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Abstract: In this manuscript, we study symmetries of fractal differential equations. We show that
using symmetry properties, one of the solutions can map to another solution. We obtain canonical
coordinate systems for differential equations on fractal sets, which makes them simpler to solve.
An analogue for Noether’s Theorem on fractal sets is given, and a corresponding conservative
quantity is suggested. Several examples are solved to illustrate the results.
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1. Introduction

In past centuries, discussions in physics included regular objects such as straight lines, squares,
spheres, cones, etc. Functions were smooth or involved a few singularities. Fractal sets or curves are
shapes that are irregular or whose Hausdorff dimension exceeds their topological dimension. Fractals
are certain shapes that share a common feature such as irregularities on a large range of scales and
whose properties, like density, length, area, and volume, are not meaningful. The surface of human
lungs and snowflakes, the boundaries of clouds, and the folds of mammalian brains are in the category
of fractals. The theory of heat and wave transfer in disordered systems was modeled by fractals and
random walks on them, such as polymers, fractured and porous rocks, amorphous semiconductors,
etc. [1–10]. Clusters in nature are the points at which the density of points does not have meaning as a
quantifier. In processes with fractal structures, we note that there are no perfect Cantor sets, von Koch
curves, or Sierpinski gaskets in nature. But, they can be reasonable approximations to natural shapes
and are simpler to analyze since they are systematic mathematical constructions [2,3,11,12].

Cantor-like sets are in the class of dusts and totally disconnected sets. Fractal von Koch curves
can be used to model natural irregular curves that do not have tangents and for which using smaller
yardsticks leads to an increase in the measured length of the curve. The fractal Sierpinski gasket is a
good model for objects such as the backbones of percolating clusters [1,13,14].

Motivated by these ideas, mathematicians developed the theory of “analysis on fractals”, with
branches including the fractional calculus approach, the probabilistic approach, the measure theory
approach, and Fα-calculus [6,15–24].

Fractional calculus: Fractional calculus is the subject of derivatives and integrals with arbitrary
orders, which is used to model anomalous phenomena [15]. There is a lot of research in this direction,
such as fractional Fokker–Planck equations, fractional diffusion equations, fractional master equations,
stochastic fractional equations, and so on [25–32]. Fractal features and macroscopic anomalous exploits
of systems are connected to the order of fractional derivatives [33–40]. In addition, memory effects in
physical models are presented by using fractional derivatives because of their non-local character [41].
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To solve this problem, fractional local derivatives were defined and turn out to be applicable to the
differentiability of graphs that are fractals [42,43].

Probabilistic approach: In this approach, the Laplacian is defined as an infinitesimal generator of
Brownian motion on fractal sets. Using self-similarity properties, Laplacians on connected Sierpinski
sets were suggested, and the solutions of equations were obtained by utilizing the self-similarities of
fractals [16,44]. Generalized constructions using Brownian motion are given for more general nested
fractals [45].

Measure theory approach: Measure theory is used to define suitable derivatives for fractal subsets of
<. If m is a measure and its support is a fractal subset of the real line F ∈ [a, b] ∈ <, then a function
g′ : F → < is called a m-derivative of a given function g : F → < if the following condition is satisfied:

g(x) = g(a) +
∫ x

a
g′(y)dm(y), y ∈ F. (1)

Note that the function g′(y) does not always exist and is not unique for a given g(y). If g ∈ L2(F, m),
then it solves both of these problems [6,19,46–49].

Fα-Calculus approach: Fα-Calculus (Fα-C) is a simple, constructive, and algorithmic approach to
the analysis of fractals [20,21]. In [22], Fα-C was formulated as a calculus framework on fractal sets
and fractal curves in higher dimensions. As an application of Fα-C in celestial mechanics, the motion
of simple harmonic oscillators and Kepler’s Third Law on fractal-time spaces were explained and
obtained [50]. The existence and uniqueness of the solutions have important roles in applications that
were studied on fractal sets [51,52].

Recently, transport through pre-fractal and porous media has been modeled using Lévy flights,
Lévy walks, scaled random walks, and corresponding diffusion equations [53,54]. Fractal scaled
Brownian motion and ultra-slow fractal scaled Brownian motion were studied and the corresponding
fractal mean square displacements are suggested [55,56]. Sub-, normal-, and super-diffusion on
middle-ξ Cantor sets was characterized in view of Fα-C [23].

Lie groups have an important role since they give symmetries of physical laws and help in finding
conserved quantities in physics by using Noether’s theorem. For example, Lie symmetries of the
Lagrangian of a system give conserved quantities [57–66]. In this work, we generalize Lie methods for
differential equations on fractal Cantor-like sets and Noether’s theorem.

The outline of the paper is as follows: Relevant background and various definitions are given in
Section 2. In Section 3, we discuss symmetry and the Lie method for solving differential equations on
fractal sets. In Section 4, we give a generalized Noether’s theorem for fractal Cantor-like sets. Section 5
offers a conclusion.

2. Basic Tools

In this section, we review some of the basic definitions of fractal calculus, which was adapted for
the middle-ξ Cantor sets. For details see [20,21,23].
Local Cα-Calculus:
If Cξ ∈ K = [r, t], and r, t ∈ < is a middle-ξ Cantor set. Then the flag function of Cξ is defined by

ϑ(Cξ , K) =

{
1 if Cξ ∩ K 6= ∅

0 otherwise.

Taking into account the E[r,t] = {r = x0, x1, x2, . . . , xn = t} subdivision of K, one can define

ρα[Cξ , E] =
n

∑
i=1

Γ(α + 1)(xi − xi−1)
αϑ(Cξ , [xi−1, xi]),
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where 0 < α ≤ 1. Let δ > 0, then the coarse-grained mass function γα
δ (C

ξ , r, t) is given by

γα
δ (C

ξ , r, t) = inf
E[r,t] :|E|≤δ

ρα[Cξ , E].

Here we take infimum over all subdivisions E satisfying |E| := max1≤i≤n(xi − xi−1) ≤ δ.
The mass function γα(Cξ , r, t) is defined by [20,21,23]:

γα(Cξ , r, t) = lim
δ→0

γα
δ (C

ξ , r, t).

The integral staircase function Sα
Cξ (x) of order α for a fractal set Cξ is defined in [20,21] by

Sα
Cξ (x) =

{
γα(Cξ , r0, x) if x ≥ r0

−γα(Cξ , r0, x) otherwise,

where r0 is an arbitrary real number and fixed.
In Figure 1, we present middle-ξ Cantor sets and their staircase functions.

(a) (b)

(c) (d)
Figure 1. Cantor sets and corresponding staircase functions. (a) Graph of Cξ setting ξ = 1/5; (b) graph
of Cξ setting ξ = 1/2; (c) the staircase function corresponding to Cξ setting ξ = 1/5; (d) the staircase
function corresponding to Cξ setting ξ = 1/2.

The β-dimension of Cξ ∩ [r, t] is

dimβ(Cξ ∩ [r, t]) = inf{α : γα(Cξ , r, t) = 0}
= sup{α : γα(Cξ , r, t) = ∞}.

Remark 1. For a given ξ, then we have dimβ(Cξ ∩ [r, t]) = α. For example, for ξ = 1/5 we get α ≈ 0.77.
The plot in Figure 2 indicates the approximation of γα

δ2
/γα

δ1
where δ2 < δ1.
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(a) (b)
Figure 2. β-dimensions of the middle-ξ Cantor sets. (a) The numerical result shows α ≈ 0.77 for Cξ

setting ξ = 1/5; (b) the numerical result shows α ≈ 0.5 for Cξ setting ξ = 1/2.

This value leads to the β-dimension since it shows convergence to the finite valve while δ→ 0,
which can be seen by choosing different various pairs of (δ1, δ2).
The Cα-Limits: Suppose h : Cξ → R and x ∈ Cξ . Then l is called to be the limit of h through the points
of Cξ as z→ x.

z ∈ Cξ and |z− x| < δ⇒ |h(z)− l| < ε.

If l exists, then we can write
l = Cα − lim

z→x
h(z).

The Cα-Continuity: A function h : Cξ → R is called to be Cξ-continues at x ∈ Cξ if

h(x) = Cα − lim
z→x

h(z).

The Cα-Differentiation: The Cα-derivative of a function u defined on Cξ at a point x is [20,21,23]:

Dα
Cξ h(x) =

Cα- limz→x
h(z)−h(x)

Sα
Cξ (z)−Sα

Cξ (x) , if z ∈ Cξ .

0, otherwise.

In view of infinitesimal calculus and non-standard analysis, Equation (2) is written [67]

h(x + δx) = h(x) + (Dα
Cξ h)δSα

Cξ (x) + εδSα
Cξ (x), (2)

where ε ≈ δSα
Cξ (x) = Sα

Cξ (x + δx) − Sα
Cξ (x) ≈ 0. A more general form of the Taylor expansion

formula is

h(x + δx) = h(x) + Dα
Cξ h.Sα

Cξ (x) + ... +
1
n!
(Dα

Cξ )
nh(Sα

Cξ (x))n + ε(Sα
Cξ (x))n. (3)

The Cα-Integration: For a bounded function h on Cξ , one can define [20,21,23]:

M[h, Cξ , K] = sup
x∈Cξ∩K

h(x) if Cξ ∩ K 6= 0

= 0 otherwise,

and similarly,

m[h, Cξ , K] = inf
x∈Cξ∩K

u(x) if Cξ ∩ K 6= 0

= 0 otherwise.
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The upper Cα-sum and lower Cα-sum for a function h over the subdivision E are given respectively
by [20,21,23]

Uα[h, Cξ , E] =
m

∑
j=1
M[h, Cξ , [xj, xj−1]](Sα

Cξ (xj)− Sα
Cξ (xj−1)),

and

Lα[h, Cξ , E] =
m

∑
j=1

m[h, Cξ , [xj, xj−1]](Sα
Cξ (xj)− Sα

Cξ (xj−1)).

We say that h is Cα-integrable on Cξ if [20,21,23] the following equations are equal.

∫ t

r
h(x)dα

Cξ x = sup
E[r,t]

Lα[h, Cξ , E], (4)

∫ t

r
h(x)dα

Cξ x = inf
E[r,t]

Lα[h, Cξ , E]. (5)

In that case, the Cα-integral of h on Cξ is denoted by
∫ t

r h(x)dα
Cξ x and is given by the common value

of (4) and (5).
Fundamental Theorems of Cα-Calculus. Suppose that h(x) : Cξ → < is Cα-continuous and bounded on
Cξ . If we define H(z) by

H(z) =
∫ z

a
h(x)dζ

Cξ x,

for all x ∈ [r, t], consequently it follows that [20,21,23]

∫ t

r
h(x)dα

Cξ x = H(t)−H(r).

3. The Lie Method on Cα-Calculus

In this section, we study Sophus Lie’s method for solving linear and non-linear fractal differential
equations [57–59]. An infinitesimal generator is defined on the middle-ξ Cantor sets.
A fractal Lie group is a set of maps with parameter η such that

Lη : (Sα
Cξ (t), x) � (v(Sα

Cξ (t), x, η), w(Sα
Cξ (t), x, η)), (Sα

Cξ (t), x) ∈ <, η ∈ <, (6)

with the following properties [57–59]:
(1) Lη onto and one-to-one;
(2) Lη2 ◦ Lη1 = Lη2+η1 ; ( Composition Property).
(3) L0 = I;
(4) ∀ η1 ∈ <, ∃ η2 = −η1, ⇒ Lη2 ◦ Lη1 = L0.
Symmetry condition of fractal differential equations: Consider a fractal differential equation of
the form

Dα
Cξ ,tx(t) = h(Sα

Cξ (t), x), t ∈ Cξ . (7)

In order to find the fractal symmetry conditions, we write

Dα
Cξ ,t′x

′(t) = h(Sα
Cξ (t′), x′), (8)

where v(Sα
Cξ (t), x, η) = Sα

Cξ (t′), w(Sα
Cξ (t), x, η) = x′. By Equation (8), we have

Dα
Cξ ,t′x

′ =
Dαx′

DαSα
Cξ (t′)

= h(Sα
Cξ (t′), x′), (9)
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where
Dα = Dα

Cξ ,t + (Dα
Cξ ,tx)Dα

Cξ ,x (10)

might be called the fractal total derivative operator. From Equation (10), we obtain

Dα
Cξ ,t′x

′ =
Dα

Cξ ,tx
′ + (Dα

Cξ ,tx)Dα
Cξ ,xx′

Dα
Cξ ,tS

α
Cξ (t′) + (Dα

Cξ ,tx)Dα
Cξ ,xSα

Cξ (t′)
= h(Sα

Cξ (t′), x′). (11)

Substituting Equation (9) into Equation (11), we obtain

Dα
Cξ ,t′x

′ =
Dα

Cξ ,tx
′ + h(Sα

Cξ (t), x)Dα
Cξ ,tx

′

Dα
Cξ ,tS

α
Cξ (t′) + h(Sα

Cξ (t), x)Dα
Cξ ,xSα

Cξ (t′)
= h(Sα

Cξ (t′), x′), (12)

which might be called the fractal symmetry condition.

Example 1. The following fractal differential equation

Dα
Cξ ,tx(t) =

1− x2

Sα
Cξ (t)

(13)

has a fractal symmetry
(Sα

Cξ (t′), x′) = (eηSα
Cξ (t), x). (14)

To show this, we substitute Equation (14) into Equation (12). Hence we get

Dα
Cξ ,tx

′ + 1−x2

Sα
Cξ (t)

Dα
Cξ ,xx′

Dα
Cξ ,tS

α
Cξ (t′) +

1−x2

Sα
Cξ (t)

Dα
Cξ ,xSα

Cξ (t′)
=

1− x′2
Sα

Cξ (t′)
(15)

since Dα
Cξ ,tx

′ = 0, Dα
Cξ ,xSα

Cξ (t′) = 0, and Dα
Cξ ,tS

α
Cξ (t′) = eη . Then Equation (15) looks like

1− x2

eηSα
Cξ (t)

=
1− x′2
Sα

Cξ (t′)
. (16)

Consequently, Equation (12) holds.

Orbit of a point in the fractal differential equations: If H is a point on the solution of the fractal
differential equation, then given a fractal symmetry map by choosing different values of η, we get an
orbit of the point H. We demonstrate this by giving the following example.

Example 2. Suppose a fractal differential equation

Dα
Cξ ,tx = χCξ (t), 0 < t < 1, ∈ Cξ

under the following symmetry
(Sα

Cξ (t′), x′) = (χCξ (t), Sα
Cξ (t) + η). (17)

For instance, the orbit of point H = (1/4, 0) is denoted by OH and given by

OH = {(1/4, 0), (1/4, Sα
Cξ (1/4) + η), η = 0.5, 1.5, 2.5, ...}.

Figure 3 shows the orbit of point H under the symmetry of Equation (17).
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Figure 3. Orbit of point H.

Analogues to tangent vectors on fractal orbit: Analogues to the tangent vectors/fractal tangent
vectors for any given orbit at the point (Sα

Cξ (t′), x′) are defined as follows:

dSα
Cξ (t′)
dη

= φ(Sα
Cξ (t′), x′),

dx′

dη
= ψ(Sα

Cξ (t′), x′). (18)

For the initial point (Sα
Cξ (t), x), we set η = 0, namely(

dSα
Cξ (t′)
dη

|η=0,
dx′

dη
|η=0

)
=(
φ(Sα

Cξ (t), x), ψ(Sα
Cξ (t), x)

)
. (19)

In what follows, we want to obtain an invariant solution of Equation (7) by using fractal tangent
vectors. Therefore, we can write

Dα
Cξ ,tx(t) = h(Sα

Cξ (t), x) =
ψ(Sα

Cξ (t), x)
φ(Sα

Cξ (t), x)
, (20)

which is called a fractal symmetric equation. In view of Equation (20), we define Q as follows:

Q
(

Sα
Cξ (t), x, Dα

Cξ ,tx
)
= ψ(Sα

Cξ (t), x)−
(

Dα
Cξ ,tx

)
φ(Sα

Cξ (t), x), (21)

which might be called a fractal characteristic function. Utilizing Equation (20), we get

Q
(

Sα
Cξ (t), x, Dα

Cξ ,tx
)
= ψ(Sα

Cξ (t), x)− h(Sα
Cξ (t), x)φ(Sα

Cξ (t), x),

which might be called a fractal reduced characteristic function. Under the given symmetry, we
conclude Q = 0.
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Example 3. Consider the fractal Riccati differential equation as follows:

Dα
Cξ ,tx(t) = Sα

Cξ (t)x2 − 2x
Sα

Cξ (t)
− 1

Sα
Cξ (t)3 , Sα

Cξ (t) 6= 0. (22)

Hence, Equation (22) has the following symmetry

(Sα
Cξ (t′), x′) = (eηSα

Cξ (t), e−2η x). (23)

By Equation (19), the fractal tangent vectors are

φ(Sα
Cξ (t), x) = Sα

Cξ (t),

and
ψ(Sα

Cξ (t), x) = −2x.

Subsequently, the fractal reduced characteristic function is

Q(Sα
Cξ (t), x, Dα

Cξ ,tx) = −2x−
(

Sα
Cξ (t)x2 − 2x

Sα
Cξ (t)

− 1
Sα

Cξ (t)3

)
Sα

Cξ (t)

= −Sα
Cξ (t)2x2 +

1
Sα

Cξ (t)2 .

Therefore, if
Q = 0 =⇒ x(t) = ±Sα

Cξ (t)−2,

which is the fractal invariant solution of Equation (22) under symmetry equation (23).

Example 4. Suppose one parameter fractal Lie group as follows:

Lη : (Sα
Cξ (t′), x′) � (eηSα

Cξ (t), ekη x), k > 0.

Then, the associated fractal tangent vectors is given by Equation (18), that is,

φ(Sα
Cξ (t′), x′) = eηSα

Cξ (t), (24)

and
ψ(Sα

Cξ (t′), x′) = kekη x. (25)

Evaluating Equations (24) and (25) at η = 0, we get

φ(Sα
Cξ (t), x) = Sα

Cξ (t),

and
ψ(Sα

Cξ (t), x) = kx.

By using Equation (20), we have

Dα
Cξ ,tx(t) =

ψ(Sα
Cξ (t), x)

φ(Sα
Cξ (t), x)

=
kx

Sα
Cξ (t)

. (26)

To solve Equation (26), we use the conjugacy of Cα-calculus with standard calculus; that is,∫ dx
x

= k
∫ dt

t
. (27)
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Then, it is straightforward to get
x(t) = c tk.

By inverse conjugacy, we have
x(t) = c Sα

Cξ (t)k.

An easy computation shows that
(v, w) = (

x
Sα

Cξ (t)k , ln Sα
Cξ (t)),

which might be called fractal canonical coordinates.

Example 5. Consider the fractal equation Riccati equation as follows:

Dα
Cξ ,tx(t) = Sα

Cξ (t)x2 − 2x
Sα

Cξ (t)
− 1

Sα
Cξ (t)3 , Sα

Cξ (t) 6= 0, (28)

with the symmetry
(Sα

Cξ (t′), x′) = (eηSα
Cξ (t), e−2η x).

In the same manner, using Equations (24) and (25), we can see that

(v, w) = (Sα
Cξ (t)2x, ln Sα

Cξ (t)).

Using the conjugacy of Cα-calculus with ordinary calculus, we can write

w =
1
2

ln(
r− 1
r + 1

) + k.

Then, inverting the conjugacy leads to

x(t) =
−k− Sα

Cξ (t)2

Sα
Cξ (t)4 − kSα

Cξ (t)2 , (29)

which is the solution of Equation (28).

Remark 2. Note that by setting k = 0 in Equation (29), we can obtain the invariant solution.

Linearized symmetry condition for the fractal differential equations: Solving the fractal symmetry
condition in Equation (12) is often very difficult or impossible. Therefore, we linearize Equation (12)
by using Taylor series expansion, namely,

Sα
Cξ (t′) = Sα

Cξ (t) + η φ(Sα
Cξ (t), x) +O(η2, )

x′ = x + η ψ(Sα
Cξ (t), x) +O(η2),

h(Sα
Cξ (t′), x′) = h(Sα

Cξ (t), x)

+ η
(

Dα
Cξ ,thφ(Sα

Cξ (t), x) + Dα
Cξ ,xhψ(Sα

Cξ (t), x)
)
+O(η2). (30)

Here, O(η2) = e(η) describes the error function of Taylor series expansions, such that

lim
η→0

e(η)
η2 = c.

Substituting Equation (30) into Equation (12) and disregarding terms of η2 or higher orders, we have

Dα
Cξ ,tψ + (Dα

Cξ ,xψ− Dα
Cξ ,tφ)h− Dα

Cξ ,xφh2 = φDα
Cξ ,th + ψDα

Cξ ,xh. (31)
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Example 6. Consider a fractal differential equation

Dα
Cξ ,tx =

x
Sα

Cξ (t)
+ Sα

Cξ (t). (32)

Substituting Equation (32) into Equation (31), we get

Dα
Cξ ,tψ− Dα

Cξ ,xφ

(
x

Sα
Cξ (t)

+ Sα
Cξ (t)

)2

+ (Dα
Cξ ,xψ− Dα

Cξ ,tφ)

(
x

Sα
Cξ (t)

+ Sα
Cξ (t)

)

−
(

φ(1− x
Sα

Cξ (t)2 ) + ψ(
1

Sα
Cξ (t)

)

)
= 0. (33)

Then, to solve Equation (33), let φ = 0 so that we have

Dα
Cξ ,tψ(t)−

ψ(t)
Sα

Cξ (t)
= 0. (34)

Conjugacy of the fractal calculus with standard calculus gives

ψ(t) = cSα
Cξ (t). (35)

Since φ(Sα
Cξ (t), x) = 0, then v = Sα

Cξ (t). Consequently, we have

w =
∫ dα

Cξ x
cSα

Cξ (t)
=

x
cSα

Cξ (t)
. (36)

If we set c = 1, then we get the fractal canonical coordinates

(v, w) = (Sα
Cξ (t),

x
Sα

Cξ (t)
). (37)

Moreover, since we have
dw
dv

=
Dα

Cξ ,tw + h(Sα
Cξ (t), x)Dα

Cξ ,xw

Dα
Cξ ,tv + h(Sα

Cξ (t), x)Dα
Cξ ,xr

, (38)

we can write
Dα

Cξ ,tw = − x
Sα

Cξ (t)2 , Dα
Cξ ,xw =

1
Sα

Cξ (t)
. (39)

Substituting Equation (39) into Equation (38), one can obtain following:

dw
dv

= 1, w = v + k, (40)

where k is constant. Replacing Sα
Cξ (t) and x back into Equation (40), we obtain

x(t) = Sα
Cξ (t)2 + kSα

Cξ (t).

Infinitesimal fractal generator: In view of the fractal symmetry group of Equation (6), the
infinitesimal fractal generator is defined by

XCξ = φDα
Cξ ,t + ψDα

Cξ ,x,

where XCξ is called an infinitesimal fractal generator.
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Example 7. Consider the fractal Lie group of the fractal differential equation as follows:

(Sα
Cξ (t′), x′) = (

Sα
Cξ (t)

1− ηx
,

x
1− ηx

). (41)

The associated the fractal tangent vectors are

φ(Sα
Cξ (t), x) = Sα

Cξ (t)x,

and
ψ(Sα

Cξ (t), x) = x2.

Then, the fractal infinitesimal generator is

XCξ = Sα
Cξ (t)xDα

Cξ ,t + x2Dα
Cξ ,x.

Example 8. Consider the fractal infinitesimal generator

XCξ = DCξ ,t + xDCξ ,x. (42)

We can calculate the fractal tangent vectors using Equation (18) as follows:

φ(Sα
Cξ (t), x) = 1,

and
ψ(Sα

Cξ (t), x) = x.

Then, it follows
φ(Sα

Cξ (t′), x′) = 1, ψ(Sα
Cξ (t′), x′) = eη x.

In addition, we have

Sα
Cξ (t′) = Sα

Cξ (t) + η,

x′ = eη x. (43)

Hence, the fractal Lie symmetry of Equation (42) will be

(Sα
Cξ (t′), x′) = (Sα

Cξ (t) + η, eη x).

4. Noether’s Theorem for Lagrangians with Fractal Set Support

Noether’s theorem presents the connection between conservation laws and Lie symmetries.
For every Lie symmetry, there is a conserved quantity in the system. The Lagrangian on middle-ξ
Cantor sets is not a differentiable manifold in the sense of standard calculus. Here, we consider fractal
calculus to generalize Noether’s Theorem to include the wider class of the Lagrangian.
Consider a fractal Lagrangian as follows:

LCξ (q(t), Dα
Cξ q(t), Sα

Cξ (t)), t ∈ Cξ ,

where LCξ is Cα-differentiable. If Tη is the set of operations such that

Tε(LCξ ) = LCξ , (44)
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which might be called a fractal Lie group of Lagrangian. The existence of Equation (44) leads to
conserved quantities of the system. Equation (44) is a functional equality, so that one can write

Tε(LCξ (q, Dα
Cξ q, Sα

Cξ (t))) =

LCξ (Q(q, Dα
Cξ q, Sα

Cξ (t), η), Dα
Cξ Q(q, Dα

Cξ q, Sα
Cξ (t), η), R(q, Dα

Cξ q, Sα
Cξ (t), η)). (45)

If we expand LCξ using Taylor series, we have

Tε(LCξ (q, Dα
Cξ q, Sα

Cξ (t))) = LCξ (q + φη, Dα
Cξ q + Dα

Cξ φη, Sα
Cξ (t) + ρη), (46)

where φ, Dα
Cξ φ, and ρ are defined by

φ =
∂Q
∂η
|η=0, Dα

Cξ φ =
∂Dα

Cξ Q
∂η

|η=0, ρ =
∂R
∂η
|η=0. (47)

Local fractal symmetries are given by Equation (47).
Fractal Noether’s Theorem is given by

Dα
Cξ ,t

(
∂LCξ

∂Dα
Cξ q

φ− HCξ ρ

)
= 0, (48)

where

HCξ = Dα
Cξ q

∂LCξ

∂Dα
Cξ q
− LCξ , (49)

which is called Hamiltonian on fractal sets.

Example 9. Consider transformation with the following symmetry

Tε(LCξ (q, Dα
Cξ q, Sα

Cξ (t))) = LCξ (q + η, Dα
Cξ q, Sα

Cξ (t)). (50)

Then in view of Equation (47), we obtain

φ = 1, , Dα
Cξ ,tφ = 0, ρ = 0.

The fractal momentum is conserved and defined by

pCξ =
∂LCξ

∂Dα
Cξ q

.

Example 10. Let us consider a fractal Lagrangian with fractal symmetry transformation as follows:

Tε(LCξ (q, Dα
Cξ q, Sα

Cξ (t))) = LCξ (q, Dα
Cξ q, Sα

Cξ (t)− η). (51)

By Equation (47), we get
φ = 0, , Dα

Cξ ,tφ = 0, ρ = −1.

Therefore, the fractal conserved quantity is

HCξ = constant.
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The fractal Lagrangian will be

LCξ (q, Dα
Cξ q, Sα

Cξ (t))) =
1
2

m(Dα
Cξ q)2 −U(q), q ∈ Cξ .

The fractal Hamiltonian is obtained by Equation (49):

HCξ =
1
2

m(Dα
Cξ q)2 + U(q), (52)

which is conserved.

5. Conclusions

In this paper, the Lie method for solving differential equations was extended to Cα-calculus.
Analogues for the orbit of a point in view of fractal differential equations were defined. Using linearized
symmetry conditions, canonical coordinates on fractal differential equations were derived. Analogues
to tangent vectors utilizing Cα-C were suggested. Infinitesimal generators applying symmetry
properties were presented. Noether’s Theorem was expanded to non-differentiable manifolds such as
Lagrangians with middle-ξ Cantor sets. Some examples were worked out to show the details.
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