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Abstract: In this paper, the Schrödinger equation involving a fractal time derivative is solved and
corresponding eigenvalues and eigenfunctions are given. A partition function for fractal eigenvalues
is defined. For generalizing thermodynamics, fractal temperature is considered, and adapted
equations are defined. As an application, we present fractal Dulong-Petit, Debye, and Einstein
solid models and corresponding fractal heat capacity. Furthermore, the density of states for fractal
spaces with fractional dimension is obtained. Graphs and examples are given to show details.
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1. Introduction

Fractal geometry explains fractal shapes with self-similarity, scale invariance, and fractional
dimensions, which have found many applications in science and engineering [1–4]. Analysis on fractals
has been studied by different methods such as harmonic analysis, stochastic processes, fractional
spaces, and calculus [5–20].

A fractal model was used to perform analysis of averaged micromotions in mesoscale and complex
systems and considered as a path for curing cancers [21–23]. The mechanisms of tumor growth and
angiogenesis were investigated by considering their fractal structure [22,23].

Scale relativity is a generalization of relativity theory to the concept of scale, using fractal
geometries to get scale transformations. Einstein claimed that space-time is curved, Nottale said that
space-time is curved and fractal, which means that space-time is a non-differentiable manifold [24–26].
The Schrödinger equation was solved on a Sierpinski gasket involving a well potential using the finite
element method [27]. Fractional path integration was considered as an action on fractals to find the
ground state energy for a fractionally perturbed oscillator [28].

A Riemann-like calculus which is called fractal calculus was formulated on fractal sets, which is
algorithmic and simple for application [29–33]. Fractal calculus was applied in optics to find
diffraction patterns of fractal gratings and mean square displacement of random walks on fractal
sets [34–36]. Stochastic Langevin equations were studied which give fractal mean square displacements
of under-damped, over-damped, and ultra-slow fractal scaled Brownian motions. The annual
mean surface air temperatures in Hungary had fractals structure with a mean fractal dimension
of 1.23± 0.01 [37]. Harmonic analysis has been used to solve Schrödinger equation on the fractal
Sierpinski gasket and to find energy spectrum [38–43]. Fluid was mixed inside by using the fractal
structure [33].

Continuing in the vein of the research mentioned above, we generalize thermodynamics with
fractal temperature and the corresponding statistical mechanics and solid-state physics models.

The outline of our paper is the following. In Section 2, we give a brief summary of fractal calculus.
In Section 3, we solve the Schrödinger on thin Cantor sets and obtain the corresponding eigenvalues
or energy spectrum. In Section 4, we present thermodynamics and statistical mechanics involving
fractal temperature and physical models which might be useful for fitting experimental data. Section 5
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provides density of states for a physical system with fractional-dimension spaces. Section 6 is devoted
to our conclusion.

2. Basic Tools

We present the steps which yields to middle-ω Cantor set or thin Cantor-like set. The thin
Cantor-like sets have Lebesgue measure zero and fractional Hausdorff dimension [44].

The middle-ω Cantor set or thin Cantor-like set is generated by following steps:
(1) Take an open interval of length 0 < ω < 1 from the middle of the J = [0, 1], namely

Cω
1 = [0,

1
2
(1−ω)] ∪ [

1
2
(1 + ω), 1]. (1)

(2) Cut and take disjoint open intervals of length ω from the middle of the remaining closed
intervals of step 1, namely

Cω
2 = [0,

1
4
(1−ω)2] ∪ [

1
4
(1−ω2),

1
2
(1−ω)] ∪ [

1
2
(1 + ω),

1
2
((1 + ω)

+
1
2
(1−ω)2)] ∪ [

1
2
(1 + ω)(1 +

1
2
(1−ω)), 1]. (2)

...
(m) Remove disjoint open intervals of length ω from the middle of the remaining closed intervals of
step m− 1 .

Cω =
∞⋂

m=1

Cω
m . (3)

The Hausdorff dimension of Cω is given by

dimH(Cω) =
log 2

log 2− log(1−ω)
, (4)

where H(Cω) is the Hausdorff measure which was used to derive Hausdorff dimension [44].

Local Fractal Calculus

The flag function of Cω ⊂ J = [b1, b2] is defined by [29–31],

F(Cω, J) =

{
1, if Cω ∩ J 6= ∅,

0, otherwise.
(5)

Then, Pα[Cω, W] is defined by [29–31] by

Pα[Cω, W] =
m

∑
i=1

Γ(α + 1)(ti − ti−1)
αF(Cω, [ti−1, ti]). (6)

where 0 < α ≤ 1, Γ(.) is gamma function, and W[b1,b2]
= {b1 = t0, t1, t2, . . . , tm = b2} is a subdivisions

of J.
The mass function Mα(Cω, b1, b2) is defined in [29–31] by

Mα(Cω, b1, b2) = lim
δ→0

(
inf

W[b1,b2 ]
:|W|≤δ

Pα[Cω, W]

)
= lim

δ→0
Mα

δ , (7)
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where, infimum is taking over all subdivisions W of [b1, b2] satisfying |W| := max1≤i≤m(ti − ti−1) ≤ δ.
The integral staircase function Sα

Cω (t) is defined in [29,30] by

Sα
Cω (t) =

{
Mα(Cω, b0, t), if t ≥ b0,

−Mα(Cω, b0, t), otherwise,
(8)

where b0 is an arbitrary and fixed real number.
The γ-dimension of a set Cω ∩ [b1, b2] is defined

dimγ(Cω ∩ [b1, b2]) = inf{α : Mα(Cω, b1, b2) = 0}
= sup{α : Mα(Cω, b1, b2) = ∞}. (9)

Remark 1. For the any compact fractal sets α = dimγ(Cω) = dimH(Cω) [29,30].

The Cα-limit of a function g : Cω → < at t ∈ Cω is given by

∀ ε > 0, ∃ δ > 0 such that for any z ∈ Cω and |z− t| < δ⇒ |g(z)− `| < ε. (10)

If ` exists, then we denote
` = Cα

− lim
z→t

g(z). (11)

Examples of a thin Cantor-like set, staircase function, Characteristic function and the γ-dimension
of thin Cantor-like set in the particular case ω = 1/3 are graphed on Figure 1.

(a) (b)

(c) (d)
Figure 1. Figures for the Section 2. (a) Thin Cantor-like set with ω = 1/3; (b) Staircase function
corresponding to thin Cantor-like set with ω = 1/3; (c) The γ-dimension of thin Cantor-like set with
ω = 1/3; (d) Characteristic function for Cantor-like set with ω = 1/3.
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The function g : Cω → < is Cα-continuity if for any point t ∈ Cω the equality

g(t) = Cα
− lim

z→t
g(z), (12)

holds.
The Cα-derivative of g(t) at t is defined by [29]

Dα
Cω g(t) =

Cα
− limz→t

g(z)−g(t)
Sα

Cω (z)−Sα
Cω (t) , if t ∈ Cω,

0, otherwise,
(13)

if the limit exists.
The Cα-integral of g(t) on J = [b1, b2] is defined in [29–31] and approximately given by

∫ b2

b1

g(t)dα
Cω t ≈

n

∑
i=1

g(ti)(Sα
Cω (ti)− Sα

Cω (ti−1)). (14)

For more details we refer the reader to [29,30].
The Characteristic function of the middle-ω Cantor set is defined in [31] by

χCω (α, t) =

{
1

Γ(α+1) , t ∈ Cω,

0, otherwise.
(15)

Subsequently, we intend to give our main results.

3. Shrödinger Equation on Thin Cantor Sets

The Shrödinger equation in quantum mechanics provide wave function and energy levels for the
physical system [45–50]. In this section, we consider Schrödinger equation on fractal Cω ×< as follows

−h̄2

2m
(Dα

x)
2ψα(x, t) + v(x)ψα(x, t) = ih̄

∂ψα(x, t)
∂t

, x ∈ Cω, (16)

where

v(x) =

{
0, 0 ≤ x ≤ 1,
∞, elsewhere,

(17)

with boundary conditions
ψα(0, t) = ψα(1, t) = 0. (18)

The v(x) in Equation (17), represent the infinite-well potential. By conjugacy of ordinary and
fractal calculus [29,30], the solution of Equation (16) is given by

ψα(x, t) =
∞

∑
n=1

e−iEα
nt/h̄ ϕα

n(x), (19)

where

Eα
n =

π2h̄2n2

2mSα
Cω (1)

=
π2h̄2n2

2mΓ(α + 1)
, n = 1, 2, ..., (20)
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where Eα
n is called fractal energy spectrum, m is the mass of a particle, and h̄ is the Planck

constant [45–47]. The fractal eigenfunction of Hamiltonian or the solution of time-independent
Shrödinger equation is as follows [45–47]:

ϕα
n(x) =

√
2

Sα
Cω (1)

sin
(

πnSα
Cω (x)

Sα
Cω (1)

)

=

√
2

Γ(α + 1)
sin
(

πnSα
Cω (x)

Γ(α + 1)

)
. (21)

In Figure 2, we have sketched Equation (21) for the cases of α = 1, 0.63 and n = 1, 2.
Since 0 ≤ Sα

Cω (x) ≤ xα, then we can write

ϕα
n(x) ≈

√
2

Γ(α + 1)
sin
(

πnxα

Γ(α + 1)

)
. (22)

In Figure 3, we have plotted eigenvalues (Eα
n) for the case of the different dimensions (Figure 3a),

and the upper bound of the fractal wave functions; that is Equation (22) which associate with the
eigenvalues (Figure 3b).

Figure 2. Graph of ϕα
n(x) setting n = 1, 2, and α = 1, 0.63.

(a) (b)
Figure 3. Graph of the solutions of the Schrödinger equation on fractal space and their eigenvalues.
(a) Energy levels verses by space dimension, α = 1 (black), α = 0.5 (blue), α = 0.75 (green); (b) Upper
bound of the fractal wave function corresponding to space dimension, α = 1 (black), α = 0.5 (blue),
α = 0.75 (green).
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4. Partition Function on Thin Cantor-Like Sets

In this section, we suggest a generalized thermodynamics framework base on fractal space and
temperature. The analogue of canonical ensemble partition function on the fractals sets is denoted by
zα,µ and defined by [51,52].

zα,µ = ∑
n=1

exp

(
− Eα

n

kBSµ
Cω (T)

)
, (23)

where kB is Boltzmann constant and µ is the fractal dimension of temperature (T ∈ Cµ). The analogue
of the probability of every microstate n on fractal set is defined by

Pn =
1

zα,µ exp

(
− Eα

n

kBSµ
Cω (T)

)
. (24)

In view of conjugacy of ordinary and fractal calculus, energies of system N particles in fractal
space are given by

Eα,µ = NkBSµ
Cω (T)2Dµ

T ln zα,µ

≈ NkBT2µDµ
T ln zα,µ. (25)

The important point to note here is that by setting µ = 1 we can get standard result [51,52].
The fractal heat capacity is defined by

Cα,µ = Dµ
TEα,µ. (26)

The fractal Boltzmann’s entropy is defined by

Mα,µ = NkB ln zα,µ + NkBSµ
Cω (T)Dµ

T ln zα,µ. (27)

The fractal Helmholtz free energy denoted by, Hα,µ = Eα,µ − TMα,µ, is defined by

Hα,µ = −NkB ln zα,µ. (28)

Example 1. Let consider energy of a paramagnetic material as follows:

Eα,µ = −NBνB tanh

(
νBB

kBSµ
Cω (T)

)
, (29)

where νB is Bohr magneton. Then using Equation (26), we have

Cα,µ = NkB

(
2νBB

kBSµ
Cω (T)

)2 exp(− Eα
n

kBSµ
Cω (T)

)(
1 + exp( 2νBB

kBSµ
Cω (T)

)

)2 . (30)

We now apply Sµ
Cω (T) < Tµ, to obtain

Cα,µ ≈ NkB

(
2νBB
kBTµ

)2 exp( 2νBB
kBTµ )(

1 + exp( 2νBB
kBTµ )

)2 . (31)

In Figure 4 we have sketched the fractal heat capacity of paramagnetic materials versus dimensions.
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Figure 4. Graph shows the fractal heat capacity of paramagnetic materials respect to dimension of
fractal temperature.

Example 2. Suppose a system with two energy levels as the following

E0 = 0

E1 =
π2h̄2

2mΓ(α + 1)
. (32)

The partition function of the system is

zα,µ = 1 + exp

(
− π2h̄2

2mkBΓ(α + 1)Sµ
Cω (T)

)
. (33)

It follows that

Eα,µ =

kBa
Γ(α+1)

1 + exp
(
− a

Γ(α+1)Sµ
Cω (T)

) exp

(
− a

Γ(α + 1)Sµ
Cω (T)

)
, (34)

where

a =
π2h̄2

2mkB
. (35)

Using Equation (26) we have

Cα,µ =
kBa2

Γ(α + 1)2Sµ
Cω (T)2

1(
1 + exp(− a

Γ(α+1)Sµ
Cω (T)

)

)2 exp

(
− a

Γ(α + 1)Sµ
Cω (T)

)
. (36)

Using upper bound Sµ
Cω (T) ≤ Tµ we have

Cα,µ ≈ kBa2

Γ(α + 1)2T2µ

1(
1 + exp(− a

Γ(α+1)Tµ )
)2 exp

(
− a

Γ(α + 1)Tµ

)
. (37)
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Example 3. The fractal analogue of energy system for the Einstein solid-state model is given by

Eα,µ =
3NE

exp
(

E
kBSµ

Cω (T)

)
− 1

, (38)

where E = hν, is the energy of photon, h = 2πh̄, and ν is the frequency of light. Then by Equation (26)
we obtain

Cα,µ =
3NE2

kBSµ
Cω (T)2

exp
(

E
kBSµ

Cω (T)

)
[

exp
(

E
kBSµ

Cω (T)

)
− 1
]2 . (39)

Using upper bound Sµ
Cω (T) ≤ Tµ we get

Cµ =
3NE2

kBT2µ

exp
(
E

kBTµ

)
[
exp

(
E

kBTµ

)
− 1
]2 . (40)

In Figure 5, we present fractal heat capacity for a solid by considering fractal Einstein model
setting different dimensions.

Figure 5. Graph shows Einstein solid model for case of fractal temperature with different dimensions.

Example 4. The energy of system of particles in the Dulong–Petit solid model on the fractal temperature is
given by

Eα,µ = 3NkBSµ
Cω (T). (41)

Then the fractal heat capacity of the system will be

Cµ = 3NkB
1

Γ(1 + µ)
. (42)

The fractal analogous to the energy of a system in the Debye solid-state model is given by

Eα,µ =
3NkBπ4Sµ

Cω (T)4

5θ3
D

. (43)



Fractal Fract. 2019, 3, 20 9 of 12

An easy computation gives

Cµ =
12
5

π4NkB

(
Sµ

Cω (T)
θD

)3

, (44)

where θD is constant and called Debye temperature. Then we have

Cµ =
12
5

π4NkB
T3µ

θ3
D

. (45)

In Figure 6, we have plotted Equation (45) for the different values of µ.

Remark 2. Please note that the Einstein and the Debye solid model are valid to low temperature limit.

Figure 6. Graph preset Debye solid model for the fractal temperature with different dimensions.

5. Density of States in Fractal Spaces

The density of states (DOS) have important role in solid-state physics which is denoted by g(E)
and its valve for a 0−, 1−, 2− and 3−dimensional systems are given in the following [49–51]

g(E) ∝ δ(E), 0− dimension,

g(E) ∝ E−1/2, 1− dimension,

g(E) ∝ constant, 2− dimension,

g(E) ∝ E1/2, 3− dimension. (46)

Now, the DOS for the fractal system is suggested by

g(E) ∝ E−α1/2, 0 < α1 < 1,

g(E) ∝ Eα2/2, 1 < α2 < 3, (47)

where α2 6= 2.
In Figure 7 we have plotted DOS for the systems with different dimensions.

Remark 3. In this paper, upper indices µ and α stand for fractal dimension but ω indicate the ratio of [0, 1] we
have removed for building fractal thin Cantor-like sets.
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(a) (b)

(c) (d)
Figure 7. DOS for the systems with fractional and integer dimensions. (a) DOS for the system with
dimension 0; (b) DOS for the system with dimensions 1, 0.7 and 0.5; (c) DOS for the system with
dimension 0; (d) DOS for the system with dimensions 3, 2.4 and 1.5.

6. Conclusions

In this paper, we have given a generalization of thermodynamics which includes fractal
derivatives. For applications of suggested mathematical models, the heat capacity for permanganic
materials and systems with two energy levels have been derived. Fractal Dulong-Petit, Debye and
Einstein solid models have been studied to include the model for wider material which might have a
fractal structure. Finally, the DOS for fractals with fractional dimension has been suggested to provide
a new mathematical model in solid-state physics.
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