A Modification Fractional Homotopy Perturbation Method for Solving Helmholtz and Coupled Helmholtz Equations on Cantor Sets
Abstract
:1. Introduction
2. Mathematical Fundamentals
3. Analysis of LFLHPM
4. Application of LFLHPM for Helmholtz Equations
5. Application of LFLHPM for Coupled Helmholtz Equations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jafari, H.; Jassim, H.K. Local Fractional Series Expansion Method for Solving Laplace and Schrodinger Equations on Cantor Sets within Local Fractional Operators. Int. J. Math. Comput. Res. 2014, 2, 736–744. [Google Scholar]
- Baleanu, D.; Jassim, H.K. A Modification Fractional Variational Iteration Method for solving Nonlinear Gas Dynamic and Coupled KdV Equations Involving Local Fractional Operators. Therm. Sci. 2018, 22, S165–S175. [Google Scholar] [CrossRef]
- Jafari, H.; Jassim, H.K. Application of the Local Fractional Adomian Decomposition and Series Expansion Methods for Solving Telegraph Equation on Cantor Sets Involving Local Fractional Derivative Operators. J. Zankoy Sulaimani Part A 2015, 17, 15–22. [Google Scholar] [CrossRef]
- Jassim, H.K.; Ünlü, C.; Moshokoa, S.; Khalique, M. Local Fractional Laplace Variational Iteration Method for Solving Diffusion and Wave Equations on Cantor Sets within Local Fractional Operators. Math. Probl. Engin. 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Baleanu, D.; Machado, J.A.T.; Cattani, C.; Baleanu, M.C.; Yang, X.-J. Local fractional variational iteration and Decomposition methods for Wave equation on Cantor set within local fractional Operators. Abstr. Appl. Anal. 2014, 2014, 1–6. [Google Scholar] [CrossRef]
- Jassim, H.K. The Approximate Solutions of Three-Dimensional Diffusion and Wave Equations within Local Fractional Derivative Operator. Abstr. Appl. Anal. 2016, 2016, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Q.; Yang, Y.; Jassim, H.K. Local Fractional Function Decomposition Method for Solving Inhomogeneous Wave Equations with Local Fractional Derivative. Abstr. Appl. Anal. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Yang, X.J.; Baleanu, D. Local fractional variational iteration method for Fokker-Planck equation on a Cantor set. Acta Univ. 2013, 23, 3–8. [Google Scholar]
- Jassim, H.K. New Approaches for Solving Fokker Planck Equation on Cantor Sets within Local Fractional Operators. J. Math. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.P.; Jafari, H.; Jassim, H.K. Local Fractional Adomian Decomposition and Function Decomposition Methods for Solving Laplace Equation within Local Fractional Operators. Adv. Math. Phys. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Yang, A.M.; Zhang, Y.Z.; Cattani, C.; Xie, G.N.; Rashidi, M.M.; Zhou, Y.J.; Yang, X.J. Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets. Abstr. Appl. Anal. 2014, 2014, 372741. [Google Scholar] [CrossRef]
- Jassim, H.K. The Approximate Solutions of Helmholtz and Coupled Helmholtz Equations on Cantor Sets within Local Fractional Operator. J. Zankoy Sulaimani Part A 2015, 17, 19–25. [Google Scholar] [CrossRef]
- Baleanu, D.; Jassim, H.K.; Qurashi, M.A. Approximate Analytical Solutions of Goursat Problem within Local Fractional Operators. J. Nonlinear Sci. Appl. 2016, 9, 4829–4837. [Google Scholar] [CrossRef]
- Jamshad, A.; Syed, T.M.-D. Local Fractional Decomposition Method on Wave Equation in Fractal Strings. Mitteilungen Klosterneuburg 2014, 64, 98–105. [Google Scholar]
- Jafari, H.; Jassim, H.K. Local Fractional Adomian Decomposition Method for Solving Two Dimensional Heat Conduction Equations within Local Fractional Operators. J. Adv. Math. 2014, 9, 2574–2582. [Google Scholar]
- Baleanu, D.; Jassim, H.K. Approximate Solutions of the Damped Wave Equation and Dissipative Wave Equation in Fractal Strings. Fractal Fract. 2019, 3, 26. [Google Scholar] [CrossRef]
- Jafari, H.; Jassim, H.K. Local Fractional Variational Iteration Method for Nonlinear Partial Differential Equations within Local Fractional Operators. Appl. Appl. Math. 2015, 10, 1055–1065. [Google Scholar]
- Xu, S.; Ling, X.; Zhao, Y.; Jassim, H.K. A Novel Schedule for Solving the Two-Dimensional Diffusion Problem in Fractal Heat Transfer. Therm. Sci. 2015, 19, S99–S103. [Google Scholar] [CrossRef]
- Yang, X.J. Advanced Local Fractional Calculus and Its Applications; World Science Publisher: New York, NY, USA, 2012. [Google Scholar]
- Yang, A.M.; Chen, Z.; Srivastava, H.M.; Yang, X.J. Application of the Local Fractional Series Expansion Method and the Variational Iteration Method to the Helmholtz Equation Involving Local Fractional Derivative Operators. Abstr. Appl. Anal. 2013, 2013, 259125. [Google Scholar] [CrossRef]
- Jafari, H.; Jassim, H.K.; Vahidi, J. The Reduced Differential Transform and Variational Iteration Methods for 3D Diffusion Model in Fractal Heat Transfer within Local Fractional Operators. Therm. Sci. 2018, 22, S301–S307. [Google Scholar] [CrossRef]
- Jassim, H.K.; Shahab, W.A. Fractional variational iteration method to solve one dimensional second order hyperbolic telegraph equations. J. Phys. Conf. Ser. 2018, 1032, 1–9. [Google Scholar] [CrossRef]
- Yang, X.J.; Machad, J.A.; Srivastava, H.M. A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach. Appl. Math. Comput. 2016, 274, 143–151. [Google Scholar] [CrossRef]
- Jafari, H.; Jassim, H.K.; Tchier, F.; Baleanu, D. On the Approximate Solutions of Local Fractional Differential Equations with Local Fractional Operator. Entropy 2016, 18, 150. [Google Scholar] [CrossRef]
- Yang, A.M.; Yang, X.J.; Li, Z.B. Local fractional series expansion method for solving wave and diffusion equations Cantor sets. Abstr. Appl. Anal. 2013, 2013, 1–5. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Golmankhaneh, A.K.; Baleanu, D. Local Fractional Sumudu Transform with Application to IVPs on Cantor Set. Abstr. Appl. Anal. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Zhao, C.G.; Yang, A.M.; Jafari, H.; Haghbin, A. The Yang-Laplace Transform for Solving the IVPs with Local Fractional Derivative. Abstr. Appl. Anal. 2014, 2014, 1–5. [Google Scholar] [CrossRef]
- Jafari, H.; Jassim, H.K.; Moshokoa, S.P.; Ariyan, V.M.; Tchier, F. Reduced differential transform method for partial differential equations within local fractional derivative operators. Adv. Mech. Eng. 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Jafari, H.; Jassim, H.K. Local Fractional Laplace Variational Iteration Method for Solving Nonlinear Partial Differential Equations on Cantor Sets within Local Fractional Operators. J. Zankoy Sulaimani Part A 2014, 16, 49–57. [Google Scholar]
- Hu, M.S.; Agarwal, R.P.; Yang, X.J. Local Fractional Fourier Series with Application to Wave Equation in Fractal Vibrating. Abstr. Appl. Anal. 2012, 2012, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Cattani, C.; Yang, X.J. Local Fractional Homotopy Perturbation Method for Solving Non-Homogeneous Heat Conduction Equations in Fractal Domains. Entropy 2015, 17, 6753–6764. [Google Scholar] [CrossRef] [Green Version]
- Kolwankar, K.M.; Gangal, A.D. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 1996, 6, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Kolwankar, K.M.; Gangal, A.D. Local fractional Fokker-Planck equation. Phys. Rev. Lett. 1998, 80, 214–217. [Google Scholar] [CrossRef]
- Singh, J.; Kumar , D.; Baleanu , D.; Rathore , S.; et al. On the local fractional wave equation in fractal strings. Math. Method Appl. Sci. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhao, Y.; Cattani, C.; Yang, X.J. Local Fractional Variational Iteration Method for Inhomogeneous Helmholtz Equation within Local Fractional Derivative Operator. Math. Probl. Eng. 2014, 2014, 913202. [Google Scholar] [CrossRef]
- Yong, J.Y.; Liu, Q.H. Variational Iteration Transform Method for Fractional Differential Equations with Local Fractional Derivative. Abstr. Appl. Anal. 2014, 2014, 760957. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baleanu, D.; Jassim, H.K. A Modification Fractional Homotopy Perturbation Method for Solving Helmholtz and Coupled Helmholtz Equations on Cantor Sets. Fractal Fract. 2019, 3, 30. https://doi.org/10.3390/fractalfract3020030
Baleanu D, Jassim HK. A Modification Fractional Homotopy Perturbation Method for Solving Helmholtz and Coupled Helmholtz Equations on Cantor Sets. Fractal and Fractional. 2019; 3(2):30. https://doi.org/10.3390/fractalfract3020030
Chicago/Turabian StyleBaleanu, Dumitru, and Hassan Kamil Jassim. 2019. "A Modification Fractional Homotopy Perturbation Method for Solving Helmholtz and Coupled Helmholtz Equations on Cantor Sets" Fractal and Fractional 3, no. 2: 30. https://doi.org/10.3390/fractalfract3020030
APA StyleBaleanu, D., & Jassim, H. K. (2019). A Modification Fractional Homotopy Perturbation Method for Solving Helmholtz and Coupled Helmholtz Equations on Cantor Sets. Fractal and Fractional, 3(2), 30. https://doi.org/10.3390/fractalfract3020030