. In this paper, an
additional border logic is also adopted to ensure that the result is a reduct.

Simple Repeated Logic

Repeated logic refers to the similarity between a problem and its sub-problems, which
constitutes the main part of recursion.

In this method, repeated logic is utilized to verify the existence of a reduct that includes
Bk ∪ {ck+1}, and it can be divided into two parts: (1) calculation NES and (2) judgment
logic. The NES calculation of Bk ∪ {ck+1} is based on Definition 7, and further descriptions
are unnecessary. For the judgment logic, there are two cases.

(1) If ∀c ∈ Bk ∪ {ck+1}, NESBk+{ck+1}(c) ̸= ∅, then we accept ck+1, Bk+1 = Bk ∪ {ck+1},
and we call this method with the updated parameter set.

(2) If ∃c ∈ Bk ∪ {ck+1}, NESBk∪{ck+1}(c) = ∅, then we reject ck+1, Bk+1 = Bk, and we
remove ck+1 from the discernibility matrix.

A simple example is described as follows.

Example 2. Given M = {{a, b}, {a, c}, {b, d}, {c, d}} and the priority sequence {a, b, c, d}, M
is a free matrix.

First, according to Approach 2, attribute a is the first attribute of POR. Next, B1 = {a}
and the other attributes are evaluated in turn.

For attribute b, NESB1∪{b}(a) = {{a, c}}, NESB1∪{b}(b) = {{b, d}}. Attribute b is
accepted, and the attribute set becomes B2 = {a, b}.

For attribute c, B2 = {a, b}, NESB2∪{c}(a) = ∅, NESB2∪{c}(b) = {{b, d}},
NESB2+{c}(c) = {{c, d}}. Since NESB2∪{c}(a) = ∅, attribute c is rejected and the new
matrix is M1 = {{a, b}, {a}, {b, d}, {d}}, B3 = B2 = {a, b}.

Additional Border Logic

Since the logic above uses only a necessary condition to test attributes in priority se-
quence order, we will encounter a border during recursion, referred to here as core conflict.

Definition 9. Given a discernibility matrix M, attribute set B, and a core attribute c′ ∈
CORE(M), the core conflict between B and c′(c′ /∈ B) is described as follows: ∃c ∈
B, NESB(c) ̸= ∅, NESB∪{c′}(c) = ∅.

Since c′ ∈ CORE(M), c′ must belong to all reducts. However, due to this core conflict,
no reduct can include both B and c′. Thus, we present the following approach.

Approach 3. Given a discernibility matrix M and an attribute set B, if there is a core conflict
between B and a core attribute, then no reduct can include B.

At the start of this method, no core attribute exists in the free matrix M because of
step 1 of Algorithm 1. As recursion proceeds, some attributes are removed from M, which
causes certain attributes to become core attributes in the new discernibility matrix Mk. If
these core attributes conflict with higher-priority attributes, a core conflict will arise in
the recursion.

The occurrence of core conflicts implies that at least one redundant attribute is present.
The simplest way to address this is to remove any attributes for which NESB∪{c′}(c) = ∅
from the related discernibility matrix. By doing so, we eventually obtain a reduct. However,
this reduct may not be POR. A simple example is provided in Example 3.

Example 3. Given M = {{a, b} , {a, e},{b, d},{c, e}, {d, e}} and the priority se-
quence {a, b, c, d, e}, M is a free matrix, and attribute a is the first attribute of POR. Using repeated
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logic, we obtain B3 = {a, b, c}, NESB3(a) = {{a, e}}, NESB3(b) = {{b, d}}, NESB3(c) =

{{c, e}}. For the next attribute d, we find NESB3∪{d}(b) = ∅, and d is not a core attribute.
Attribute d is then removed from M, producing M1 = {{a, b}, {a, e}, {b}, {c, e}, {e}}. For
the last attribute e, NESB3∪{e}(a) = ∅, NESB3∪{e}(b) = {{b}}, NESB3∪{e}(c) = ∅. Since e
is a core attribute, it cannot be removed. In this case, the core attribute e conflicts with two higher-
priority attributes a and c. If the conflict is ignored, the attribute set {b, e} would be obtained by
removing a and c. Clearly, {b, e} is not POR, as there exists another reduct {a, c, d} in which
attribute a has higher priority than any of the attributes in {b, e}.

Thus, the recursive process must stop if a core conflict arises, i.e., the method reaches a
wrong border and must backtrack. This example illustrates the crucial role of core conflict.
It helps the algorithm identify situations where accepting the current attribute would
conflict with higher-priority attributes. Hence, an additional border logic is proposed to
address this type of problem.

The additional border logic identifies the last attribute that can be removed from Bk,
allowing the method to restart from a new start point. Because the border logic operates at
multiple levels of recursion, it can be split into two parts: (1) judgment of core conflict in
the current level and (2) handling the return operation in the subsequent level.

There are three cases:
Case 1. The current attribute is not in Bk (rejected by Simple Repeated Logic in the

previous step); continue the return operation.
Case 2. The current attribute is in Bk, but it is a core attribute that cannot be deleted;

continue the return operation.
Case 3. The current attribute is in Bk, but it is not a core attribute; then, refuse it,

remove it from M, and enter the next recursion from the new start point.

The Terminate Condition

The terminate condition marks the endpoint of the recursion and is triggered once
all attributes in the priority sequence have been tested. If the core conflict is treated as an
unsuccessful border, then the terminate condition can be regarded as a successful border.
In practical programming, we use a flag to distinguish between the two situations.

3.2.3. The Complete Reduction Algorithm Based on Recursion

Based on the above discussions, the complete algorithm is described as shown in
Algorithms 3 and 4. In Algorithm 3, we provide the framework of the complete attribute
reduction algorithm, and the details of its recursion function are described in Algorithm 4.

Algorithm 3. Reduction algorithm based on recursion for calculating POR.

Input: Information table S and attribute priority sequence {c1, c2, . . . , cn}.
Output: The corresponding POR.
Step 1: Construct the discernibility matrix M, calculate the core attribute set CORE(M),
and delete the elements from M that can be discerned by CORE(M).
Step 2: Construct the free matrix M′ and delete attributes in the attribute priority
sequence that do not appear in the free matrix (Core(M) and ARAS(M)). The new
attribute priority sequence P is {ci1, ci2, . . . , cim}, and the attribute with the highest
priority in M′ is ci1, i.e., B1 = {ci1}.
Step 3: Use Algorithm 4 to test other attributes in P with the input
(B = B1, P, M = M′, k = 2), and output ( f lag, B′).
Step 4: Output POR = B′ ∪ CORE(M).
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Algorithm 4. Recursive function f .

Input: Attribute set B, priority sequence P, discernibility matrix M, k.
Output: Attribute set B′, f lag.
Step 1: If k > |P| then
Return with f lag = 1, B′ = B//Valid reduct found, recursion ends
End
Step 2: For each attribute c in B ∪ {cik}, calculate NESB∪{cik}(c) based on M.
Step 3: If ∀c ∈ B ∪ {cik}, NESB∪{cik}(c) ̸= ∅ then
Call f with input (B ∪ {cik}, P, M, k + 1)//Accept cik, recursive call
Else
Refuse cik and test if cik is a core set of M
If cik is a core set, then
Return with f lag = 0//Core conflict detected, backtrack
Else
Delete cik from M
Call f with input (B, P, M, k + 1)//Recursive call without cik

End
End
Step 3: Process the result returned:
If f lag = 0 ∧ cik not be rejected ∧ cik not a core of M
Refuse cik and delete cik from M
Call f with input (B, P, M, k + 1) and return the result returned directly
Else
Return the result returned directly
End

A simple proof of Algorithm 3 is as follows.
Since we evaluate each attribute using the priority sequence, and a high-priority

attribute is deleted only if no reduct includes the chosen attribute set, the main problem
is to prove that the selected attribute set is a reduct. First, due to the repeated logic, the
finally obtained attribute set B′ must satisfy ∀c ∈ B′, NESB′(c) ̸= ∅. Second, suppose B′ is
not a super reduct of M′; then, there exists at least one element that cannot be discerned
by the attribute set. Owing to the deletion mechanism in the repeated logic, any element
that cannot be discerned will lead to a core conflict, which prevents such an element from
remaining. Thus, the attribute set obtained by Algorithm 3 is exactly the POR.

We also illustrate the complete calculation process in Example 3 in Figure 1.
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First, attributes a, b, and c are accepted by the repeated logic, whereas d is rejected.
The new discernibility matrix is denoted by M1.

M1 = {{a, b}, {a, e}, {b}, {c, e}, {e}}

It is observed that attribute e is a core attribute of M1 and conflicts with {a, c}. Hence,
the algorithm reaches an unsuccessful border. Then, the algorithm gradually backtracks
using the additional border logic. First, attribute d satisfies Case 1, so the algorithm
continues the return operation. Next, attribute c satisfies Case 3 and is deleted because it is
not a core attribute.

Now, the algorithm moves to the next recursion level from the new start point (attribute
d), where B2 = {a, b}, M2 = {{a, b}, {a, e}, {b, d}, {e}, {d, e}}. Attribute d is rejected by
the repeated logic because NESB2∪{d}(b) = ∅. After removing attribute d, the discernibility
matrix becomes M3 = {{a, b}, {a, e}, {b}, {e}, {e}}. It is determined that attribute e is a
core attribute and conflicts with {a, b}. Accordingly, the algorithm gradually backtracks to
the previous level where the last accepted attribute was b.

Third, attribute b is deleted and the other attributes are checked in order until a
successful border appears. Eventually, the output POR is {a,c,d}.

We also compared the proposed algorithm with a classical heuristic algorithm, a
recently reported algorithm from the literature [7], and the state-of-the-art distributed
attribute reduction algorithm RA-MRS described in [3]. The related experimental results
are listed below.

These tested datasets originate from UCI and are uniformly discretized if they have
continuous attribute values. For example, Sonar_16 indicates that the Sonar dataset’s
continuous attribute values are uniformly discretized into 16 intervals.

In Table 1, underscores highlight the differences from other algorithms, and numbers
represent the index of attributes. The experimental results demonstrate that our algorithm
effectively identifies the priority-optimal reduct, while the compared algorithm does not
necessarily. Moreover, the reduction set from our algorithm is generally larger than those
of the compared algorithms. That is, it is difficult for our algorithm to obtain a minimum
reduct because data backgrounds are taken into consideration and some high-priority
attributes must remain.

Table 1. Experimental results.

Dataset Classical Algorithm The Proposed Algorithm Reduction Algorithm in
[7]

RA-MRS in
[3]

Sonar_2 5,7,11,16,17,2022,24,26,27,
30,33,35,37,53,54

1,5,8,13,16,17,19–22,26,27,
30–34,36, 37, 42,43, 53, 54

5,7,11,16,17,20,21,22,24,26,
27,30–33, 35, 37,53,54 1–30

Sonar_4 1,6–8,11,12,17, 18, 21, 23 1–6,23,25,31, 35, 41,43,47 1,6–8,11,12,17, 18,21, 23 1–23
Sonar_8 1,2,7,9,10,14,18 1–7,44,50,58 1,2,7,9,10,14,18 1–12
Sonar_16 1–5,9 1–5,7,53 1–5,9 1–8

Iono_2 1,3,5–7,9,11–14,
16,19,23,25,29,30,33

1–3,5,7,9,11–17,19,23,25,
29, 32, 33

1,3,5–7,9,11–14,
16,19,23,25,29,30,33 1–32

Iono_4 2–5,7,9,10,15, 23, 24 1–7,23,24,26, 33 2–5,7,9,10,15, 23,24 1–24
Iono_8 1–4,6,7,9 1–5,13,16,29 1–4,6,7,9 1–10
Iono_16 2,3,5,7,8 1–4,6,9,28 2,3,5,7,8 1–8

Zoo 3,4,6,8,13 1,3,6,7,10,12,13 3,4,6,8,13 1–12
Wine_2 1–12 1–12 1–12 1–12
Wine_4 1–7,9 1–7,9 1–7,9 1–12
Wine_8 1–3,5,6 1–4,8 1–3,5,6 1–12
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Table 1. Cont.

Dataset Classical Algorithm The Proposed Algorithm Reduction Algorithm in [7] RA-MRS in [3]

Wine_16 1–4. 1–4. 1–4 1–7
Fertility_4 1–3,5–7,9 1–3,5–7,9 1–3,5–7,9 1–8
Fertility_8 1,2,4–7 1–3,7–9 1,2,4–7 1–7
Fertility_16 1–4,6,7 1–4,6,7 1–4,6,7 1–7

4. Application in Blast Furnace Smelting
Blast furnace smelting is a complex, nonlinear, and high-dimensional dynamic process,

as shown in Figure 2. Raw materials such as iron and coke are fed from the top. As they
move downward, oxygen-enriched hot air and pulverized coal are conveyed from the
bottom of the blast furnace and eventually flow upward. Complex reactions of various
materials occur in multi-phase states while a variety of physical changes and chemical
reactions occur simultaneously during the two-directional motion [16].
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The main behavior of silicon in the blast furnace smelting process is the reduction
reaction. First, during the SiO2 reduction by coke carbon or carbon dissolved in hot metal,
part of the silicon mixes with hot metal in a liquid phase as follows:

SiO2 + 2C = Si + 2CO,

Meanwhile, most of the silicon transforms to gaseous SiO by the following reaction:

SiO2 + C = SiO + CO.

SiO then rises with blast furnace gas and is dissolved by both slag and hot metal from
the cohesive zone. The dissolved SiO reacts again with the coke in metal:

SiO + C = Si + CO.

The thermal state of the blast furnace is one of the most important factors, as tem-
perature significantly influences reduction reactions. Due to the enclosed nature of blast
furnaces, directly obtaining the thermal state poses a challenge. Therefore, the silicon
content is used as an indicator to determine the blast furnace state. Predicting silicon
content has also become a focus of study, and many machine learning models—such as
support vector regression and neural networks—have been applied to this task. One of the
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most important factors of machine learning performance is data quality. Thus, selecting an
optimal feature set is essential for providing high-quality inputs.

In this section, we first determine the attribute priority sequence related to silicon
content. Next, the reduction algorithm based on priority sequence is applied for feature
selection. Finally, a long short-term memory recurrent neural network (LSTM-RNN) is
employed to predict silicon content and verify the validity of POR.

4.1. Data Description and Priority Sequence

Data were collected from the No. 2 blast furnace of Liuzhou Steel in China, which
has a volume of 2650 m3. A total of 1200 data groups are available to validate the method;
800 of them are used as the training set and 400 as the test set. In the dataset related to the
hot metal silicon content, there are sixteen condition attributes and one decision attribute.

The following principles are followed when determining the attribute priority sequence.

(1) The mechanisms of blast furnace smelting should be considered first. For example,
since blast furnace smelting is a continuous process, the silicon content at the last time
point strongly influences the current silicon content.

(2) We also considered the staff’s experience, since they know which attributes carry the
greatest importance during operation.

(3) Correlation analysis between the condition attributes can serve as a reference for the
attribute priority sequence.

Considering the above factors comprehensively, we obtain the following attribute pri-
ority sequence: {latest silicon content, theoretical burning temperature, bosh gas index, bosh
gas volume, actual wind speed, standard wind speed, gas permeability, blast momentum,
furnace top pressure, oxygen enrichment percentage, cold wind flow, hot blast temperature,
pressure difference, hot blast pressure, cold wind pressure, oxygen enrichment pressure}.
For convenience, we use c1–c16 to represent these condition attributes, and the subscript of
a symbol represents its position in the priority sequence, i.e., its priority.

4.2. Attribute Reduction

In our work, we uniformly discretized the data for every attribute into 10 intervals.
We then ran the proposed attribute reduction procedure as follows.

First, we constructed the discernibility matrix M based on Definition 2. Then, we
calculated the core attribute set CORE(M) = {c1, c2, c7, c10, c12, c16} and deleted the
elements that can be discerned by CORE(M) from M. Next, the free matrix was con-
structed and we obtained ARAS(M) = ∅. Thus, the new attribute priority sequence is
{c3, c4, c5, c6, c8, c9, c11, c13, c14, c15}, with c3 as the highest-priority attribute. Finally,
Algorithm 3 was executed. The specific calculation process is shown in Figure 3.
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According to the simple repeated logic, we added c3; deleted c4; added c5; and deleted
c6, c8, c9. Then, it was determined that c11 is a core attribute that conflicts with {c3, c5}. This
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meant that the algorithm reached an unsuccessful border. Next, this algorithm gradually
backtracked to the level where the last attribute c5 was accepted. In the following steps,
c5 was removed and the attributes left were checked in order until a successful border
was reached. Eventually, we obtained {c3, c6, c13} and generated POR = CORE(M) ∪
{c3, c6, c13}.

To demonstrate the effectiveness of our algorithm, we compared it to the traditional
addition–deletion algorithm, as shown in Algorithm 1. The results are presented in Table 2.

Table 2. Results of attribute reduction.

Algorithm Reduct

Proposed algorithm c1, c2, c3, c6, c7, c10, c12, c13, c16
Addition–deletion algorithm c1, c2, c6, c7, c8, c10, c12, c16

For ease of description, we denote the reduct obtained by the proposed recursion
algorithm as Rr, and the other as Ra. From Table 2, with the exception of the attributes
both algorithms share, c3 holds the highest priority in Rr, whereas c8 does so in Ra. Since
c3 is much more important than c8 based on the priority sequence, the reduct Rr is more
aligned with the data-driven priority sequence. These reducts also show that the classic
addition–deletion algorithm is less effective in calculating the priority-optimal reduct. By
retaining those high-priority attributes, our reduction sets, while slightly larger in the
number of attributes, perform better in capturing domain knowledge.

4.3. Prediction with LSTM-RNN

A blast furnace functions as a dynamic delay system, in which its current state depends
on its previous state. LSTM-RNN is a gated recurrent neural network whose structure
is shown in Figure 4. Each output of LSTM-RNN is also related to the previous state.
Moreover, LSTM-RNN can selectively use previous state information to predict the current
state based on the input, which makes it more flexible and suitable for the prediction of hot
metal silicon content.
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Considering the above discussion and the complexity of blast furnace smelting, we
adopted LSTM-RNN to predict the hot metal silicon content. The actual model consists of
one LSTM layer with a 10-dimensional output, and one output layer with a 1-dimensional
output. Additional parameter settings of the LSTM layer are shown in Table 3 (the deep
learning framework used is Keras 2).

To ensure a valid comparison, we adjust the validation set five times during the
training process. The validation set is a continuous part of the training set, and the
remaining part of the training set is used to train the neural network. The results are shown
in Table 4 (tests with the same test number share the same validation set). MSE and Hit are
calculated as

MSE =
1
n ∑n

i=1(ŷi − yi)
2,
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Hit =
100%

n
|{ŷi||ŷi − yi| ≤ 0.1}|.

Table 3. Parameter settings of LSTM.

Parameter Setting

Activation relu
Timesteps 1
input_dim |reduct|
batch_size 100

Others default

Table 4. Prediction results.

Reduct Test
Number Train_MSE Test_MSE Hit (Train) Hit (Test)

Rr

1 0.0042 0.0051 88.75% 85.25%
2 0.0042 0.0048 88.35% 86.75%

3 (Figure 4) 0.0043 0.0047 87.93% 87.75%
4 0.0042 0.0053 88.49% 84.25%
5 0.0046 0.0047 86.55% 87.50%

Ra

1 0.0042 0.0055 88.06% 83.25%
2 0.0040 0.0054 89.17% 83.50%

3 (Figure 5) 0.0042 0.0057 88.89% 82.25%
4 0.0045 0.0057 86.67% 81.50%
5 0.0048 0.0052 87.36% 84.25%
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From Table 4, models trained with Rr achieve better performance than those trained
with Ra. Specifically, the training set results are almost the same (MSE about 0.043, Hit
about 88%). However, the situation is different for the test set. The average Test_MSE and
Hit for Rr are 0.0049 and 86.3%, respectively, while 0.0055 and 82.9% for Ra. Compared
with Ra, the Test_MSE decreases by 10.9% and Hit increases by 4.1%.
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For further analysis, we selected the most representative test, i.e., test number 3, as
shown in Figures 5 and 6, for observation and comparison. For the training set, the figures
are almost the same. However, for the test set, models trained based on Ra fail to track the
change in silicon content once the time point exceeds 300, whereas the models trained based
on Rr exhibit superior performance and effectively capture the trend of silicon content.
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Through the above analysis, it is shown that the priority-optimal reduct retains more
precise and relevant information than the classical reduction sets, and the related models
demonstrate stronger generalization abilities. Therefore, the attribute reduction algorithm
based on recursion proves to be practical in real-world applications.

5. Conclusions
In this study, we introduced a new definition of the priority-optimal reduct for complex

industrial processes within rough set theory. Based on this, a recursive attribute reduction
algorithm was developed. As the first recursive construction in the history of rough sets,
it has important research value. Moreover, the results of experiments on silicon content
prediction in a blast furnace demonstrate the effectiveness of our algorithm under complex
blast furnace conditions.

Our work successfully applied the new attribute reduction to the feature selection
of hot metal silicon content data from the blast furnace. In addition to the description of
prior knowledge, the characteristics of the data itself should also be considered. Since
the data are numerical, a discernibility relation that relies on discrete data may introduce
quantization error. Thus, further investigation of tolerance relations, fuzzy relations, or a
new discernibility relation is expected to yield better performance for this problem.

It should be noted that the performance of the proposed algorithm in practical ap-
plications heavily depends on a reasonable priority sequence, which is usually derived
from experiential knowledge or mechanism analysis results. Consequently, there exists a
potential overfitting risk when applying it to specific domain datasets. We leave a more
robust priority sequence determination method to future work.
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