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Abstract: Analysts in Security Operations Centers (SOCs) are often occupied with time-
consuming investigations of alerts from Network Intrusion Detection Systems (NIDSs).
Many NIDS rules lack clear explanations and associations with attack techniques, compli-
cating the alert triage and the generation of attack hypotheses. Large Language Models
(LLMs) may be a promising technology to reduce the alert explainability gap by associating
rules with attack techniques. In this paper, we investigate the ability of three prominent
LLMs (ChatGPT, Claude, and Gemini) to reason about NIDS rules while labeling them
with MITRE ATT&CK tactics and techniques. We discuss prompt design and present
experiments performed with 973 Snort rules. Our results indicate that while LLMs provide
explainable, scalable, and efficient initial mappings, traditional machine learning (ML)
models consistently outperform them in accuracy, achieving higher precision, recall, and
F1-scores. These results highlight the potential for hybrid LLM-ML approaches to enhance
SOC operations and better address the evolving threat landscape. By utilizing automation,
the presented methods will enhance the analysis efficiency of SOC alerts, and decrease
workloads for analysts.

Keywords: cyber threat intelligence; alerts investigation; natural language processing

1. Introduction
Network Intrusion Detection Systems (NIDSs), such as Snort (https://www.snort.

org/) or Suricata (https://suricata.io/), analyze network traffic to identify and mitigate
potential threats. In this way, NIDS rules are an effective way to identify specific attack
methods [1]. NIDS-generated alerts must be interpreted by security analysts to extract
relevant information to understand ongoing attacks. To address detected attacks, security
analysts must develop accurate hypotheses regarding attack techniques and attackers’
intentions, generating actionable insights [2]. Leveraging such actionable insights, security
analysts are empowered to take appropriate countermeasures.

The increasing sophistication and diversity of cyber attacks necessitates a complex
rule-based approach in NIDSs (i.e., leading to a significant number of rules that NIDSs
operate on). The plethora of different NIDS rules that analysts need to understand and
the lack of links between those rules (e.g., Snort) and extensive Cyber Threat Intelligence
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(CTI) requires significant skills, attention, and cyber security expertise [3]. Given the
scarcity of experienced security analysts, the need for labeled NIDS rules supporting (and
partially automating) the process of identifying attacks, detecting adversary behavior, and
hypothesizing about probable next steps is highlighted in recent publications [4].

To reduce human effort and help analysts stay ahead of malicious actors, organizations
are continuously incorporating Artificial Intelligence (AI) into their security workflows [5].
A primary application of AI is automating the investigation of security events, which helps
alleviate alert fatigue among analysts. Beyond this, AI presents numerous opportunities to
enhance defensive security operations. Hereby, Large Language Models (LLMs) are being
used to automate various cyber security tasks that previously relied on human effort [6,7].
By automating these processes, AI allows security professionals to focus on higher-level
tasks, adding significant value to organizations and society.

In this paper, we leverage AI to associate NIDS rules with relevant MITRE ATT&CK
Techniques (https://attack.mitre.org/), easing analysts’ work in extracting actionable
insights into ongoing attacks and craft hypotheses.

We investigate the ability of using three open-accessible LLMs to assist cyber security
experts. The research problem targeted within this work is formulated by Guerra et al. [8]
and Gjerstad et al. [9], demanding novel methods for labeling high volumes of network
traffic-related data with high quality and speed. Namely, we explore, optimize, and
evaluate the usage of ChatGPT (https://chatgpt.com/), Claude (https://claude.ai/), and
Gemini (https://gemini.google.com/) to automate the labeling of Snort rules with MITRE
ATT&CK tactics and techniques, thereby providing insights into the current state of a
cyber attack.

Our main contributions are as follows:

• A dataset of 973 labeled Snort community NIDS rules;
• Formalizing NIDS rule labeling as a conditional text generation problem, treating it as

a maximization task;
• Introducing a workflow for employing LLMs to label NIDS rules with MITRE ATT&CK

tactics and techniques and generate an automated machine learning (ML)-based
labeling procedure;

• Three ML models for labeling NIDS rules, automatically generated and trained by
LLMs.

Leveraging LLMs to label NIDS rules offers two key benefits: Firstly, it is possible to
justify each suggested technique. The provided explanations and reasoning given through
the LLMs can be especially beneficial for analysts with limited expertise in cyber security
(e.g., limited experience). Secondly, LLMs leverage their extensive training on diverse
cyber security knowledge from a variety of data sources, which contains cyber security
knowledge from a wide range of different data sources including incident reports but also
hacker chatter, etc. ML models on the other side frequently provide superior performance
within the tasks provided; however, results are frequently limited with respect to their
explainability.

The rest of the paper is structured as follows. Section 2 gives the relevant background.
Section 3 presents related work. In Section 4, the methods, dataset, and experiments
are presented. In Section 5, we introduce the results. Section 6 provides the discussion.
Section 7 summarizes the key findings and offers a perspective on future research directions.

2. Background
2.1. Cyber Threat Intelligence

Cyber Threat Intelligence (CTI) is a proactive approach in computer and network
security [10], focusing on the collection and analysis of data to derive actionable insights

https://attack.mitre.org/
https://chatgpt.com/
https://claude.ai/
https://gemini.google.com/
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into potential or ongoing attacks. These insights improve decision-making processes by
enabling the selection of appropriate defensive measures [11]. As outlined by Chismon
et al. [11], CTI can be categorized into four types based on focus and depth:

• Strategic CTI: Aimed at non-technical audiences [12], this high-level intelligence assists
organizational leaders in understanding the broader implications of cyber activities,
including potential risks and their impacts.

• Operational CTI: Provides detailed insights on impending attacks, consumed primar-
ily by senior security staff, such as incident response teams leads. This intelligence
supports day-to-day decision-making, but access is often limited to advanced organi-
zations or nation states.

• Tactical CTI: Known as as Tactics, Techniques, and Procedures (TTPs), this intelligence
details adversary methodologies and is used by Security Operations Centers (SOCs)
to test and enhance defensive measures.

• Technical CTI: Provides raw data, such as IP addresses or hash values, which are time
sensitive and must be used promptly, as they can quickly become obsolete.

Another categorization of CTI is based on its source, which can be either network
based or host based.

Low-level CTI, including Indicators of Compromise IoCs, is especially valuable for
automating cyber security processes, enabling more efficient decision-making [13]. Tools
such as Threat Hunting (TH), Endpoint Detection and Response (EDR), and Intrusion
Detection System (IDS) often rely on technical and tactical CTI to identify and address
potential threats [14]. A potential lies in expanding the automation levels [14], aiding
organizations in gaining visibility of the threat landscape, identifying attacks and associated
TTPs, and responding effectively [15].

The MITRE ATT&CK framework is an essential resource for CTI, providing a cu-
rated knowledge base of adversarial behavior, which includes detailed mappings of
post-compromise tactics and techniques across various platforms [16]. According to
Strom et al. [16], the ATT&CK framework centers on understanding how external adver-
saries infiltrate and act within computer networks. It therefore serves as an extensive
database of tactical CTI, encompassing post-compromise adversary TTPs across various
operating systems, including Windows, Linux, and macOS. Additionally, it spans multiple
technological domains such as enterprise environments, mobile devices, cloud systems,
and Industrial Control Systems (ICSs). As of November 2024, the ATT&CK framework
included 203 attack techniques and 453 sub-techniques associated with 14 tactics for enter-
prise systems and 84 techniques linked to 12 tactics specific to ICSs.

2.2. Intrusion Detection Systems

IDSs can be differentiated to Host-based Intrusion Detection Systems, HIDSs, and
NIDS [17]. The visibility coverage of different IDSs depends especially on the data sources
they analyze. NIDSs, for example, offer only limited visibility inside the host machine [18].
Therefore, only a limited set of attack techniques is detectable with high confidence when
relying on NIDS. Likewise, HIDS provides restricted visibility by being limited on the
analysis of system logs. In an effort to systemize the analysis of data log source quality,
visibility coverage, and detection coverage, Detect Tactics, Techniques and Combat Threats
(DeTT&CK) was developed (https://github.com/rabobank-cdc/DeTTECT). DeTT&CK
provides a useful means to analyze the visibility coverage of different intrusion detection
systems and techniques identifiable through investigations of specific data sources.

https://github.com/rabobank-cdc/DeTTECT
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Snort (https://www.snort.org/) is a lightweight NIDS built on the Libpcap library,
offering efficient packet-filtering capabilities [19]. Snort rules, which are straightforward
and easily interpreted, are divided into two primary components [20] (see Figure 1): The
first component, known as the header, specifies attributes such as action, protocol, source
and destination addresses, source and destination ports, and traffic direction. The second
component, known as the rule options, contains a list of keyword and argument pairs
enclosed within parentheses. These elements collectively enable Snort to detect and respond
to specific network-based attack patterns effectively.

Figure 1. Snort rule example.

2.3. Large Language Models

Generative Pre-trained Transformers (GPTs) are among the most advanced LLMs
currently available, known for their ability to process and analyze complex tasks across
various fields. This study leverages ChatGPT-4 along with other state-of-the-art LLMs,
including Claude and Gemini , to enhance cyber security workflows. These models, with
their advanced reasoning capabilities, have demonstrated potential in automating expert-
driven processes [6].

In cyber security, LLMs are gaining recognition for their dual utility in both defensive
and offensive applications [21]. On the offensive side, LLMs have raised concerns due
to their ability to facilitate malicious activities, such as generating phishing emails or
creating sophisticated attack scripts [22]. On the defensive side, however, these models
have emerged as powerful tools for automating labor-intensive tasks [23]. Their vast
training datasets, which include security-related knowledge, allow them to support cyber
security experts by generating actionable insights and assisting in complex decision-making
processes.

This work explores a further use case in analyzing the feasibility of using LLMs to
label NIDS rules with MITRE ATT&CK techniques and furthermore provide contextual
explanations for each label. By leveraging the comprehensive training and reasoning capa-
bilities of models such as ChatGPT, Claude, and Gemini, we aim to evaluate and compare
their effectiveness in enriching CTI workflows. This marks a significant advancement in the
adoption of LLMs as a scalable and efficient means to assist security analysts in mitigating
and understanding ongoing threats.

3. Related Work
Ishibashi et al. [24] highlight the need to implement AI-powered NIDSs and construct

labeled training datasets. Gjerstad [9] points out the shortage of labeled cyber security
datasets and encourages their creation (i.a., CTI labeled reports and labeled host-based,
network-based data).

The growing abilities of LLMs are driving their use in many areas. With the fast pace
and large volume of CTI sharing, automating labeling is essential to keep up with cyber
threats.

https://www.snort.org/
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3.1. Labeling Reports with CTI

Husari et al. [25] introduce TTPDrill, a tool for extracting TTPs unstructured text using
a combination of natural language processing and information retrieval. Similarly, Legoy
et al. [26] present rcATT, a tool that uses a Multi-Class Multi-Label Classifier (MCML-C)
trained on reports linked to TTPs. Mendsaikhan et al. [27] adopt Multi-Label Classification
(ML-C) on vectors from vulnerability descriptions (reports) and correlate those vectors to
adversary techniques. Extractor [28] can extract attack behaviors as provenance graphs
from unstructured text. TIM [29] is a framework for mining TTPs intelligence with added
threat context from unstructured data. Li et al. [30] develop AttacKG, a similar tool that
extracts techniques from reports. The latest tool, TTPHunter [31], focuses on APT reports
and uses SecureBERT [32].

The above methods are intended for extracting TTPs from unstructured text. However,
it is unclear how they will perform on structured CTI sources and on input that demands a
high level of expertise and context information such as NIDS rules (e.g., an understanding
of benign and malicious network flows and link techniques that generate such network
traffic).

3.2. Labeling of Host-Related Data with CTI

Landauer et al. [17] introduce a method targeting the labeling within HIDSs. The
method proposed aims at labeling system logs.

Gabrys et al. [33] integrate LLMs and ML to map host-based Wazuh IDS rules to
MITRE ATT&CK techniques, achieving high classification accuracy and enhancing alert
interpretability. Their focus on host-based rules, which describe processes and endpoint
events, aligns more directly with ATT&CK techniques compared to network-based rules.

Compared to those works presented, our work focuses on network-based intrusion
detection rather than on host-based intrusion detection. Although the work presented
by Gabrys et al. [33] is comparable with respect to the use of LLMs and ML, the entirely
different focus on NIDS rules differentiates the works substantially.

3.3. Labeling of Network-Related Data with CTI
3.3.1. Labeling Network Packets

McPhee [34] explains that the network-based detection of ATT&CK techniques using
network sensors often focuses on Windows-specific protocols and excludes other systems
like ICS. To address this, McPhee [34] uses the Zeek (https://zeek.org/) monitoring system
to detect techniques in these environments. However, this approach requires the manual
definition of detection methods for each technique, making it time-consuming and reliant
on expert knowledge. Arafune et al. [35] focus on ICS and create an automated TH system
that detects attacks in network traffic using open-source tools. Their approach links network
traffic to attack techniques but relies on a signature-based method, requiring a human
analyst to label each signature once to identify the matching techniques.

Garcia and Valeros [36] introduce a tool to label Zeek network flows with parts of the
MITRE ATT&CK framework. Also, Masumi et al. [37] focus on labeling network packets
to attack information. Gjerstad [9] proposes a method for labeling network datasets using
MITRE CALDERA, a tool for testing system security. The method matches techniques
labeled in CALDERA reports to simulated attack traffic. Furthermore, Bagui et al. [4]
introduce a dataset created using Zeek containing network traffic which is labeled using
the MITRE ATT&CK framework. The mapping is based on a rule-based mapping process,
where links to a specific ATT&CK technique are generated using pre-configured mappings
(i.e., already labeled mission logs) while not specifying the labeling process. RADAR [38]
is a tool for detecting malicious behavior in network traffic. It identifies TTPs using both

https://zeek.org/
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feature-based and heuristic-based detection rules. However, its limitation is that feature-
based rules are manually created for each technique, so the system currently supports only
17 techniques.

Jüttner et al. [39] propose ChatIDS, a system that employs LLMs to translate IDS
alerts into intuitive explanations and actionable countermeasures for non-expert users,
aiming to improve cyber security in home and small network environments. By focusing
on accessibility, ChatIDS simplifies alerts to help users understand threats and respond
appropriately without requiring technical expertise. In contrast, our work uses LLMs to
label NIDS rules with MITRE ATT&CK techniques, providing detailed, actionable insights
for professional analysts. While ChatIDS emphasizes ease of use and comprehensibility, our
solution is designed to enhance the efficiency and precision of high-level CTI workflows
in complex, large-scale cyber security operations (labeling with standardized machine
readable labels and explainable mappings). The evaluation methods further highlight
these differences. ChatIDS relies on qualitative feedback from interdisciplinary experts
to assess usability and practical applicability for non-technical users. In contrast, our
study uses quantitative metrics—precision, recall, and F1-score—to evaluate the accuracy
and scalability of LLMs, reflecting its focus on meeting the demands of expert-driven,
operational environments.

3.3.2. Network Intrusion Detection Rules Labeling

The work closest to ours is that presented by Lin et al. [3]. They propose a mechanism
which uses text mining and machine learning (especially Decision Tree (DT), K-Nearest
Neighbor (KNN), Support Vector Machines (SVMs), and Random Forest (RF)) for labeling
NIDS rules with 12 attack tactics, in order to aid experts during the TH process. They reach
a F1-score of approximately 0.9. In their work, the labeling of rules is restricted to tactics,
significantly limiting its usability. Furthermore, labeling rules with tactics is easier than
those with techniques because there are only 26 tactics compared to over 203 techniques (see
Section 2.1). Furthermore, Daniel et al. [40] provide a proof of concept demonstrating the
potential of ChatGPT as a tool for enriching NIDS rules with MITRE ATT&CK techniques.

We expand the approach presented by Daniel et al. [40] by (1) expanding the dataset
of labeled rules, and provide it as a benchmarking, training, or comparing tool for other
research studies in the field, (2) incorporating additional LLMs, specifically, Claude and
Gemini, to evaluate their effectiveness in performing similar tasks, (3) expanding the label-
ing workflow to cover NIDS rules labeling, comprehensively relying on MITRE ATT&CK
(labeling NIDS rules with tactics and techniques). Furthermore, we formalize the task of la-
beling NIDS rules as a conditional text generation problem and contribute a comprehensive
prompt engineering approach.

Besides investigating the ability of LLMs to label NIDS rules, we introduce three ML
models for NIDS rule labeling. This broader investigation enables a comparative analysis
of LLM and ML-model capabilities and provides deeper insights into the applicability of
AI for automating cyber security processes.

Table 1 provides an overview of the related work, highlighting some key extensions
we incorporate within our work (for increasing readability, we use the following abbrevia-
tions: Attack Type (AT), Explanation (E), Lowest Common Ancestor (LCA) Named Entity
Recognition (NER), Tactic (TA), and Technique (T)).
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Table 1. Related work.

Citation Labeling Methodology

Input Output Evaluation LLM ML Other

Husari et al. [25] Reports TA; T Quantitative - SVM TF-IDF
Legoy et al. [26] Reports TA; T Quantitative - SVM; ML-C;

MCML-C
TF;TF-IDF;
Word2Vec

Mendsaikhan et al. [27] Reports T Quantitative - ML-C TF-IDF; Bag
of Words

Satvat et al.[28] Reports T Quantitative BERT - -
You et al. [29] Reports TA; T Quantitative - - TF-IDF
Rani et al. [31] Reports TA; T Quantitative SecureBERT - -
Li et al. [30] Reports T Quantitative - - Regex; NER;

LCA
Landauer et al. [17] Host-based

logs
TA; T Qualitative - - Rule-based

Gabrys et al. [33] HIDS-rules TA; T Quantitative BERT - -
McPhee [34] Network

traffic
(Zeek)

T Quantitative - - Rule-based

Arafune et al. [35] Network
traffic

TA; T Quantitative - SVM -

Garcia and Valeros [36] Network
traffic

T Qualitative;
Quantita-

tive

- - Rule-based

Masumi et al. [37] Network
traffic

AT Quantitative - - Correlation
analysis

Gjerstad [9] Network
traffic

T Qualitative - - Rule-based

Bagui et al. [4] Network
traffic

TA; T Not
specified

- - Rule-based

Sharma et al. [38] Network
traffic

TA; T Quantitative - - Rule-based

Jüttner et al. [39] IDS alerts
(Surricata,

Snort, Zeek)

E Qualitative ChatGPT - -

Lin et al. [3] NIDS-rules TA Quantitative - SVM; RF;
DT; KNN

TF-IDF

Daniel et al. [40] NIDS-rules T Quantitative ChatGPT - Keyword-
based

Our work NIDS-rules TA; T Quantitative
ChatGPT;
Claude;
Gemini

SVM, RF,
GBM

TF-IDF

4. Materials and Methods
Figure 2 presents an overview of the stages discussed in this section. We present two

approaches for labeling NIDS rules with MITRE ATT&CK techniques. In the first approach,
we use LLMs and test different combinations of prompting strategies as explained in
Section 4.1. In the second approach (see Section 4.2), we test ML models generated by
the LLMs themselves. Based on the technique mapping, we label the NIDS rule with the
relevant ATT&CK tactic(s) associated with the ATT&CK technique(s). While the aim of this
work is to label NIDS rules with ATT&CK techniques, this procedure allows to compare
with related work. The rest of this section covers the dataset collection, experiments, and
evaluation metrics used to compare the performance of the two approaches.



Big Data Cogn. Comput. 2025, 9, 23 8 of 21

Figure 2. Materials and methods overview.

4.1. Prompt Engineering for the NIDS Labeling Task
4.1.1. Problem Definition

In the realm of using LLMs, prompt engineering is a critical task that involves crafting
effective cues to guide LLMs in generating the desired text outputs. Given the probabilistic
nature of outputs generated by LLMs a fundamental challenge in prompt engineering
is understanding the probability of a language model generating a specific text given a
particular prompt. This probability can be formalized as a conditional probability. The
Large Language Model (LLM)-based labeling can hence be regarded as a conditional text
generation problem.

Let p be a prompt. The goal of engineering a prompt for LLM-based labeling in the
context of labeling NIDS rules is to create a well-defined and efficient prompt p (cue or
input given to the LLM) from an input space P that enables the accurate labeling of NIDS
rules (output). With respect to this, the output of the LLM can be modeled as a function
f (p ∈ P, x ∈ X) where x ∈ X is the NIDS rule to be labeled from a set of NIDS rules X. The
problem is formulated as a maximization problem as follows:

maxX,V g( f (p, x), v) (1)

where g describes the applicable evaluation metric (e.g., F1-score for the labeling task) and
V is the ground truth. g is thereby defined as the labeling score between the predicted label
vh

i ∈ V and the ground truth vi ∈ V for a given input xi and prompt p.
The evaluation is based on the dataset D, where x, v ∈ D is an instance of the dataset

with the label x and the true label v, where the evaluation metric is calculated based on the
average labeling score:

1
|D| ∑

x,v∈D
g( f (p, x), v) (2)

4.1.2. Prompt Template Generation

The function describing the output of the LLM can be specified as a function
PrLLM(y|p), where the probability Pr of generating a text y is modeled as a conditional
probability depending on p, where p can be decomposed to its key components. The
components of p are thereby represented by the task specification S, contextual information
C, and methodological guidance M:
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PrLLM(y|p) = PrLLM(y|S, C, M) (3)

Each component is optimized based on prompt engineering techniques. The basic task
specification S defines the desired output content. Direct questioning is employed to ask
explicitly which MITRE ATT&CK technique(s) correspond to a given NIDS rule. We use
the meta prompting technique of self-refinement prompting [41] to optimize the basic task
specification. In this way, the prompts are refined iteratively based on the initial model
responses to enhance clarity and reduce ambiguity.

Additionally, contextual guidance (C) is provided within the prompts to direct the
model’s focus toward relevant techniques to the NIDS rules. The techniques list (T) pro-
vided to the LLM is the complete list of techniques included in MITRE ATT&CK.

With regard to the methodological guidance (M), we test the use of competition ques-
tioning and few-shot ICL. Algorithm 1 describes competition questioning—this method
involves dividing the list of MITRE ATT&CK techniques into smaller, more manageable
batches and conducting multiple rounds of questioning to refine the models’ labeling
choices. The complete set of MITRE ATT&CK techniques is divided into 11 batches, and
each LLM is tasked with labeling a given NIDS rule using only the techniques from one
batch at a time. This strategy can be used to force the models to focus on a smaller set of
techniques, reducing the cognitive load and potentially increasing the accuracy of their
initial labeling. After the initial batch-based labeling, each model’s answers are consol-
idated individually. The same model is then re-queried three additional times, but it is
restricted to choose only from the techniques it has selected during the initial batch stage.
This iterative process within each model aims to refine its previous selections, promoting
convergence on the most likely techniques.

Algorithm 1 Competition questioning.
Input:

• LLM: Large Language Model instance
• NIDS_Rule: Network Intrusion Detection System rule to be labeled
• Techniques: Complete list of MITRE ATT&CK techniques
• Batch_Size: Number of techniques per batch

Output:

• Final_Labels: Refined set of techniques associated with the NIDS rule

1: Initialize:
2: Selected_Techniques← ∅
3: Technique_Batches← Divide(Techniques, Batch_Size)
4:
5: Batch-wise Labeling:
6: for each Batch ∈ Technique_Batches do
7: Predicted_Techniques← Query_LLM(NIDS_Rule, Batch)
8: Selected_Techniques← Selected_Techniques ∪ Predicted_Techniques
9: end for

10:
11: Iterative Refinement:
12: for i← 1 to R do ▷ Number of refinement iterations
13: Re f ined_Techniques← Query_LLM(NIDS_Rule, Selected_Techniques)
14: Selected_Techniques← Re f ined_Techniques
15: end for
16:
17: Output: return Selected_Techniques

Furthermore, ICL [42,43] is applied by supplying examples of correctly labeled NIDS
rules to demonstrate the desired output format and reasoning process. A key factor
influencing the effectiveness of ICL is the quantity of examples provided. In general, a
larger quantity of examples increases the effectiveness of the ICL jet, the marginal benefit of
examples decreases, and a saturation can be observed [44]. Further factors influencing the
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effectiveness of ICL include the distribution of labels within the examples and the ordering
of examples [44].

4.2. Machine Learning Approach

The machine learning approach uses the same dataset of Snort rules labeled with
MITRE ATT&CK techniques as the LLM-based approach. However, in the machine learning
experiments, both the training and test sets are utilized to build and evaluate the models.
The dataset is split into train and test sets in a balanced manner to ensure a robust evaluation
framework. The test set remains the same as the one used for evaluating the LLMs, allowing
for a direct comparison of performance between the machine learning models and the
LLM-based approach.

A novel aspect of this study is that the entire machine learning pipeline is designed
and executed by the LLM itself. This process includes selecting suitable models, extracting
features, writing code, and executing the machine learning tasks. The LLM has the auton-
omy to select the best models based on its own knowledge and experience, focusing on
maximizing evaluation metrics with an emphasis on the F1-score.

Data preparation involves splitting the dataset into balanced training and test sets to
ensure all classes are adequately represented. For feature extraction, the LLMs utilize Term
Frequence Inverse Document Frequency (TF-IDF) to convert the Snort rules into numerical
features. The MITRE ATT&CK technique IDs are binarized into multiple classes, allowing
for multi-label classification. The LLMs autonomously identify TF-IDF as an appropriate
feature extraction method and implement feature selection techniques to retain the most
significant features relevant to the classification task.

The LLMs explore various machine learning classifiers suitable for multi-label classifi-
cation, including RF, SVM, and Gradient Boosting Machine (GBM).

Algorithm 2 Machine learning-based approach for Snort rule labeling.
Input

• LLM: Large Language Model instance
• NIDS_Rule: Network Intrusion Detection System rule to be labeled
• Techniques: Complete list of MITRE ATT&CK techniques
• R: Number of iterations for model tuning
• Model_Type: Set of model types (RF, SVM, GBM)

Output

• Final_Model: Trained machine learning model with selected features

1: Initialize:
2: Dataset(NIDS_Rule, Techniques)
3: Selected_Features← ∅
4: Model← Null
5:
6: Feature Extraction:
7: TF-IDF_Features← Extract_TF-IDF(Dataset)
8: Selected_Features← Feature_Selection(TF-IDF_Features)
9:

10: Model Selection:
11: for each Model_Type do
12: Model← Train_Model(Model_Type, Selected_Features, Train_Set)
13: end for
14:
15: Model Tuning:
16: for i← 1 to R do
17: Best_Model← Select_Best_Model(Models)
18: Refined_Model← Refine_Model(Best_Model)
19: end for
20:
21: Output: return Best_Model
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4.3. Dataset Collection

To build a dataset comprising labeled NIDS rules (e.g., Snort), we collect Snort
rules from the Snort community rules repository (https://www.snort.org/faq/what-are-
community-rules), focusing on those rules that explicitly reference MITRE ATT&CK tech-
niques. This involves identifying and extracting rules from their Snort webpage which
contains a section of MITRE ATT&CK techniques. This approach ensures that the rules
contain explicit references to MITRE ATT&CK techniques, providing a direct link between
the detection rules and the adversarial techniques they are designed to identify. By selecting
rules that include such references, we ensure that the dataset provides a relevant basis for
evaluating the performance of various models in the task of automated labeling.

The final dataset comprises 973 rules, each mapped to one or more of 75 unique MITRE
ATT&CK techniques.

4.4. Experimental Setup

The dataset is divided into train and test sets using an 80:20 split to facilitate the
training and evaluation of machine learning models. The training set is used to train
the models, while the test set is reserved for the final evaluation to ensure an unbiased
performance assessment. The distribution of rules across these sets is balanced to ensure a
representative sample of different MITRE ATT&CK techniques in each partition; however,
some of the techniques appear very little in the dataset which makes them not feasible to
be labeled by the ML models (necessitating a split in a test and training set). Therefore,
we remove rules with fewer than 5 occurrences prior to the split, which leaves us with
a total of 33 unique techniques across 900 rules— 720 in the train set and 180 in the test.
The performance of LLMs on the set of 42 rare techniques across 73 rules is also evaluated
separately, using the prompt template that achieves the highest F1-score by each LLM on
the test set.

Figure 3 presents the percentage of occurrences of each technique out of the total
number of occurrences of techniques in the set—for both the train and the test sets. Figure 4
shows the percentage of occurrences of each tactic out of the total number of occurrences of
tactics in the set—for both the train and the test sets.

Figure 3. Distribution rules across ATT&CK techniques for both the train and the test sets.

https://www.snort.org/faq/what-are-community-rules
https://www.snort.org/faq/what-are-community-rules
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Figure 4. Distribution rules across ATT&CK tactics for both the train and the test sets.

Three LLMs—ChatGPT (chatgpt-4-turbo), Claude (claude-3-sonnet-20240229), and
Gemini (gemini-1.0-pro)—are employed to assess their effectiveness in labeling NIDS
rules with MITRE ATT&CK techniques. These models are chosen due to their advanced
capabilities in processing complex language tasks, particularly in the context of cyber
security.

To evaluate the effectiveness of both the LLMs and traditional ML approaches in
labeling NIDS rules, a series of experiments is conducted under varying conditions. The
experiments are designed to compare the performance of each approach using different
configurations and scenarios.

4.4.1. LLM Experiments

The experiments conducted encompass a comprehensive set of scenarios to evaluate
the performance of the LLMs across different conditions. These scenarios are combinations
of using (T) or not using a technique’s guide (no techniques, comprehensive set of tech-
niques), providing methodological guidance by few-shot learning (zero, ICL0, one, ICL1,
or two, ICL2, examples). Each combination of these options is tested to thoroughly assess
the strengths and weaknesses of each model under varying conditions.

4.4.2. Machine Learning Experiments

For the machine learning approach, both the training and test sets are utilized. The
experiments involve training several classifiers, and Gradient Boosting Machines, which
are selected and configured by the LLMs themselves. Feature extraction is performed using
TF-IDF, and hyperparameter tuning is conducted before final testing on the test set.

4.5. Evaluation Metrics

The performance of both LLMs and machine learning models is assessed using preci-
sion, recall, and F1-score. These metrics are chosen to provide a balanced evaluation of the
models’ abilities to correctly label the rules (precision), cover the relevant techniques (recall),
and balance both aspects (F1-score). Micro-averaging is employed for each evaluation
metric described above:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)
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F1-score =
2 · Precision · Recall
Precision + Recall

(6)

We include four baselines which enable to benchmark the results. Top-1 is defined as
a frequency-based baseline. It describes a heuristic approach of selecting the most frequent
technique as a label. Top-2 consistently describes the heuristic approach of selecting the
two top most frequent techniques for each rule as a label. RT-1 is defined as a random
baseline of selecting a random technique of the correct tactic. We hereby assume that an
analyst is able to correctly identify the tactic detected by the NIDS rule (as there are models
that assist in correctly labeling the NIDS rule). Out of the set of techniques related to the
correctly identified tactic, the analyst needs to select a random technique, as no method is
provided that assists in labeling. Likewise, RT-2 describes the baseline when selecting two
techniques from the set of techniques corresponding to the correct tactic.

5. Results
The performance of both LLMs and ML models is evaluated in the task of mapping

NIDS rules to MITRE ATT&CK techniques. Furthermore, we conduct a mapping to MITRE
ATT&CK tactics to benchmark with the published work.Table 2 and Figure 5 summarize the
performance of the tested LLMs (Gemini, Claude, and ChatGPT-4) in labeling NIDS rules
with ATT&CK tactics and techniques across the different prompt template configurations,
while Table 3 summarizes the precision, recall, and F1-score achieved by the ML models
trained by the different LLMs on the same dataset. Furthermore, Table 4 provides the
results of the LLMs in labeling rare techniques, where MLs are not applicable due to a lack
of training data. The performance variations of the chosen baseline heuristics across the test
set (see Table 2 and the rare techniques set (see Table 4) highlight the different underlying
complexities of the tasks involved in labeling NIDS rules. The baselines demonstrate
differing effectiveness depending on the structure and characteristics of the set tested on.
Given this, the test results must be evaluated with these underlying complexities in mind.

Table 2. Performance of LLM models across different configurations.

Model Prompt
Template Techniques Tactics

Precision Recall F1-score Precision Recall F1-score

Gemini

ICL0 0.20 0.14 0.16 0.24 0.26 0.25
ICL1 0.34 0.24 0.28 0.34 0.39 0.36
ICL2 0.30 0.18 0.23 0.29 0.28 0.29

T-ICL0 0.41 0.28 0.33 0.38 0.45 0.41
T-ICL1 0.60 0.48 0.53 0.50 0.66 0.57
T-ICL2 0.55 0.48 0.48 0.46 0.60 0.52

Claude

ICL0 0.29 0.40 0.34 0.39 0.57 0.46
ICL1 0.28 0.41 0.33 0.39 0.60 0.47
ICL2 0.31 0.42 0.36 0.42 0.64 0.51

T-ICL0 0.51 0.59 0.55 0.57 0.79 0.66
T-ICL1 0.57 0.60 0.59 0.59 0.80 0.68
T-ICL2 0.63 0.61 0.62 0.61 0.80 0.69

ChatGPT

ICL0 0.45 0.27 0.34 0.50 0.45 0.47
ICL1 0.46 0.29 0.36 0.49 0.47 0.48
ICL2 0.35 0.30 0.32 0.44 0.50 0.47

T-ICL0 0.56 0.55 0.56 0.62 0.69 0.65
T-ICL1 0.66 0.58 0.62 0.62 0.69 0.65
T-ICL2 0.70 0.55 0.62 0.66 0.72 0.69

Approach

Baseline

Top-1 0.2 0.2 0.2 0.25 0.34 0.29
Top-2 0.17 0.34 0.22 0.24 0.5 0.33
RT-1 0.06 0.05 0.05 N/A N/A N/A
RT-2 0.12 0.1 0.1 N/A N/A N/A
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The presented methodologies significantly outperform the baselines across all prompt
template configurations besides Gemini ICL0. This shows the general feasibility of applying
LLMs within the task of labeling NIDS rules with MITRE ATT&CK techniques and tactics.

The results demonstrate a clear hierarchy in model performance, with Claude and
ChatGPT consistently outperforming Gemini across all tested configurations. Claude
and ChatGPT exhibit superior performance, achieving higher precision and recall in their
responses, regardless of the prompt template used. The highest F1-score for technique
(0.62) and tactic labeling (0.69) is reached under the T-ICL2 configuration, which provides
example-driven contextualization and methodological guidance. While ChatGPT provides
superior results with regard to precision, Claude has its strength in providing higher levels
of recall.

Unlike Claude and ChatGPT, Gemini demonstrates the highest performance within the
T-ICL1 setup (with an F1-score of 0.53 for technique labeling and 0.57 for tactics labeling).
Furthermore, Gemini shows the highest performance increase when combining contextual
and methodological guidance.

Within our experiments, we reach significantly higher performance than in previous
works, reaching a maximal F1-score of 0.32 using the same model of ChatGPT employed
in this work as well as with ChatGPT-3.5, where an F1-score of 0.49 is reached [40]. While
Daniel et al. [40] combine labels of different results, our workflow allows to reach more
precise results through improved prompt design.

Figure 5. Precision and recall of LLM-based technique labeling across different configurations.

When comparing the different configurations of the prompt template, the contextual
guidance shows a greater effect for the probability that the LLM selects the right label (the
T-ICL0 prompt template outperforms ICL2). The superior performance with the T-ICL2

prompt template demonstrates the value of providing both contextual information and
methodological guidance (specifically ICL) within the prompts.

Table 4 shows the results attained by the LLMs (with their best-performing prompt
template configuration as demonstrated using the test set; see Table 2) when labeling is
performed on the rare techniques set. Gemini, Claude, and ChatGPT show comparable per-
formance within their best performing configurations. Overall, the reached performance of
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the LLMs in labeling rare techniques is low. However, compared to the baselines computed,
the LLMs show superior performance, proving their value for labeling rarely seen tech-
niques (e.g., if labeled data are scarce).Gemini performs especially well in labeling tactics,
suggesting that closely related techniques (techniques of the same tactic) are frequently
proposed in the technique labeling task.

Table 3. Performance of ML models developed by the different LLMs.

Developing
Model ML Model Techniques Tactics

Precision Recall F1-score Precision Recall F1-score

Gemini SVM 0.88 0.87 0.87 0.91 0.92 0.92
Claude SVM 0.86 0.85 0.85 0.91 0.92 0.91

ChatGPT SVM 0.92 0.70 0.79 0.96 0.77 0.85

Table 4. Performance of LLMs in rare technique labeling.

Model Prompt
Template Techniques Tactics

Precision Recall F1-score Precision Recall F1-score

Gemini T-ICL1 0.22 0.21 0.22 0.29 0.38 0.33
Claude T-ICL2 0.23 0.18 0.20 0.26 0.29 0.27

ChatGPT T-ICL2 0.29 0.19 0.23 0.28 0.26 0.27

Approach

Baseline

Top-1 0.05 0.05 0.05 0.09 0.09 0.09
Top-2 0.05 0.11 0.08 0.13 0.22 0.17
RT-1 0.04 0.04 0.04 N/A N/A N/A
RT-2 0.09 0.09 0.09 N/A N/A N/A

Within our tests, all ML models outperform the LLMs across all metrics. The SVM
model trained by Gemini on the labeled dataset achieves the highest overall performance
in technique labeling, with a precision of 0.88, recall of 0.87, and an F1-score of 0.87. The
SVM model trained by Claude achieves an F1-score of 0.85, supported by a precision of 0.86
and recall of 0.85. Finally, SVM trained by ChatGPT performs worse than the other models,
achieving an F1-score of 0.79, with the highest precision of 0.92 and the lowest recall of 0.70.
For tactic labeling, the models trained by Claude (F1-score of 0.91) and Gemini (F1-score
of 0.92) show competitive results. The SVM trained by ChatGPT performs slightly worse,
with an F1-score of 0.85.

Overall, the ML models exhibit greater consistency and robustness compared to the
LLMs. For labeling tactics, our approach achieves an F1-score of 0.92 (ML model trained and
developed by Gemini), demonstrating comparable performance to previously published
tools in labeling attack tactics [3]. The results indicate strong precision, recall, and F1-scores
for labeling NIDS rules with tactics, providing comparable performance to existing ML-
based methods for labeling NIDS rules with tactics [3]. Furthermore, the presented models
provide a good basis for decreasing the alert explainability gap by providing highly precise
tactic labels for NIDS rules.

6. Discussion
The results highlight clear differences between the LLM-based and ML-based ap-

proaches for mapping NIDS rules to MITRE ATT&CK, both in terms of performance
metrics and potential practical applications. We reach comparable results as presented
by the related work with regard to tactic labeling [3] while designing the workflow for
technique labeling. Furthermore, we introduce the first work elaborating on the labeling of
NIDS rules with MITRE ATT&Ck techniques and contribute a methodology for labeling
based on LLMs and ML models.
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6.1. LLM Performance and Insights

The LLMs demonstrate variable performance depending on the configuration and
prompt design. Highlighting the need for efficient prompt engineering.

The results of our comparative evaluation of Claude, ChatGPT, and Gemini with
regard to their capabilities in the context of NIDS rule labeling across multiple prompt
configurations reveal significant performance discrepancies. Claude and ChatGPT con-
sistently outperform Gemini in terms of recall and precision. Gemini exhibits the poorest
performance in all configurations tested. These findings warrant further exploration of the
factors influencing the observed performance variations. Furthermore, in future research,
additional prompt design techniques, especially formal reasoning techniques, and addi-
tional LLMs should be tested to further boost the performance of LLMs for the proposed
labeling task, allowing practical application within SOCs.

The performance results of Claude and ChatGPT reaching F1-scores greater than
0.6 underscores the utility of incorporating the use of LLMs for labeling techniques. Fur-
thermore, with regard to the prompt templates, the superiority of the T-ICL2 templates
proves the benefits of example-driven prompts that guide the model toward task-specific
reasoning. Yet, while ICL allows LLMs to leverage examples provided directly within the
prompt to improve performance for a given task, it may not always be the most efficient
strategy, particularly in resource-constrained environments. One key limitation of ICL is
that it increases computational costs and token usage, especially when large examples or
numerous prompt tokens are required. This results in higher compute costs and longer
response times, which can be prohibitive in large-scale or real-time applications.

6.2. Ml Model Superiority

The ML models demonstrate superior performance across all datasets, achieving the
highest F1-scores (0.87 for technique labeling and 0.92 for tactic labeling) when trained
by Gemini. This result emphasizes the strength of supervised learning, particularly when
trained on well-annotated datasets. The ML models’ precision scores, such as 0.92 for
the SVM model trained on ChatGPT in technique labeling and 0.96 in tactic labeling, are
notably higher than those of the LLMs, reflecting their ability to minimize false positives
effectively.

The strong performance of ML models can be attributed to their capacity to exploit
structured feature representations, such as TF-IDF vectors, to identify patterns within the
dataset. However, it is worth noting that the success of the ML approach heavily depends
on the quality of the training data.

6.3. Comparative Implications

While LLMs offer flexibility and the ability to generate explanations for their predic-
tions, their lower performance metrics suggest that they are at least currently better suited
for tasks where interpretability and generalization are more important than raw accuracy.
On the other hand, ML models excel in precision and recall but rely on high-quality labeled
datasets and cannot inherently provide reasoning for their decisions. Yet, if no labeled
datasets are available that the ML models can be trained on, LLMs can provide significant
value in the early stages of generating labeled datasets, especially if the LLMs are used to
assist human analysts by generating candidate labels (human-in-the-loop processes). LLMs
can thereby take advantage of their ability to understand NIDS rules and generate labels
especially in setups with partial information.

A hybrid approach could harness the strengths of both methods: LLMs could be
employed for initial labeling and to provide contextual explanations, while ML models
could refine these labels for deployment in high-stakes applications requiring high precision
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and recall. Future work could explore ensemble strategies or the integration of LLM-
generated insights into ML feature engineering to further enhance performance.

6.4. LLM Driven Code Generation

A key aspect of this study is the use of LLMs to autonomously develop ML pipelines,
a task traditionally requiring significant human expertise. OpenAI’s Codex, as highlighted
by Chen et al. [45], demonstrates the potential of LLMs trained on code to generate robust,
domain-specific workflows. In our work, LLMs choose ML models, feature engineer-
ing, and hyperparameter tuning that give a 0.87 F1-score in technique labeling, further
underlining their capability to handle complex cyber security tasks.

Code generation driven by LLMs has its own set of limitations. Wong et al. [46]
discuss the challenges of generating secure and reliable code in AI-assisted programming,
especially in scenarios involving sensitive domains like cyber security. Proper prompt
engineering still plays a very important role in making sure the generated code fits the
domain-specific requirements.

In general, LLM embeddings in cyber security workflows is a promising future re-
search direction with respect to the continuous advancements of LLMs, for both automation
and infrastructure development.

7. Conclusions
Within this study, we present a dataset comprising 973 labeled NIDS rules. The

collected dataset serves as a useful resource for the cyber security research community,
providing a ground truth for developing and testing new methods for mapping NIDS rules
to MITRE ATT&CK techniques. This dataset can be utilized in future studies to benchmark
model performance and explore new approaches to enhancing NIDS capabilities.

The experiments we conduct on the basis of this dataset underscore the potential of
leveraging both LLMs and ML techniques to automate the labeling of NIDS rules with
MITRE ATT&CK techniques and tactics. LLMs such as ChatGPT, Claude, and Gemini
demonstrate their ability to provide contextual and explainable mappings, particularly
when optimized through prompt engineering and contextual guidance. Among these,
ChatGPT achieves the best overall performance, highlighting its potential to assist security
analysts in tasks requiring contextual reasoning. However, their precision and recall scores,
while promising, are consistently outperformed by supervised ML models trained on the
same dataset.

The ML models, particularly SVM, showcase superior accuracy, benefiting from well-
defined feature extraction and robust training datasets generated by the LLMs. The high
precision and recall achieved by the ML models affirm their applicability for high-stakes
scenarios where accuracy is critical. However, these models rely heavily on high-quality,
pre-labeled datasets, a limitation that could restrict scalability to broader domains without
significant initial manual effort.

A key contribution of this study is the collection of a large dataset of 973 Snort NIDS
rules mapped to MITRE ATT&CK techniques and tactics. This dataset not only serves as a
foundation for the evaluations conducted in this work but also provides a valuable resource
for the cyber security research community. It can be leveraged for training, benchmarking,
and further improving both LLM- and ML-based methods for CTI enrichment.

A key finding of this study is the complementary nature of LLMs and ML models.
While LLMs provide a flexible and scalable framework for generating initial labels and
explanations, ML models excel in refining these labels to achieve superior performance
metrics. This synergy suggests the feasibility of a hybrid approach, where LLMs are
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used for initial data enrichment and add explainability, while ML models are used for
final labeling.

Building on these findings, several directions can be pursued:

• Prompt engineering: Further prompt engineering techniques could be used to increase
performance. Furthermore, the effect of improving contextual guidance by restricting
the technique set to relevant techniques detectable with NIDS (e.g., selected based on
DETT&CT) should be investigated.

• Hybrid Approaches: Future research could explore hybrid frameworks that integrate
LLMs for initial rule labeling and ML models for fine-tuning. This approach may
combine the scalability of LLMs with the precision of ML models.

• Domain-Specific Fine-Tuning: Fine-tuning LLMs with domain-specific datasets could
improve their accuracy and reduce the need for extensive prompt engineering while
increasing applicability. This would be particularly beneficial for complex domains
such as ICS and real-time SOC environments with computational constraints and
critical response times.

• Enhanced Feature Engineering: ML models could benefit from incorporating addi-
tional features, such as contextual relationships within rules or temporal correlations,
to further boost their labeling accuracy.

• Cloud Versus Local: Given the sensitivity of collected data within SOCs and the
computational constraints and critical response time, it would be of especial interest
to deploy high-quality local models to analyze the rules.

• Evaluation on Diverse Datasets: Expanding the evaluation to include datasets from
different domains and attack scenarios will ensure the generalizability and robustness
of the proposed methods.

• Explainable AI: While LLMs inherently provide explainability through natural lan-
guage outputs, enhancing ML models with interpretable explanations could improve
trust and adoption in operational environments.

In conclusion, this study demonstrates that the automated labeling of NIDS rules
is both feasible and effective using a combination of LLMs and ML techniques. By ad-
dressing the challenges of scalability, accuracy, and domain adaptation, the proposed ap-
proaches can significantly enhance the capabilities of cyber security analysts in mitigating
evolving threats.
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ML-C Multi-Label Classification
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TA Tactic
TH Threat Hunting
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