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Abstract: Crop diseases significantly threaten agricultural productivity, leading to unstable
food supply and economic losses. The current approaches to automated crop disease recog-
nition face challenges such as limited datasets, restricted coverage of disease types, and
inefficient feature extraction, which hinder their generalization across diverse crops and
disease patterns. To address these challenges, we propose an efficient data augmentation
method to enhance the performance of deep learning models for crop disease recognition.
By constructing a new large-scale dataset comprising 24 different classes, including both
fruit and leaf samples, we intend to handle a variety of disease patterns and improve model
generalization capabilities. Geometric transformations and color space augmentation
techniques are applied to validate the efficiency of deep learning models, specifically con-
volution and transformer models, in recognizing multiple crop diseases. The experimental
results show that these augmentation techniques improve classification accuracy, achieving
F1 scores exceeding 98%. Feature map analysis further confirms that the models effectively
capture key disease characteristics. This study underscores the importance of data augmen-
tation in developing automated, energy-efficient, and environmentally sustainable crop
disease detection solutions, contributing to more sustainable agricultural practices.

Keywords: big data; data augmentation; sustainable agriculture; multiclass crop dataset;
visualization; green technologies

1. Introduction
Sustainable agricultural ecosystems that promote economic growth and environmental

protection require a paradigm shift toward green-technology-based approaches. In this
regard, the integration of ICT with AI plays a pivotal role in advancing sustainable green
growth within agricultural systems [1,2]. Specifically, AI-driven methods for crop pest and
disease detection can automate pest management in agricultural ecosystems and signifi-
cantly reduce the usage of chemical pesticides, thus preventing environmental pollution
and enhancing resource efficiency. According to the 21st Century Guidebook to Fungi [3],
approximately 16% of global crops are afflicted by pests and diseases, with most agricul-
tural areas currently relying on pesticides for pest control. Moreover, a study published in
Nature Geoscience [4] reported that the 92 chemical substances found in pesticides used
across 168 countries have contaminated 64% of the agricultural land. Notably, the countries
with the largest shares of contaminated land are those considered the breadbaskets of Asia,
which are responsible for a substantial portion of the world’s food supply.

It is crucial to reduce the use of traditional pesticides and apply machine learning
technologies capable of automatically recognizing and analyzing pest patterns to resolve
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these issues. Machine learning, particularly deep learning, is an example of radical digital
innovation in that it enables a shift from the fixed generation patterns of power plants,
originally designed to supply base load power, to more flexible generation patterns [5].
With the increase in computing resources, research on pest and disease recognition using
deep learning is being actively conducted [6]. Deep learning models automatically extract
features from images during the training process, thus achieving high performance, neces-
sitating large datasets. However, most current research has involved small datasets and
been limited to a few types of crops infected by pests. Moreover, rather than effectively
extracting various pest features, the focus has predominantly been on creating models
capable of classifying three to five diseases in the same crop species. Particularly in Asia,
crops affected by pests display a range of symptoms such as browning, spotting, and fine-
thread formations; yet,research accurately identifying and recognizing these characteristics
remains inadequate. While deep learning models optimized for maximum performance
can achieve high accuracy for up to 10 types of diseases, they struggle to maintain this
performance for a more extensive array of disease types [7].

In this paper, we propose a data augmentation method that enables deep learning
models to effectively extract patterns of pests and diseases, thereby addressing these issues
and enabling the development of sustainable green technologies. We compared and evalu-
ated six different deep learning models, including convolution and transformer models,
for the recognition of 24 diseases across five distinct crops, creating a comprehensive pest
and disease classification model. The data used in these models were augmented with
over 60,000 new images, combining publicly available data from PlantVillage [8] with
data on citrus and kiwi varieties collected in Asia. Our comprehensive pest and disease
classification model was utilized in meticulous experiments with data augmentation tech-
niques, subdivided into detailed categories of geometric transformations and color space
transformations. The results demonstrate that considering the color distribution is crucial
as the diversity in data patterns increases, as evidenced by the experimental outcomes and
feature maps.

The contributions of this work are threefold:

1. We collected private data on citrus and kiwi varieties and enhanced the validity
of our experimental results by including the PlantVillage dataset, a public dataset.
The constructed dataset comprises a total of 60,165 images, representing a large-scale
dataset; however, the classes are imbalanced. We addressed the data bias problem by
employing stratified cross-validation for verification.

2. The data used in the experiments included 24 diseases across five types of crops.
Some of these diseases are common to different crops or are the same disease affecting
multiple crops. We developed a data augmentation method combining geometric
and color space transformations designed to enable models to efficiently extract data
patterns even for diseases across different domains .

3. To validate the performance of the data augmentation methods, we compared and
evaluated six deep learning models, including convolution-based and transformer-based
models. The experimental results confirmed the prominence of the disease patterns in
the data through feature maps, emphasizing the importance of color distribution.

The remainder of this paper is organized as follows: Section 2 provides a brief review
of the related works. Section 3 discusses the data acquisition methods, preprocessing steps,
and data augmentation techniques used in this study. Section 4 introduces the proposed net-
work architecture for crop disease classification, while Section 5 presents the corresponding
experimental results. In the final two sections, we present the visualizations of the feature
maps based on the experimental results and discuss potential future research directions.
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2. Related Work
With the exponential development of computer technology, machine learning and deep

learning have been widely applied across various research fields. In particular, the agricul-
tural sector has integrated these technologies to promote digital ecology and sustainable
green practices through crop disease diagnosis [9]. While machine learning models based
on user-defined features allow for shorter training times, they face challenges in handling
low-quality images or ambiguous disease characteristics. In contrast, deep learning models
automatically extract features, offering superior classification performance by directly ana-
lyzing data [10]. Recent advancements in lightweight models and GPU technology have
significantly reduced the processing times of deep learning models, positioning them as a
promising solution in sustainable agriculture [11]. As a result, deep learning is emerging as
a key approach for advancing digital ecology and fostering sustainable green technology in
modern agriculture.

2.1. A Study on Crop Disease Diagnosis Based on ML

Machine learning refers to algorithms that allow computer programs to automati-
cally learn rules from data without requiring explicit programming. Machine learning
techniques, as listed in Table 1, have been adopted in agriculture to automatically clas-
sify and detect crop diseases. Santosh et al. [12] used Support Vector Machines (SVMs)
to classify crop pests and diseases, achieving over 90% accuracy with 500 crop images.
Appalanaidu et al. [13] analyzed the automatic classification of crop diseases using various
machine learning algorithms, including Naïve Bayes (NB), Decision Tree (DT), Artificial
Neural Networks (ANNs), K-Nearest Neighbor (KNN), and SVM, on the PlantVillage
dataset. Their experimental results demonstrated an average accuracy of 84.31% for bell
pepper and 59.83% for potato. Research on machine-learning-based crop disease recog-
nition has achieved high performance in cases where images have clear features, as this
approach requires the extraction and selection of specific characteristics from the data.
In contrast, when images lack prominent features, it is not possible to expect high per-
formance. This is a representative example of why the model did not achieve optimal
performance with the PlantVillage dataset used in this study. Crop diseases can appear
in different patterns, such as dot-like formations, clusters of pests, or twisted threads,
depending on the type of crop and specific type of pest or disease. Therefore, given the
limitations of machine-learning-based crop disease recognition research, it is necessary to
pursue deep-learning-based methods that automatically extract patterns from images and
learn from them [14].

Table 1. Studies on ML-based crop disease classification methods.

Dataset Total Images Method Accuracy Reference

Corps 500 Support Vector Machines (SVMs) 90% [12]

Pepper bacterial spot 997 K-Nearest Neighbor (KNN) 80.5%

[13]
Pepper healthy 360 Naïve Bayes (NB) 89.83%

Potato early blight 1000 Decision Tree (DT) 79.5%
Potato late blight 1000 K-Nearest Neighbor (KNN) 71%
Potato healthy 152 Artificial Neural Networks (ANNs) 51.61%

2.2. A Study on Crop Disease Diagnosis Based on DL

Deep-learning-based research on crop disease recognition, a subset of machine learn-
ing, has been reported to be effective, as listed in Table 2. Deep learning involves the
sequential passage of data through the layers of a neural network, which automatically
extracts features from images based on the decisions made at each layer. This ability to learn
from deep networks allows deep learning to achieve higher performance than traditional
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machine learning methods. Recent studies have focused on various aspects, including im-
age resizing, normalization, standardization, deep learning frameworks, and optimization
algorithms. Dhaka et al. [15] classified diseases in apples using the PlantVillage dataset.
The experimental results demonstrated that the multilayer CNN models achieved accura-
cies of 90.4% for VGG16, 83% with Inception-v3 and 80.0% with ResNet50. Verma et al. [16]
introduced the Paddy Doctor dataset with 16,225 annotated paddy leaf images across
13 classes to enable automated disease identification, achieving the highest accuracy of
97.50% using ResNet-34, addressing challenges in paddy disease detection. Liu et al. [17]
recognized maize leaf diseases using a fine-tuned EfficientNet model based on transfer
learning, achieving a maximum accuracy of 98.52% and outperforming VGG-16, Inception-
v3, and ResNet-50 in both training speed and recognition performance. Mahum et al. [18]
proposed an improved Efficient DenseNet model for detecting and classifying five potato
leaf classes, achieving 97.2% accuracy, addressing imbalanced data challenges and outper-
forming existing models.

Table 2. Studies on DL-based crop disease classification methods.

Dataset Total Images Method Accuracy Reference

Apple 2086 VGGNet-16 90.4% [15]Inception-v3 83.0%

Paddy Doctor 16,225 ResNet-34 97.50% [16]MobileNet 92.42%

Maize Disease 9279 EfficientNet-b0 Transfer Learning 98.52% [17]

Potato Late Blight 1000
DenseNet

97.8%
[18]Potato Early Blight 1000 97.6%

Potato Leaf Roll 750 96.8%

Many previous studies on crop disease diagnosis have utilized various machine
learning and deep learning models but have primarily focused on detecting diseases on the
leaves and addressing disease recognition in single crops. However, pests and diseases can
affect multiple organs of crops, necessitating datasets that include both leaves and fruits.
To achieve this, it is essential to build datasets that account for various crop types and
domains while considering the specific background elements of each crop. Although high
performance is typically obtained for the disease classification of single crops due to
their shared domain, developing multiple models for individual diseases significantly
increases energy consumption and carbon emissions. Therefore, developing a single
model that can achieve high performance is crucial. To address these issues, this study
expanded the PlantVillage dataset, originally containing only leaves, by incorporating
citrus and kiwi varieties with both leaves and fruits, resulting in a new large dataset
consisting of 24 new classes. Additionally, to assess the capability of a single model in
efficiently processing a large dataset, this study employed deep learning models such
as VGGNet [19], ResNet [20], DenseNet [21], EfficientNet [22], ViT [23], and DeiT [24] to
conduct an experimental analysis on the effectiveness of data augmentation.

3. Data Augmentation Methods for Crop Disease Recognition
3.1. Image Acquisition

In this research, we constructed a dataset for experimental use by integrating a
public dataset with private data collected from farmlands. The public dataset PlantVil-
lage consists of crops such as potatoes, bell peppers, and tomatoes. This dataset com-
prises over 40,000 images of leaves. We also collected a new dataset from citrus and
kiwi crops. The images were obtained from farms located in Jeju City [25], South Korea
(126◦08′43′′∼126◦58′20′′ E, 33◦11′27′′∼33◦33′50′′ N). Figure 1 displays the geographic map
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of the study area, indicating the locations of the citrus and kiwi farms with red and blue
pinpoints, respectively. All the collected images were in-field images captured directly by
agricultural experts on the farms. To maintain consistent image quality, the experts adjusted
the shooting height, angle, and lighting distance according to the disease types of each crop
and carefully avoided shadows and light reflections during the capturing process.

The data collected were confined to the year 2021, thereby limiting the available dataset.
The stages of fruit development encompass nine phases: eye formation, leaf development,
branch elongation, pre-flowering, flowering, fruit enlargement, fruit ripening, senescence,
and dormancy. Data were obtained from the fruit growth and ripening stages, where disease
incidence is most pronounced. The data collected during the fruit growth phase, from June
to October, represent 60% of the total dataset, comprising 12,000 images. During the fruit
ripening phase, from November to December, an additional 8000 images were collected,
accounting for 40% of the total dataset. The dataset from the ripening stage underwent
two rounds of expert validation and was exclusively utilized for the test dataset. Figure 2
illustrates representative image samples from the acquired dataset.

Figure 1. Geographic map of the data acquisition area (red pinpoint: citrus, blue pinpoint: kiwi).

Figure 2. Sample images of data collected from farmland.

3.2. Crop Disease Images and Dataset

To enhance the reproducibility and credibility of our study, we did not rely exclusively
on the data we collected; we also incorporated the publicly available PlantVillage dataset.
Information regarding the constructed dataset is presented in Table 3. As shown in Table 3,
the PlantVillage dataset consists of 15 classes. Among these 15 classes, there is a severe
data imbalance, as the ’potato healthy’ and ’tomato mosaic virus’ classes have fewer than
500 data samples each. To address this imbalance, these two classes were excluded from
this study. Subsequently, the original dataset described in Table 3 was randomly partitioned



Big Data Cogn. Comput. 2025, 9, 8 6 of 19

into training and test datasets in a 70:30 ratio. The test dataset was verified to contain
at least 200 images after partitioning. There were a total of 5 classes in these 200 images,
namely, ‘bell pepper bacteria spot’, ‘potato early blight’, ‘potato late blight’, ‘tomato leaf
mold’, and ‘tomato early blight’. Following the exclusion of these 5 classes, 7 classes,
including ’potato healthy’ and ’tomato mosaic virus’, were excluded due to insufficient
sample size. In this study, each test dataset class was required to contain a minimum of
200 images to classify more than ten diseases. Additionally, to address the data imbalance,
it was ensured that each disease class contained a minimum of 1000 images. Therefore,
new images were added to the ‘bell pepper bacteria spot’ and ‘tomato leaf mold’ classes,
with fewer than 800 images in the training dataset.

Table 3. Crop disease dataset details before data cleaning. Bold denotes classes containing fewer than
1000 images.

Crop Name Disease Name Number of Images

Citrus

citrus fruit healthy 2545
citrus fruit CBC 1716
citrus leaf healthy 2455
citrus leaf CBC 9552
citrus leaf Panonychus citri 1814
citrus leaf Toxoptera citricida 1918

Kiwi

kiwi fruit healthy 2124
kiwi fruit bacterial soft rot 1737
kiwi leaf healthy 2876
kiwi leaf Thysanoptera 5585
kiwi leaf spot 7678

bell pepper bell pepper bacteria spot 997
bell pepper healthy 1478

Potato
potato early blight 1000
potato late blight 1000
potato healthy 152

Tomato

tomato target spot 1404
tomato early blight 1000
tomato late blight 1909
tomato leaf mold 952
tomato septoria leaf spot 1771
tomato spider mites 1676
tomato mosaic virus 373
tomato yellow leaf virus 3209
tomato healthy 1591
tomato bacterial spot 2127

3.3. Generation of Insufficient Dataset

The training dataset for the ‘bell pepper bacteria spot’ class consisted of 797 images,
whereas the ‘tomato leaf mold’ class consisted of 752 images. As a result, additional
images were generated and incorporated into the dataset. In this study, we employed a
data augmentation strategy by generating new images through the application of realistic
noise to the existing dataset. Common types of noise that occur in real-world scenarios
include impulse noise [26], Gaussian noise [27], multiplicative Gaussian noise [28], Poisson
noise [29], uniform noise [30], and Laplacian noise [31]. Figure 3 presents representative
samples of the training images with six different types of applied noise.

As shown in Figure 3, of the six types of noise, (b) and (e) exhibited significant noise
levels. These two noise types pose a risk of misclassification by deep learning models
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and were, therefore, unsuitable for this study. Noise type (c) was excluded from the final
selection due to the use of Gaussian blur [32] during the data preprocessing stage to remove
noise from the field images. In contrast, (d), (f), and (g) are applicable to crop disease
images. Noise type (g) affects edge intensity detection in an image, while type (f) uniformly
distributes noise across the entire image. Noise type (d) applies random noise to an image
and has the advantage of averaging signals collected from various positions within the
wavelength range, thereby improving object detection. This method has been applied in
biology and agriculture [33]. The ‘bell pepper bacteria spot’ and ‘tomato leaf mold’ classes
were processed with noise type (d) to generate new images, resulting in the final dataset.
The number of generated images was 3 for the ‘bell pepper bacteria spot’ disease and 48
for the ‘tomato leaf mold’ disease. The black box in Figure 3 shows the sample images
generated by applying noise type (d). After data refinement, the final dataset consisted of
24 crop classes and 60,165 images. The numbers of data samples corresponding to each
class are listed in Table 4.

Figure 3. Sample images with multiplicative Gaussian noise.

Table 4. Crop disease dataset details after data cleaning.

Disease Name Training Test Total

citrus fruit healthy 2035 510 2545
citrus fruit CBC 1372 344 1716
citrus leaf healthy 1965 490 2455
citrus leaf CBC 7642 1910 9552
citrus leaf Panonychus citri 1452 362 1814
citrus leaf Toxoptera citricida 1534 384 1918

kiwi fruit healthy 1698 426 2124
kiwi fruit bacterial soft rot 1389 348 1737
kiwi leaf healthy 2300 576 2876
kiwi leaf Thysanoptera 4467 1118 5585
kiwi leaf spot 6142 1536 7678

bell pepper bacteria spot 800 200 1000
bell pepper healthy 1182 296 1478



Big Data Cogn. Comput. 2025, 9, 8 8 of 19

Table 4. Cont.

Disease Name Training Test Total

potato early blight 800 200 1000
potato late blight 800 200 1000

tomato target spot 1095 309 1404
tomato early blight 800 200 1000
tomato late blight 1555 354 1909
tomato leaf mold 800 200 1000
tomato septoria leaf spot 1432 339 1771
tomato spider mites 1319 357 1676
tomato yellow leaf virus 2578 631 3209
tomato healthy 1269 322 1591
tomato bacterial spot 1687 440 2127

3.4. Data Augmentation Methods for Crop Disease Recognition

Data augmentation methods address the fundamental issue of insufficient datasets in
deep learning without modifying the model structure. This straightforward technique can
enhance model performance through fundamental operations. In the agricultural domain,
where collecting disease data is challenging, data augmentation methods are frequently
employed during data preprocessing. Choosing an appropriate data augmentation method
is crucial due to the complex and diverse patterns of diseases caused by pests and pathogens
in agriculture. However, existing research has focused more on optimizing models rather
than investigating preprocessing approaches that enable deep learning models to better
learn the characteristics of pests and crop diseases. These methods encounter limitations
as the number of disease types in crops increases, making it challenging to improve
model performance. Therefore, there is a need for research on data augmentation fusion
approaches that effectively extract disease patterns from images while preserving important
objects and avoiding excessive mixing of augmentation techniques.

There are two main categories of data augmentation methods: geometric transforma-
tions and color space transformations. Geometric transformations include horizontal and
vertical flipping, rotation, resized cropping and flipping, affine transformations, and per-
spective transformations. Figure 4 shows sample images from all classes in the dataset
created for this study. Affine and perspective transformations modify the spatial config-
uration of the images. These two techniques introduce the risk of image distortion as
they further transform the spatial perspective of images that are already viewed from
various angles. Therefore, we utilized only the geometric transformations of horizontal
and vertical flipping, rotation, and resized cropping and flipping, excluding affine and
perspective transformations.

Color space transformation is a data augmentation method that alters the colors of
the original image. Data augmentation methods that only modify the geometric structure
of the image without introducing color variations can lead to reduced representation
quality, as the network focuses on identifying color combinations rather than the intrinsic
visual features of the original image. Therefore, in this study, the applicability of color
space transformations to the constructed crop disease images was evaluated to determine
their effectiveness.

Similar to other techniques, color inversion and grayscale transformations are intended
to highlight the patterns of diseases found in the image. However, they may not be suitable
for cases in which the contrast levels of colors, as indicated by the red box in Figure 4, do
not display substantial differences. In contrast, the color jitter augmentation method allows
users to adjust the brightness, contrast, saturation, and hue of the image, thereby enabling
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controlled color distortions within a range that avoids blurring disease-related objects.
Particularly, brightness and contrast adjustments can mimic the different environmental
conditions found in actual agricultural settings. For example, reducing the brightness can
simulate images captured in darker environments, whereas increasing the brightness can
simulate images captured in well-lit areas during daylight hours. Therefore, this study
conducted experiments by gradually increasing the intensity from 0% to 50%. As a result,
randomly applying brightness, contrast, and saturation within a range of up to 35% resulted
in optimal performance. Additionally, to preserve the original colors of the images and
avoid abrupt color transitions that could lead to the loss of disease features, hue intensity
was modified within a range of up to 10%. Sample images with these intensity adjustments
are shown in Figure 5.

Figure 4. Dataset image samples. The red box indicates samples with minimal color contrast, making
disease feature identification difficult. The blue box highlights samples with strong shadows caused
by sunlight, which can introduce noise and obscure disease patterns.

Figure 5. Image with color jitter data augmentation method.

The citrus and kiwi datasets had comparatively clean and high-resolution images
compared to the other datasets. In addition, disease images in the citrus and kiwi datasets
were captured indoors, where indoor lighting was more prominent than sunlight. However,
the potato, bell pepper, and tomato datasets were captured under sunlight, which resulted
in noticeable shadows in the images. The blue boxes highlight images with solid shadows
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in Figure 4. Therefore, in this study, Gaussian blur using a kernel filter was applied to
remove the noise caused by indoor lighting and sunlight. Upon examining all plant disease
images of the citrus, kiwi, bell pepper, potato, and tomato crops, the final selected data
augmentation methods were horizontal flipping, vertical flipping, rotation, resizing and
cropping, Gaussian blur, and color jitter. Combining all six data augmentation methods
could lead to a loss of patterns in leaf texture and veins. Therefore, this study selected four
data augmentation methods for combination. The selection criteria were as follows: strategy
(a) employs all geometric transformation techniques, whereas strategy (b) reduces the
reliance on geometric transformations and focuses on employing color jitter and Gaussian
blur. Strategies (a) and (b) are illustrated in the network architecture depicted in Figure 6.

Figure 6. The overall workflow of the proposed network architecture.

4. Network Architecture
This section describes the network architecture for crop disease recognition proposed

in this paper. This network architecture saves the weights of the model that yield the
highest performance and uses them for model testing and feature map visualization.
The network architecture is depicted in Figure 6. It is divided into three main sections:
data transformation, model training, and model testing with feature map visualization.
During the data transformation process, it is essential to standardize the sizes of the images
originating from different sources. The images in the public dataset are formatted at
224 × 224 pixels, while those in the private dataset are 1920 × 1920 pixels in size. Therefore,
after resizing the input images to 224 × 224, we conducted experiments by dividing the
data augmentation methods into strategy (a) and strategy (b) based on the disease patterns
in the images. The methods employed for data augmentation included noise removal, color
transformations, and geometric transformations. The criteria for selecting strategies (a) and
(b) are explained in detail in Section 3.

In the model training stage, the network was trained using the VGGNet, ResNet,
DenseNet, EfficientNet, ViT, and DeiT models pretrained on the ImageNet dataset. As the
pretrained models had 1000 output nodes, this study modified the model architecture by
removing the existing output layer of each pretrained model and replacing it with 24 new
output layers to match the constructed dataset. Furthermore, the model training followed
a fine-tuning approach in which the pretrained model’s architectures were utilized and
trained with the new dataset. Training and validation were conducted using stratified
k-fold cross-validation, considering the data distribution. Stratified k-fold cross-validation
helped alleviate the dataset imbalance issue. The weights of the model that achieved
the highest F1 score during the training process were validated using the test dataset
and utilized to extract feature maps. The experimental results of the network structure
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are explained in Section 5. The workflow of the network architecture is summarized in
Algorithm 1.

Algorithm 1 Network architecture.

Input: Crop Classification Data

x = input_data()
x = data_augmentation(x)

k_ f old = initialize_k_fold()
epochs = initialize_epochs()

for fold in k_ f old do
train_data = stratified_xth_fold_train_data(x, fold)
validation_data = stratified_xth_fold_validation_data(x, fold)
models = load_model()
for model in models do

max_f1_score = 0
for epoch in epochs do

train_model(model, train_data)
f1_score = validate_model(model, validation_data)
if max_f1_score < f1_score then

max_f1_score = f1_score
end if

end for
end for
save_states(model)
show_feature_map(model)

end for

VGGNet [19], proposed by the Oxford University research team, highlights the critical
role of network depth in improving CNN performance. By significantly deepening the
architecture, VGGNet reduced the error rate from 16.4% to 7.3% in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [34]. A key innovation of VGGNet is the consistent
use of a 3 × 3 filter size across all convolutional layers, optimizing computational efficiency
and reducing the parameter space, enabling deeper and more expressive architectures.
VGGNet16 consists of 13 convolutional layers and 3 fully connected layers, utilizing
ReLU activation to accelerate training by addressing saturation issues. Dropout mitigates
overfitting, and the final softmax layer outputs a probability distribution. These features
showcase VGGNet’s ability to capture hierarchical representations while maintaining
computational efficiency.

ResNet [20] addresses the gradient vanishing and exploding problems in deep neural
networks by introducing the residual block, which leverages skip connections to directly
incorporate the input x into the output. This reformulates the optimization objective to
minimize the residual function F(x) = H(x)− x, preserving stable gradient flow during
backpropagation and mitigating the vanishing gradient problem. Unlike plain architec-
tures such as CNN, AlexNet [35], and VGGNet, which degrade as depth increases, ResNet
enables the construction of much deeper networks, reaching up to 152 layers, without per-
formance loss due to its residual learning paradigm. Additionally, ResNet employs a
bottleneck design with 1 × 1 convolutional layers to enhance computational efficiency
while maintaining strong representational capacity. These innovations allow ResNet to
surpass models like VGGNet and GoogleNet [36] in both efficiency and predictive perfor-
mance, verifying its impact on deep learning architecture design.
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DenseNet [21] is a neural network architecture that connects all layers directly via
concatenation, enabling each layer to access the feature maps of all preceding layers.
This design achieves superior performance with fewer parameters than ResNet. Unlike
ResNet, which uses skip connections through element-wise addition, DenseNet employs
concatenation, progressively increasing feature channels as layers are added. To manage
this growth, DenseNet reduces the number of channels per layer and standardizes feature
map dimensions for efficient concatenation. The architecture uses dense blocks to facilitate
feature reuse and pooling operations. Bottleneck layers further enhance efficiency by
limiting inputs to the 3 × 3 convolutional layers to 4k, where each layer generates k feature
maps. DenseNet supports 121-, 169-, 201-, and 264-layer configurations, providing deeper
networks with greater parameter efficiency than ResNet.

EfficientNet [22] is a state-of-the-art architecture for image classification that optimizes
the balance between network depth, width, and input resolution to improve performance.
Traditional models like VGGNet, GoogleNet, ResNet, and DenseNet primarily focus on
increasing depth, with manual adjustments to width and resolution based on computa-
tional constraints. This heuristic approach often overlooks the interdependence of these
dimensions. EfficientNet addresses this limitation by introducing a compound scaling
method that systematically balances depth, width, and resolution, preventing the perfor-
mance saturation observed in independent scaling. By using constants determined through
grid search and user-defined computation budgets, EfficientNet scales performance pro-
portionally to resources. This design allows EfficientNet to extract salient image features
efficiently, maintaining parameter efficiency and enabling faster inference compared to
earlier architectures.

ViT [23] is a paradigm-shifting model that extends the transformer architecture, orig-
inally developed for natural language processing, to computer vision tasks. Departing
from traditional CNN-based architectures, ViT employs transformers to overcome the
limitations of conventional attention mechanisms, achieving state-of-the-art performance
with modest computational overhead. The training pipeline involves segmenting an image
into fixed-size patches, which are linearly embedded with positional encodings and fed into
the transformer encoder. Since transformers operate on 1D sequences, the flattened patches
are projected into a sequential representation suitable for processing. The transformer
encoder’s output is passed through a multilayer perceptron (MLP) head for image classifi-
cation. ViT demonstrates exceptional computational efficiency and scalability, achieving
superior performance on large-scale datasets without degradation or saturation, and can
handle up to 100 billion parameters. However, its reliance on extensive pretraining with
large datasets remains a significant constraint.

DeiT [24] is a model proposed by Facebook AI that enhances the efficiency of ViT by
significantly reducing data and computational requirements while achieving comparable
accuracy. In contrast to ViT, which necessitates pretraining on extensive datasets like
JFT-300M, DeiT attains state-of-the-art performance using only the ImageNet dataset,
with training completed in three days on a single 8 GPU setup. DeiT leverages hard-
label knowledge distillation, transferring informative representations from a CNN teacher
model to imbue the transformer with inductive bias, thereby improving generalization and
performance. In hard-label distillation, the model minimizes the cross-entropy loss as

Ldistillation = −
N

∑
i=1

yi log ŷi (1)

where yi represents the label predicted by the teacher model, and ŷi is the predicted
probability of the student model for class i. This approach avoids the use of temperature
scaling and additional hyperparameters, making it computationally efficient. Furthermore,
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DeiT incorporates a distillation token, [DIST], analogous to the class token in ViT, which
interacts with other embeddings via self-attention. The output of the distillation token is
jointly optimized with the ground truth labels through the combined loss function:

Ltotal = αLdistillation + (1 − α)Lground truth (2)

where α balances the contributions of the distillation and ground truth losses. This method-
ology establishes DeiT as a computationally efficient and data-effective transformer-based
architecture for image classification tasks, overcoming the heavy reliance on large-scale
datasets and high-specification hardware required by ViT.

5. Experiments
In this section, we present empirical evidence regarding the performance of the crop

disease recognition network, which is based on the combination of data augmentation
methods proposed in this study. Specifically, we report the experimental results, and we
analyzed the feature maps of the proposed model. The experiments in this study were
conducted on a PC with an Intel® Core™ i9-9900KF CPU @ 3.60 GHz, NVIDIA TITAN RTX,
and Windows 10, using the Python 3.8 environment to validate the performance of the
DeiT model. The remaining models were evaluated on a PC with an Intel® Xeon® Silver
4208 CPU @ 2.10 GHz, NVIDIA TESLA V100 32 GB, and Ubuntu 18.04.6 LTS, using the
Python 3.10 environment to assess the performance of the proposed network.

5.1. Experimental Settings

The crop disease classification model utilized six pretrained deep learning models:
VGGNet, ResNet, DenseNet, EfficientNet, ViT, and DeiT. The input sizes of the models
varied depending on their size and type. To examine the performance differences of
the combined data augmentation methods in the same environment, the input size for
all six models was standardized to 224 × 224. The images, resized to 224 × 224 pixels
as described in Section 5, underwent data preprocessing based on strategies (a) and (b).
The test dataset, which was used for model validation, underwent only resizing, tensor
conversion, and normalization without data augmentation for image transformation.

The training and validation datasets were divided into five folds per class for cross-
validation, with the model trained on the corresponding fold for each class. The crop
pest and disease classification model was trained and validated for 100 epochs per fold.
Model performance was evaluated using four metrics commonly applied in classification
tasks: accuracy, recall, precision, and F1 score. Recall measures the proportion of cor-
rectly predicted positive instances among all actual positives, while precision evaluates
the proportion of correctly classified positive predictions among all instances predicted
as positive. Accuracy represents the ratio of correctly classified instances to the total in-
stances. The F1 score, the harmonic mean of recall and precision, is particularly useful for
handling imbalanced datasets. These metrics were calculated at each epoch to assess model
performance comprehensively.

Equations (3)–(6) provide the equations for these metrics. True positive (TP) refers
to the number of correctly identified positive cases, false negative (FN) is the number of
positive cases that were incorrectly identified as negative, false positive (FP) is the number
of negative cases that were incorrectly identified as positive, and true negative (TN) refers to
the number of correctly identified negative cases. The experiments employed cross-entropy
loss [37] as the objective function, which was optimized using the Adam optimizer [38].
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The learning rate was also dynamically adjusted using CosineAnnealingLR [39] to guide
the model toward an optimal solution.

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

F1 score =
2 × Precision × Recall

Precision + Recall
(6)

5.2. Results on Validation Dataset

The performance evaluation results showed that both strategy (a), which used only
geometric transformation data augmentation, and strategy (b), which combined geometric
transformation and color space transformation data augmentation, achieved F1 scores of
over 95% fpr all six models. Table 5 presents the performance results of the models using
strategies (a) and (b). Both strategies demonstrated high performance in classifying the
24 classes. However, as shown in Table 5, under the same conditions, strategy (b) showed a
maximum F1 score difference of over 3%, and, except for the VGGNet and DeiT models, all
models achieved an F1 score of over 98%. As shown in strategy (a), the top three performing
models among the six were DenseNet, EfficientNet, and ViT. All three models achieved an
F1 score of over 97%, with the ViT model achieving the highest F1 score of 97.68% and a
low standard deviation across the five folds.

For strategy (b), except for the VGGNet and DeiT models, the remaining four models
all achieved F1 scores of over 98%. Furthermore, excluding the DeiT model, all models
achieved accuracies of over 99% and showed lower standard deviations across the five
folds compared to the results for strategy (a), indicating a more uniform distribution. This
suggests that a combination of geometric transformation and color space transformation
data augmentation is effective for both convolution-based and transformer-based models.
However, it is worth noting that the training times of strategy (b), which incorporated
both data augmentation techniques, were longer than those of strategy (a). An interesting
observation was that the DeiT model, which combines the convolution and transformer
model architectures, showed minimal improvement with data augmentation. The DeiT
model achieved F1 scores of 95.54% (strategy (a)) and 95.90% (strategy (b)). Despite being
a distillation model designed to transfer knowledge from a teacher model to a student
network for optimal performance, the combination of convolution and transformer model
structures did not align well with the agricultural dataset and had the least impact on the
effectiveness of the data augmentation techniques.

Table 5. The validation performance of the crop disease classification models was compared using two
strategies: (a) employing only geometric data augmentation methods and (b) combining geometric
with color space transformation data augmentation methods.

Strategy (a) (b)

Model F1 Score Accuracy Training Time F1 Score Accuracy Training Time

VGGNet 95.8 ± 1.3024 97.47 ± 0.0841 29:56 97.8 ± 0.2074 99.06 ± 0.1161 52:36
ResNet 96.2 ± 0.3536 97.71 ± 0.0727 23:05 98.6 ± 0.1517 98.28 ± 0.1215 57:14

DenseNet 97.5 ± 0.2121 98.14 ± 0.0857 50:28 98.9 ± 0.0837 99.39 ± 0.0673 59:11
EfficientNet 97.0 ± 0.2345 97.4 ± 0.1389 22:02 98.7 ± 0.1789 99.16 ± 0.0811 57:03

ViT 97.6 ± 0.1095 98.16 ± 0.0661 63:08 98.7 ± 0.0837 99.17 ± 0.0778 64:21
DeiT 95.5 ± 0.0234 95.35 ± 0.0287 75:38 95.9 ± 0.024 95.64 ± 0.029 75:47
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5.3. Results on Test Dataset

The test performance of the models revealed that strategy (b), which combined geo-
metric and color space transformation data augmentation, allowed the models to recognize
agricultural disease patterns more prominently than strategy (a), which only used geomet-
ric transformation data augmentation. Table 6 presents the test results obtained using the
models with the highest performances. As observed in Table 6, when strategy (a) was used,
the performance was similar to or slightly lower than the cross-validation results. However,
when strategy (b) was used, the performance improved compared to the cross-validation
results, and all six models achieved an F1 score of 98%. Therefore, when constructing a crop
disease classification network, it is important to analyze the disease patterns, which can
vary depending on the type of disease, and consider the corresponding color distribution
to enhance the model’s performance.

Table 6. The test performance of the crop disease classification models was compared using two
strategies: (a) employing only geometric data augmentation methods and (b) combining geometric
with color space transformation data augmentation methods.

Strategy (a) (b)

Model F1 Score Accuracy Recall Precision F1 Score Accuracy Recall Precision

VGGNet 95.7 97.3 96.59 95.86 98 97.9 98.06 97.87
ResNet 96 96.9 96.5 96.07 98.4 98.3 98.40 98.46

DenseNet 97 98 97.85 97.16 98.9 98.8 98.97 98.90
EfficientNet 95.8 96.9 95.70 96.96 98.9 98.7 98.8 98.92

ViT 97.4 98.2 97.42 98.45 99.1 98.9 98.96 99.13
DeiT 97.6 98.37 97.61 98.52 98.4 98.19 98.31 98.38

6. Visualization Feature Maps
To better understand the six models and crop diseases, we loaded the weights of the

model that achieved the highest F1 score according to Table 5 and visualized the feature
maps. The feature maps represent the process of extracting patterns as the models pass
through the layers and capture the characteristics of crop diseases. By examining the feature
maps, we saw how the models perceived the features of agricultural pests and diseases.
The red bounding box highlights regions within the feature map where the disease object is
prominently represented, providing an analytical visualization of its salient characteristics.

Figure 7 shows the images from which the feature maps were extracted using the
VGGNet and ResNet models. The VGGNet model appears to focus on the edges of the
leaves as it progresses through the convolution layers. Additionally, since VGGNet employs
only 16 layers, its feature maps maintain the shape of the original image even after passing
through the convolutions, unlike those of the other models. In contrast, the ResNet model
emphasizes the bottom of the leaves to locate the disease. The first right row in Figure 7
shows images from the higher layers of the ResNet model. In all three images, the disease
is observable in the exact location. Although the VGGNet and ResNet models identified
the disease in different locations, both accurately recognized the objects associated with
the disease.

Figure 8 shows the images from which the feature maps were extracted using the
DenseNet model. Unlike the previous two models, the DenseNet model detects the disease
in the center of the leaves. It can be observed that the DenseNet model consistently
maintains the recognition of disease patterns as it passes through the dense blocks without
losing them. Similar to DenseNet, the EfficientNet model recognizes the disease in the
exact location. The EfficientNet model appears to have uniform intensity in the images and
detects the brightness of the background more rapidly than the previous three models.
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Figure 7. The left side shows the feature map obtained with VGGNet, and the right side shows the
feature map obtained with ResNet.

Figure 8. The left side shows the feature map obtained with DenseNet, and the right side shows the
feature map obtained with EfficientNet.

Figure 9 shows an image from which the attention map was extracted using the ViT
model and Deit, specifically the multihead attention’s minimum (min), mean, and maxi-
mum (max) values. The above attention map corresponds to the ViT model, and the one
below corresponds to the DeiT model. When the mean value is emphasized, each head
focuses on a different position, allowing the model to recognize diseases at the edges of
the image. However, the minimum and maximum values are concentrated in the localized
areas of the image. The attention map of DeiT exhibits a pattern different from that of ViT.
ViT’s attention map shows a wide distribution when emphasizing the mean value but that
of DeiT shows variations in distribution based on the minimum, mean, and maximum
values but still focuses on common areas. By visually examining the image, the model may
seem to focus on normal leaf regions rather than diseased parts. However, upon closer
examination of the attention maps for mean and maximum values, it becomes apparent
that the model recognizes the diseases.

Figure 9. The top image shows the feature map obtained with ViT, while the bottom image shows the
feature map obtained with DeiT.
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7. Discussion and Conclusions
In this section, we compare the proposed approach with prior methods using the

same crop disease data from the PlantVillage dataset employed in our experiments. Table 7
presents a comparative analysis between our method and prior methods leveraging the
same dataset. As shown in Table 7, ML-based models exhibited a notable decline in
performance on identical crop data, while DL-based models demonstrated performance
comparable to or marginally superior to our results. However, our study employed a
unified model capable of addressing multiple crop types simultaneously, unlike prior
studies that optimized distinct models for individual crops. Naturally, such crop-specific
models achieved higher performance. Moreover, while the PlantVillage dataset includes
only leaf images, our study incorporated both leaf and fruit images, which introduced
additional complexity but enhanced the model’s generalizability. If separate classification
tasks had been conducted for leaf and fruit images, our model’s performance would likely
have improved further. Despite these challenges, our model achieved nearly 99% accuracy,
underscoring its effectiveness across diverse data types.

Table 7. Comparison of the performance of the proposed model with that of other models on the
PlantVillage dataset.

Type Disease Name Method Performance

ML-Based [13]

Pepper Bacterial Spot K-Nearest Neighbor (KNN) 80.5%
Pepper Healthy Naïve Bayes (NB) 89.83%

Potato Early Blight Decision Tree (DT) 79.5%
Potato Late Blight K-Nearest Neighbor (KNN) 71%

Potato Healthy Artificial Neural Networks (ANNs) 51.61%

DL-based

Potato Early Blight DenseNet [18] 97.8%
Potato Late Blight 97.6%

Tomato (10 classes)
Darknet53 + Densenet201 +

EfficientNetb0 [40] 98.08%

Proposed

Pepper (2 classes) ResNet 98.28%

Potato (2 classes) DenseNet 99.39%

Tomato (10 classes) ViT 99.17%

This study analyzed data augmentation techniques to develop a method that enables
deep learning models to perform disease diagnosis efficiently. A novel dataset comprising
24 classes significantly enhanced the model’s generalization capability across diverse crop
types. The integration of geometric transformations and color space modifications resulted
in deep learning architectures, including VGGNet, ResNet, DenseNet, EfficientNet, ViT,
and DeiT, achieving F1 scores exceeding 98%. Furthermore, our approach emphasizes the
potential for reducing energy consumption and carbon emissions by employing a single
model for multiple crop types, contributing to sustainable agriculture through scalable
disease detection methods. However, reliance on image data alone imposes limitations
on broader applicability. To address this, future research will explore integrating image
and text data to develop multimodal classification systems, further enhancing robustness
and versatility.

Author Contributions: Conceptualization, S.L. (Saebom Lee); methodology, S.L. (Saebom Lee);
software, S.L. (Saebom Lee); validation, S.L. (Saebom Lee); formal analysis, S.L. (Saebom Lee);
investigation, S.L. (Sokjoon Lee); resources, S.L. (Sokjoon Lee); data curation, S.L. (Sokjoon Lee);
writing—original draft preparation, S.L. (Sokjoon Lee); writing—review and editing, S.L. (Sokjoon
Lee); visualization, S.L. (Saebom Lee); supervision, S.L. (Sokjoon Lee); project administration, S.L.



Big Data Cogn. Comput. 2025, 9, 8 18 of 19

(Sokjoon Lee); funding acquisition, S.L. (Sokjoon Lee). All authors have read and agreed to the
published version of this manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available upon request.

Acknowledgments: This work was supported by an Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-
2023-00225201, Development of Control Rights Protection Technology to Prevent Reverse Use of
Military Unmanned Vehicles) and by a Gachon University research fund of 2023 (GCU-202307800001).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Piscicelli, L. The sustainability impact of a digital circular economy. Curr. Opin. Environ. Sustain. 2023, 61, 101251. [CrossRef]
2. Andersen, A.D.; Frenken, K.; Galaz, V.; Kern, F.; Klerkx, L.; Mouthaan, M.; Piscicelli, L.; Schor, J.B.; Vaskelainen, T. On

digitalization and sustainability transitions. Environ. Innov. Soc. Transit. 2021, 41, 96–98. [CrossRef]
3. Moore, D.; Robson, G.D.; Trinci, A.P. 21st Century Guidebook to Fungi; Cambridge University Press: Cambridge, UK, 2020.
4. Tang, F.H.; Malik, A.; Li, M.; Lenzen, M.; Maggi, F. International demand for food and services drives environmental footprints of

pesticide use. Commun. Earth Environ. 2022, 3, 272. [CrossRef]
5. Mäkitie, T.; Hanson, J.; Damman, S.; Wardeberg, M. Digital innovation’s contribution to sustainability transitions. Technol. Soc.

2023, 73, 102255. [CrossRef]
6. Caserta, R.; Teixeira-Silva, N.; Granato, L.; Dorta, S.; Rodrigues, C.; Mitre, L.; Yochikawa, J.; Fischer, E.; Nascimento, C.; Souza-

Neto, R.; et al. Citrus biotechnology: What has been done to improve disease resistance in such an important crop? Biotechnol.
Res. Innov. 2019, 3, 95–109. [CrossRef]

7. Agarwal, M.; Gupta, S.K.; Biswas, K. Development of Efficient CNN model for Tomato crop disease identification. Sustain.
Comput. Inform. Syst. 2020, 28, 100407. [CrossRef]

8. Hughes, D.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease
diagnostics. arXiv 2015, arXiv:1511.08060.

9. Dhiman, P.; Kukreja, V.; Manoharan, P.; Kaur, A.; Kamruzzaman, M.; Dhaou, I.B.; Iwendi, C. A novel deep learning model for
detection of severity level of the disease in citrus fruits. Electronics 2022, 11, 495. [CrossRef]

10. Verma, B.; Zhang, L.; Stockwell, D. Roadside Video Data Analysis: Deep Learning; Springer: Berlin/Heidelberg, Germany, 2017.
11. Luaibi, A.R.; Salman, T.M.; Miry, A.H. Detection of citrus leaf diseases using a deep learning technique. Int. J. Electr. Comput. Eng.

2021, 11, 1719. [CrossRef]
12. Jagtap, S.T.; Phasinam, K.; Kassanuk, T.; Jha, S.S.; Ghosh, T.; Thakar, C.M. Towards application of various machine learning

techniques in agriculture. Mater. Today Proc. 2022, 51, 793–797. [CrossRef]
13. Appalanaidu, M.V.; Kumaravelan, G. Classification of Plant Disease using Machine Learning Algorithms. In Proceedings of the

2024 Sixth International Conference on Computational Intelligence and Communication Technologies (CCICT), Sonepat, India,
19–20 April 2024; pp. 1–7.

14. Dananjayan, S.; Tang, Y.; Zhuang, J.; Hou, C.; Luo, S. Assessment of state-of-the-art deep learning based citrus disease detection
techniques using annotated optical leaf images. Comput. Electron. Agric. 2022, 193, 106658. [CrossRef]

15. Dhaka, V.S.; Meena, S.V.; Rani, G.; Sinwar, D.; Ijaz, M.F.; Woźniak, M. A survey of deep convolutional neural networks applied
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