Moment Bound of Solution to a Class of Conformable Time-Fractional Stochastic Equation
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Some Examples
- 1.
- Consider the following stochastic conformable fractional equation
- 2.
- Consider also the conformable fractional equation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zao, D.; Luo, M. General conformable fractional derivative and its physical interpretation. Calcolo 2017, 54, 903–917. [Google Scholar] [CrossRef]
- Cenesis, Y.; Kurt, A.; Nane, E. Stochastic solutions of Conformable fractional Cauchy problems. Stat. Probab. Lett. 2017, 124, 126–131. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar]
- Gholami, Y.; Ghanbari, K. New class of conformable derivatives and applications to differential impulsive systems. SeMA J. 2018, 75, 305–333. [Google Scholar] [CrossRef]
- Dedovic, N.; Birgani, O.T.; Chandok, S.; Radenovic, S. A note on some recent results of the conformable derivative. Adv. Theory Nonlinear Anal. Its Appl. 2019, 3, 11–17. [Google Scholar] [CrossRef]
- Yang, S.; Wang, L.; Zhang, S. Conformable derivative: Application to non-Darcian flow in low-permeability porous media. Appl. Math. Lett. 2018, 79, 105–110. [Google Scholar]
- Meng, S.; Cui, Y. The Extremal Solution to Conformable Fractional Differential Equations Involving Integral Boundary Condition. Mathematics 2019, 7, 186. [Google Scholar] [CrossRef]
- Kaplan, M.; Akbulut, A. Application of two different algorithms to the approximate long water wave equation with conformable fractional derivative. Arab J. Basic Appl. Sci. 2018, 25, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Usta, F. A conformable calculus of radial basis functions and its applications. Int. J. Optim. Control Theor. Appl. 2018, 8, 178–182. [Google Scholar] [CrossRef]
- Foondun, M.; Liu, W.; Tian, K. Moment bounds for a class of Fractional Stochastic Heat Equations. Ann. Probab. 2017, 45, 2131–2153. [Google Scholar] [CrossRef]
- Mijena, J.; Nane, E. Space-time fractional stochastic partial differential equations. Stoch. Process. Appl. 2015, 159, 3301–3326. [Google Scholar] [CrossRef]
- Omaba, M.E. Some Properties of a Class of Stochastic Heat Equations. Ph.D Thesis, Loughborough University, Loughborough, UK, 2014. [Google Scholar]
- Omaba, M.E. On Space-Time Fractional Heat Type Non-Homogeneous Time-Fractional Poisson Equation. J. Adv. Math. Comput. Sci. 2018, 28, 1–18. [Google Scholar] [CrossRef]
- Walsh, J.B. An Introduction to Stochastic Partial Differential Equations; Lecture Notes in Maths 1180; Springer: Berlin, Germany, 1986; pp. 265–439. [Google Scholar]
- Foondun, M.; Liu, W.; Omaba, M.E. On Some Properties of a class of Fractional Stochastic Heat Equations. J. Theor. Probab. 2017, 30, 1310–1333. [Google Scholar]
- Foondun, M.; Nane, E. Asymptotic properties of some space-time fractional stochastic equations. Math. Z. 2017, 287, 493–519. [Google Scholar] [CrossRef] [Green Version]
- Omaba, M.E. On Space-Fractional Heat Equation with Non-homogeneous Fractional Time Poisson Process. Progr. Fract. Differ. Appl. 2019, 6, 1–13. [Google Scholar]
- Zhong, W.; Wang, L. Basic theory of initial value problems of conformable fractional differential equations. Adv. Differ. Equ. 2018, 2018, 321. [Google Scholar] [CrossRef]
- Salahshour, S.; Ahmadian, A.; Ismail, F.; Baleanu, D.; Senu, N. A New fractional derivative for differential equation of fractional order under internal uncertainty. Adv. Mech. Eng. 2015, 7, 1687814015619138. [Google Scholar] [CrossRef]
- Al-Refa, M.; Abdeljawad, T. Fundamental Results of conformable Strum–Liouville Eigenvalue Problems. Complexity 2017, 2017, 3720471. [Google Scholar]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Sakthivel, R.; Revathi, P.; Ren, Y. Existence of solutions for nonlinear fractional stochastic differential equations. Nonlinear Anal. 2013, 81, 70–86. [Google Scholar] [CrossRef]
- Zhang, X.; Agarwal, P.; Liu, Z.; Peng, H.; You, F.; Zhu, Y. Existence and uniqueness of solutions for stochastic differential equations of fractional-order q > 1 with finite delays. Adv. Differ. Equ. 2017, 2017, 123. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. 2008, 69, 2677–2682. [Google Scholar] [CrossRef]
- Iyiola, O.S.; Nwaeze, E.R. Some new results on the new conformable fractional calculus with application using D’ Alambert approach. Progr. Fract. Differ. Appl. 2016, 2, 115–121. [Google Scholar] [CrossRef]
- Nwaeze, E.R. A Mean Value Theorem for the Conformable fractional calculus on arbitrary time scales. Progr. Fract. Differ. Appl. 2016, 2, 287–291. [Google Scholar] [CrossRef]
- Neuman, E. Inequalities and Bounds for the Incomplete Gamma Function. Results Math. 2013, 63, 1209–1214. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omaba, M.E.; Nwaeze, E.R. Moment Bound of Solution to a Class of Conformable Time-Fractional Stochastic Equation. Fractal Fract. 2019, 3, 18. https://doi.org/10.3390/fractalfract3020018
Omaba ME, Nwaeze ER. Moment Bound of Solution to a Class of Conformable Time-Fractional Stochastic Equation. Fractal and Fractional. 2019; 3(2):18. https://doi.org/10.3390/fractalfract3020018
Chicago/Turabian StyleOmaba, McSylvester Ejighikeme, and Eze R. Nwaeze. 2019. "Moment Bound of Solution to a Class of Conformable Time-Fractional Stochastic Equation" Fractal and Fractional 3, no. 2: 18. https://doi.org/10.3390/fractalfract3020018
APA StyleOmaba, M. E., & Nwaeze, E. R. (2019). Moment Bound of Solution to a Class of Conformable Time-Fractional Stochastic Equation. Fractal and Fractional, 3(2), 18. https://doi.org/10.3390/fractalfract3020018