On Extended General Mittag–Leffler Functions and Certain Inequalities
Abstract
:1. Introduction and Preliminaries
- (i)
- If ,
- (ii)
- If ,
2. Main Results
- 1.
- and ,
- 2.
- and ,
- 3.
- and
- 4.
- and ,
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bakula, M.K.; Pećarixcx, J. On the Jensen’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2006, 5, 1271–1292. [Google Scholar] [CrossRef]
- Dragomir, S.S. On Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
- Latif, M.A.; Alomari, M. Hadamard-type inequalities for product two convex functions on the co-ordinates. Int. Math. Forum 2009, 4, 1645–1656. [Google Scholar]
- Özdemir, M.E.; Akdemir, A.; Ekinci, A. New integral inequalities for co-ordinated convex functions. RGMIA Res. Rep. Collect. 2012, 15, 15. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E.; Dragomir, S.S. New some Hadamard’s type inequalities for co-ordinated convex functions. Tamsui Oxf. J. Math. Sci. 2012, 28, 137–152. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Wien, Austria, 1997; pp. 223–276. [Google Scholar]
- Salim, T.O.; Faraj, A.W. A generalization of Mittag–Leffler function and integral operator associated with fractional calculus. J. Fract. Appl. 2012, 3, 1–13. [Google Scholar]
- Srivastava, H.M.; Tomovski, Ž. Fractional calculus with an integral operator containing generalized Mittag–Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag–Leffler function in the kernal. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin, Germany, 2014; Volume 2. [Google Scholar]
- Abbas, G.; Khan, K.A.; Farid, G.; Rehman, A.-U. Generalizations of some fractional integral inequalities via generalized Mittag-Leffler function. J. Inequal. Appl. 2017, 2017, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunt, M.; İşcan, İ.; Yazici, N.; Gözütok, U. On new inequalities of Hermite–Hadamard-Fejér type for harmonically convex functions via fractional integrals. SpringerPlus 2016, 5, 635. [Google Scholar] [CrossRef] [PubMed]
- Mihai, M.V. Some Hermite–Hadamard type inequalities obtained via Riemann–Liouville fractional calculus. Tamkang J. Math. 2013, 44, 411–416. [Google Scholar] [CrossRef]
- Mihai, M.V. New inequalities for co-ordinated convex functions via Riemann–Liouville fractional calculus. Tamkang J. Math. 2014, 45, 285–296. [Google Scholar]
- Mihai, M.V.; Mitroi, F.C. Hermite–Hadamard type inequalities obtained via Riemann–Liouville fractional calculus. Acta Math. Comen. 2014, 83, 209–2015. [Google Scholar]
- Nisan, K.S.; Rahman, G.; Băleanu, D.; Mubeen, S.; Arshad, M. The (k,s)-fractional calculus of k-Mittag–Leffler function. Adv. Differ. Equ. 2017, 118. [Google Scholar] [CrossRef]
- Noor, M.A.; Mihai, M.V.; Noor, K.I.; Awan, M.U. Fractional Hermite–Hadamard inequalities for differentiable s-Godunova-Levin functions. Filomat 2016, 30, 3235–3241. [Google Scholar]
- Sarikaya, M.Z.; Yildirim, H. On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- İşcan, İ. Hermite–Hadamard-Fejér type inequalities for convex functions via fractional integrals. Stud. Univ. Babeş-Bolyai Math. 2015, 60, 355–366. [Google Scholar]
- Yaldiz, H.; Sarikaya, M.Z.; Dahmani, Z. On the Hermite–Hadamard-Fejér-type inequalities for co-ordinated convex functions via fractional integrals. Int. J. Optim. Control Theor. Appl. 2017, 7, 205–215. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihai, M.V.; Awan, M.U.; Noor, M.A.; Du, T.; Kashuri, A.; Noor, K.I. On Extended General Mittag–Leffler Functions and Certain Inequalities. Fractal Fract. 2019, 3, 32. https://doi.org/10.3390/fractalfract3020032
Mihai MV, Awan MU, Noor MA, Du T, Kashuri A, Noor KI. On Extended General Mittag–Leffler Functions and Certain Inequalities. Fractal and Fractional. 2019; 3(2):32. https://doi.org/10.3390/fractalfract3020032
Chicago/Turabian StyleMihai, Marcela V., Muhammad Uzair Awan, Muhammad Aslam Noor, Tingsong Du, Artion Kashuri, and Khalida Inayat Noor. 2019. "On Extended General Mittag–Leffler Functions and Certain Inequalities" Fractal and Fractional 3, no. 2: 32. https://doi.org/10.3390/fractalfract3020032
APA StyleMihai, M. V., Awan, M. U., Noor, M. A., Du, T., Kashuri, A., & Noor, K. I. (2019). On Extended General Mittag–Leffler Functions and Certain Inequalities. Fractal and Fractional, 3(2), 32. https://doi.org/10.3390/fractalfract3020032