

Article

A Criterion for Subfamilies of Multivalent Functions of Reciprocal Order with Respect to Symmetric Points

Shahid Mahmood ^{1,*}, Hari Mohan Srivastava ^{2,3}, Muhammad Arif ⁴, Fazal Ghani ⁴ and Eman S. A. AbuJarad ⁵

- Department of Mechanical Engineering, Sarhad University of Science and Information Technology, Peshawar 25000, Pakistan
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada; harimsri@math.uvic.ca
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Mathematics, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; marifmaths@awkum.edu.pk (M.A.); fazalghanimaths@gmail.com (F.G.)
- ⁵ Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India; emanjarad2@gmail.com
- * Correspondence: shahidmahmood757@gmail.com

Received: 19 May 2019; Accepted: 20 June 2019; Published: 25 June 2019

Abstract: In the present research paper, our aim is to introduce a new subfamily of *p*-valent (multivalent) functions of reciprocal order. We investigate sufficiency criterion for such defined family.

Keywords: multivalent functions; starlike functions; close-to-convex functions

MSC: Primary 30C45, 30C10; Secondary 47B38

1. Introduction

Let us suppose that A_p represents the class of p-valent functions f(z) that are holomorphic (analytic) in the region $\mathbb{E} = \{z : |z| < 1\}$ and has the following Taylor series representation:

$$f(z) = z^{p} + \sum_{k=1}^{\infty} a_{p+k} z^{p+k}.$$
 (1)

Two points p and p' are said to be symmetrical with respect to o if o is the midpoint of the line segment pp'.

If f(z) and g(z) are analytic in \mathcal{E} , we say that f(z) is subordinate to g(z), written as $f(z) \prec g(z)$, if there exists a Schwarz function, w(z), which is analytic in \mathcal{E} with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)). Furthermore, if the function g(z) is univalent in \mathcal{E} , then we have the following equivalence, see [1].

$$f(z) \prec g(z) \ (z \in \mathcal{E}) \iff f(0) = g(0) \quad \text{and} \quad f(\mathcal{E}) \subset g(\mathcal{E}).$$

Let \mathcal{N}_{α} denotes the class of starlike functions of reciprocal order α ($\alpha > 1$) and is given below

$$\mathcal{N}_{\alpha} := \left\{ f(z) \in \mathcal{A} : \operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) < \alpha, \ (z \in \mathbb{E}) \right\}. \tag{2}$$

This class was introduced by Uralegaddi et al. [2] amd further studied by the Owa et al. [3]. After that Nunokawa and his coauthors [4] proved that $f(z) \in \mathcal{N}_{\alpha}$, $0 < \alpha < \frac{1}{2}$, if and only if the following inequality holds

$$\left| \frac{2\alpha z f'(z)}{f(z)} - 1 \right| < 1, \ (z \in \mathbb{E}).$$

Later on, Owa and Srivastava [5] in 2002 generalized this idea for the classes of multivalent convex and starlike functions of reciprocal order α ($\alpha > p$), and further studied by Polatoglu et al. [6]. For more details of the related concepts, see the article of Dixit et al. [7], Uyanik et al. [8], and Arif et al. [9].

For $-1 \le t < s \le 1$ with $s \ne 0 \ne t$, $0 < \alpha < 1$, and $p \in \mathbb{N}$, we introduce a subclass of \mathcal{A}_p consisting of all analytic p-valent functions of reciprocal order α , denoted by $\mathcal{N}_{\alpha}^p \mathcal{S}(s,t)$ and is defined as

$$\mathcal{N}_{\alpha}^{p}\mathcal{S}\left(s,t\right) = \left\{f\left(z\right) \in \mathcal{A}_{p} : \operatorname{Re}\left(\frac{\left(s^{p} - t^{p}\right)zf'(z)}{f(sz) - f(tz)}\right) < \frac{p}{\alpha}, \ (z \in \mathbb{E})\right\},\tag{3}$$

or equivalently

$$\left| \frac{(s^p - t^p) z f'(z)}{f(sz) - f(tz)} - \frac{p}{2\alpha} \right| \le \frac{p}{2\alpha}. \tag{4}$$

Many authors studied sufficiency conditions for various subclasses of analytic and multivalent functions, for details see [4,10–17].

We will need the following lemmas for our work.

Lemma 1 (Jack's lemma [18]). Let Ψ be a non-constant holomorphic function in \mathbb{E} and if the value of $|\Psi|$ is maximum on the circle |z| = r < 1 at z_{\circ} , then $z_{\circ}\Psi'(z_{\circ}) = k \Psi(z_{\circ})$, where $k \ge 1$ is a real number.

Lemma 2 (See [1]). Let $\mathfrak{H} \subset \mathbb{C}$ and let $\Phi : \mathbb{C}^2 \times \mathbb{E}^* \to \mathbb{C}$ be a mapping satisfying Φ (ia, b, z) $\notin \mathfrak{H}$ for $a, b \in \mathbb{R}$ such that $b \leq -\frac{1+a^2}{2}$. If $p(z) = 1 + c_1 z^1 + c_2 z^2 + \cdots$ is regular in \mathbb{E}^* and $\Phi(p(z), zp'(z), z) \in \mathfrak{H}$ $\forall z \in \mathbb{E}^*$, then Re(p(z)) > 0.

Lemma 3 (See [15]). Let $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ be analytic in \mathbb{E} and η be analytic and starlike (with respect to the origin) univalent in \mathbb{E} with $\eta(0) = 0$. If $zp'(z) \prec \eta(z)$, then

$$p(z) \prec 1 + \int_{0}^{z} \frac{\eta(t)}{t} dt.$$

This result is the best possible.

2. Main Results

Theorem 1. Let $f(z) \in A_v$ and satisfies

$$\sum_{n=1}^{\infty} \left(\alpha \left(p + n \right) + p \frac{\left(s^{p+n} - t^{p+n} \right)}{\left(s^p - t^p \right)} \right) \left| a_{n+p} \right| \le \frac{p}{2} \left(1 - |2\alpha - 1| \right). \tag{5}$$

Then $f(z) \in \mathcal{N}_{\alpha}^{p} \mathcal{S}(s,t)$.

Proof. Let us assume that the inequality (5) holds. It suffices to show that

$$\left| \frac{2\alpha \left(s^p - t^p \right) z f'(z)}{f(sz) - f(tz)} - p \right| \le p. \tag{6}$$

Consider

$$\left| \frac{2\alpha \left(s^{p} - t^{p} \right) z f'(z)}{f(sz) - f(tz)} - p \right|$$

$$= \left| \frac{p \left(2\alpha - 1 \right) \left(s^{p} - t^{p} \right) z^{p} + \sum_{n=1}^{\infty} \left(2\alpha \left(p + n \right) \left(s^{p} - t^{p} \right) - p \left(s^{n+p} - t^{n+p} \right) \right) a_{n+p} z^{n+p}}{\left(s^{p} - t^{p} \right) z^{p} + \sum_{n=1}^{\infty} \left(s^{n+p} - t^{n+p} \right) a_{n+p} z^{n+p}} \right|$$

$$\leq \frac{p \left| 2\alpha - 1 \right| \left(s^{p} - t^{p} \right) + \sum_{n=1}^{\infty} \left(2\alpha \left(p + n \right) \left(s^{p} - t^{p} \right) + p \left(s^{n+p} - t^{n+p} \right) \right) \left| a_{n+p} \right|}{\left(s^{p} - t^{p} \right) - \sum_{n=1}^{\infty} \left(s^{n+p} - t^{n+p} \right) \left| a_{n+p} \right|}$$

The last expression is bounded above by p if

$$p |2\alpha - 1| (s^{p} - t^{p}) + \sum_{n=1}^{\infty} (2\alpha (p+n) (s^{p} - t^{p}) + p (s^{n+p} - t^{n+p})) |a_{n+p}|$$

$$$$

Hence

$$\sum_{n=1}^{\infty} \left(\alpha \left(p+n \right) + p \frac{\left(s^{p+n} - t^{p+n} \right)}{\left(s^p - t^p \right)} \right) \left| a_{n+p} \right| \leq \frac{p}{2} \left(1 - \left| 2\alpha - 1 \right| \right).$$

This shows that $f(z) \in \mathcal{NS}_p(s,t,\alpha)$. This completes the proof. \square

Theorem 2. *If* $f(z) \in A_p$ *satisfies the condition*

$$\left| 1 + \frac{zf''(z)}{f'(z)} - \frac{z(f(sz) - f(tz))'}{f(sz) - f(tz)} \right| < 1 - \alpha, \quad \left(\frac{1}{2} \le \alpha < 1 \right), \tag{7}$$

then $f(z) \in \mathcal{N}^{p}_{\alpha}\mathcal{S}(s,t)$.

Proof. Let us set

$$q(z) = \frac{1 - \frac{\alpha(s^p - t^p)zf'(z)}{p(f(sz) - f(tz))}}{1 - \alpha} - 1.$$
(8)

Then clearly q(z) is analytic in \mathbb{E} with q(0) = 0. Differentiating logarithmically, we have

$$1 + \frac{zf''(z)}{f'(z)} - \frac{z(f(sz) - f(tz))'}{f(sz) - f(tz)} = -\frac{(1 - \alpha)zq'(z)}{(\alpha - (1 - \alpha)q(z))}.$$

So

$$\left|1 + \frac{zf''(z)}{f'(z)} - \frac{z\left(f(sz) - f(tz)\right)'}{f(sz) - f(tz)}\right| = \left|-\frac{(1-\alpha)zq'(z)}{(\alpha - (1-\alpha)q(z))}\right|.$$

From (7), we have

$$\left|\frac{\left(1-\alpha\right)zq'\left(z\right)}{\left(\alpha-\left(1-\alpha\right)q\left(z\right)\right)}\right|<1-\alpha.$$

Next, we claim that |q(z)| < 1. Indeed, if not, then for some $z_0 \in \mathbb{E}$, we have

$$\max_{|z| \le |z_0|} |q(z)| = |q(z_0)| = 1.$$

Applying Jack's lemma to q(z) at the point z_0 , we have

$$q(z_0) = e^{i\theta}, \ \frac{z_0 q'(z_0)}{q(z_0)} = k, \ k \ge 1.$$

Then

$$\begin{vmatrix} 1 + \frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z (f(sz_0) - f(tz_0))'}{f(sz_0) - f(tz_0)} \end{vmatrix} = \begin{vmatrix} \frac{(1 - \alpha) z_0 q'(z_0)}{(\alpha - (1 - \alpha) q(z_0))} \end{vmatrix}$$

$$= |1 - \alpha| \left| \frac{z_0 q'(z_0)}{q(z_0)} \left(\frac{1}{(1 - \alpha) - \alpha e^{-i\theta}} \right) \right|$$

$$= |1 - \alpha| \left| \frac{k}{\alpha e^{-i\theta} - (1 - \alpha)} \right|$$

$$\geq |1 - \alpha| \left| \frac{1}{(1 - \alpha) - \alpha e^{-i\theta}} \right|.$$

Therefore

$$\left|1 + \frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z \left(f(sz_0) - f(tz_0)\right)'}{f(sz_0) - f(tz_0)}\right|^2 \ge \frac{(1-\alpha)^2}{(1-\alpha)^2 + \alpha^2 - 2\alpha (1-\alpha)\cos\theta}.$$

Now the right hand side has minimum value at $\cos \theta = -1$, therefore we have

$$\left|1 + \frac{z_0 f''(z_0)}{f'(z_0)} - \frac{z \left(f(sz_0) - f(tz_0)\right)'}{f(sz_0) - f(tz_0)}\right|^2 \ge (1 - \alpha)^2.$$

But this contradicts (7). Hence we conclude that |q(z)| < 1 for all $z \in \mathbb{E}$, which shows that

$$\left| \frac{1 - \frac{\alpha(s^p - t^p)zf'(z)}{p(f(sz) - f(tz))}}{1 - \alpha} - 1 \right| < 1.$$

This implies that

$$\left| \frac{(s^p - t^p) z f'(z)}{p \left(f(sz) - f(tz) \right)} - 1 \right| < \frac{1}{\alpha} - 1.$$
 (9)

Now we have

$$\left| \frac{(s^p - t^p) z f'(z)}{p \left(f(sz) - f(tz) \right)} - \frac{1}{2\alpha} \right| \leq \left| \frac{(s^p - t^p) z f'(z)}{p \left(f(sz) - f(tz) \right)} - 1 \right| + \left| 1 - \frac{1}{2\alpha} \right|$$
$$< \frac{1}{\alpha} - 1 + 1 - \frac{1}{2\alpha}$$
$$= \frac{1}{2\alpha}.$$

This implies that $f(z) \in \mathcal{N}^p_{\alpha} \mathcal{S}(s,t)$. \square

Theorem 3. *If* $f(z) \in A_p$ *satisfies the condition*

$$\operatorname{Re}\left(-1 - \frac{zf''(z)}{f'(z)} + \frac{z\left(f(sz) - f(tz)\right)'}{f(sz) - f(tz)}\right) > \begin{cases} \frac{\alpha}{2(\alpha - 1)}, & 0 \le \alpha \le \frac{1}{2} \\ \frac{\alpha - 1}{2\alpha}, & \frac{1}{2} \le \alpha < 1, \end{cases}$$
(10)

then $f(z) \in \mathcal{N}_{\alpha}^{p} \mathcal{S}(s,t)$ for $0 \leq \alpha < 1$.

Proof. Let

$$q(z) = \frac{\frac{p(f(sz) - f(tz))}{(s^p - t^p)zf'(z)} - \alpha}{1 - \alpha}.$$

Then clearly q(z) is analytic in \mathbb{E} . Applying logarithmic differentiation, we have

$$-1 - \frac{zf''(z)}{f'(z)} + \frac{z\left(f(sz) - f(tz)\right)'}{f(sz) - f(tz)} = \frac{\left(1 - \alpha\right)zq'\left(z\right)}{\alpha + \left(1 - \alpha\right)q\left(z\right)} = \Psi\left(q\left(z\right), zq'\left(z\right), z\right),$$

where

$$\Psi\left(u,v;t\right) = \frac{\left(1-\alpha\right)v}{\alpha + \left(1-\alpha\right)u}.$$

Now for all $x, y \in \mathbb{R}$ satisfying the inequality $y \leq -\frac{1+x^2}{2}$, we have

$$\Psi(ix,y,z) = \frac{(1-\alpha)y}{\alpha + (1-\alpha)ix}.$$

Therefore

Re
$$(\Psi(ix, y, z))$$
 $\leq -\frac{\alpha (1 - \alpha) (1 + x^2)}{2 (\alpha^2 + (1 - \alpha)^2 x^2)},$
 $\leq \begin{cases} \frac{\alpha}{2(\alpha - 1)}, & 0 \leq \alpha \leq \frac{1}{2}, \\ \frac{\alpha - 1}{2\alpha}, & \frac{1}{2} \leq \alpha < 1. \end{cases}$

We set

$$\Lambda = \left\{ \zeta : \operatorname{Re}\left(\zeta\right) > \left\{ \begin{array}{cc} \frac{\alpha}{2(\alpha - 1)}, & 0 \leq \alpha \leq \frac{1}{2}, \\ \frac{\alpha - 1}{2\alpha}, & \frac{1}{2} \leq \alpha < 1. \end{array} \right\}$$

Then $\Psi(ix,y;z) \notin \Lambda$ for all real x, y such that $y \leq -\frac{1+x^2}{2}$. Moreover, in view of (10), we know that $\Psi(q(z),zq'(z),z) \in \Lambda$. So applying Lemma 2, we have

$$\operatorname{Re}\left(q\left(z\right)\right)>0$$

which shows that the desired assertion of Theorem 3 holds. \Box

Theorem 4. *If* $f(z) \in A_p$ *satisfies*

$$\operatorname{Re} \frac{f(sz) - f(tz)}{(s^{p} - t^{p})zf'(z)} \left(1 - \beta \frac{zf''(z)}{f'(z)} + \beta \frac{z(f(sz) - f(tz))'}{f(sz) - f(tz)} \right) > \frac{2\alpha + \beta(3\alpha - 1)}{2p}, \tag{11}$$

then $f(z) \in \mathcal{N}_{\alpha}^{p} \mathcal{S}(s,t)$ for $0 < \alpha < 1$ and $\beta \geq 0$.

Proof. Let

$$h(z) = \frac{\frac{p(f(sz) - f(tz))}{(s^p - t^p)zf'(z)} - \alpha}{1 - \alpha}.$$

Where h(z) is clearly analytic in \mathbb{E} such that h(0) = 1. We can write

$$\frac{p\left(f(sz) - f(tz)\right)}{\left(s^p - t^p\right)zf'(z)} = \alpha + (1 - \alpha)h(z). \tag{12}$$

After some simple computation, we have

$$-\beta \frac{zf''(z)}{f'(z)} + \beta \frac{z\left(f(sz) - f(tz)\right)'}{f(sz) - f(tz)} = \beta \frac{\alpha + (1 - \alpha)\left(h\left(z\right) + zh'\left(z\right)\right)}{\alpha + (1 - \alpha)h\left(z\right)}$$

It follows from (12) that

$$\frac{p(f(sz) - f(tz))}{(s^p - t^p)zf'(z)} \left(1 - \beta \frac{zf''(z)}{f'(z)} + \beta \frac{z(f(sz) - f(tz))'}{f(sz) - f(tz)}\right)$$

$$= \beta (1 - \alpha) zh'(z) + (1 - \alpha) (1 + \beta) h(z) + \alpha (1 + \beta)$$

$$= \Psi(h(z), zh'(z), z)$$

where

$$\Psi\left(u,v,t\right) = \beta\left(1-\alpha\right)v + \left(1-\alpha\right)\left(1+\beta\right)u + \alpha\left(1+\beta\right).$$

Now for some real numbers x and y satisfying $y \le -\frac{1+x^2}{2}$, we have

Re
$$(\Psi(ix, y, z))$$
 $\leq -\beta (1 - \alpha) \frac{1 + x^2}{2} + \alpha (1 + \beta)$
= $\frac{1}{2} (2\alpha + \beta (3\alpha - 1))$.

If we set

$$\Lambda = \left\{ \zeta : \operatorname{Re}\left(\zeta\right) > \frac{1}{2} \left(2\alpha + \beta \left(3\alpha - 1 \right) \right) \right\},\,$$

then $\Psi\left(ix,y,z\right)\notin\Lambda$ Furthermore, by virtue of (11), we know that $\Psi\left(h\left(z\right),zh'\left(z\right),z\right)\in\Lambda$. Thus by using Lemma 2, we have

$$\text{Re}(h(z)) > 0$$
,

which implies that the assertion of Theorem 4 holds true. \Box

Theorem 5. *If* $f(z) \in A_p$ *satisfies the condition*

$$\left| \left(p - \frac{2\alpha \left(s^p - t^p \right) z f'(z)}{\left(f(sz) - f(tz) \right)} \right)' \right| \le p\beta |z|^{\gamma}, \tag{13}$$

then $f(z) \in \mathcal{N}_{\alpha}^{p} \mathcal{S}(s,t)$ with $0 < \alpha < 1, 0 < \beta \leq \gamma + 1$ and $\gamma \geq 0$.

Proof. Let we define

$$F(z) = z \left(p - \frac{2\alpha \left(s^p - t^p \right) z f'(z)}{\left(f(sz) - f(tz) \right)} \right). \tag{14}$$

Then F(z) is regular in \mathbb{E} and F(0) = 0. The condition (14) gives

$$\left| \left(p - \frac{2\alpha \left(s^p - t^p \right) z f'(z)}{\left(f(sz) - f(tz) \right)} \right)' \right| = \left| \left(\frac{F(z)}{z} \right)' \right|$$

It follows from (13) that

$$\left| \left(\frac{F(z)}{z} \right)' \right| \le p\beta |z|^{\gamma}.$$

This implies that

$$\left| \left(\frac{F(z)}{z} \right) \right| = \left| \int_{0}^{z} \left(\frac{F(t)}{t} \right)' dt \right| \le \int_{0}^{z} \left| \left(\frac{F(t)}{t} \right)' \right| dt \le \frac{p\beta |z|^{\gamma + 1}}{\gamma + 1},$$

and therefore

$$\left| \left(\frac{F(z)}{z} \right) \right| < p,$$

which further gives

$$\left| \frac{(s^p - t^p) z f'(z)}{p \left(f(sz) - f(tz) \right)} - \frac{1}{2\alpha} \right| < \frac{1}{2\alpha}.$$

Hence $f(z) \in \mathcal{N}_{\alpha}^{p} \mathcal{S}(s, t)$. \square

Theorem 6. *If* $f(z) \in A_p$ *satisfies*

$$\left| \frac{(s^p - t^p)zf'(z)}{f(sz) - f(tz)} \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(f(sz) - f(tz))'}{f(sz) - f(tz)} \right) \right| < p\left(\frac{1 - \alpha}{\alpha} \right), \tag{15}$$

then $f(z) \in \mathcal{N}_{\alpha}^{p} \mathcal{S}\left(s,t\right)$, where $\frac{p}{p+1} < \alpha < 1$.

Proof. Let

$$q(z) = \frac{p(f(sz) - f(tz))}{(s^p - t^p)zf'(z)}.$$
(16)

Then q(z) is clearly analytic in \mathbb{E} such that q(0) = 1. After logarithmic differentiation and some simple computation, we have

$$z\left(\frac{1}{q(z)}\right)'q(z) = 1 + \frac{zf''(z)}{f'(z)} - \frac{z(f(sz) - f(tz))'}{f(sz) - f(tz)}.$$
(17)

From (16) and (17), we find that

$$z\left(\frac{1}{q(z)}\right)' = \frac{\left(s^p - t^p\right)zf'(z)}{p\left(f(sz) - f(tz)\right)}\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z\left(f(sz) - f(tz)\right)'}{f(sz) - f(tz)}\right).$$

Now by condition (15), we have

$$z\left(\frac{1}{q\left(z\right)}\right)' \prec p\left(\frac{1-\alpha}{\alpha}\right)z = \Theta\left(z\right)$$

where $\Theta(0) = 0$. Applying Lemma 3, we have

$$\frac{1}{q(z)} \prec 1 + \int_{0}^{z} \frac{\Theta(t)}{t} dt = \frac{\alpha + p(1 - \alpha)z}{\alpha},$$

which implies that

$$q(z) \prec \frac{\alpha}{\alpha + p(1 - \alpha)z} = H(z).$$
 (18)

We can write

$$\operatorname{Re}\left(1 + \frac{zH''(z)}{H'(z)}\right) = \operatorname{Re}\left(\frac{\alpha - p(1 - \alpha)z}{\alpha + p(1 - \alpha)z}\right)$$
$$\geq \frac{\alpha - p(1 - \alpha)}{\alpha + p(1 - \alpha)}.$$

Now since $\frac{p}{1+p} < \alpha < 1$, therefore we have

$$\operatorname{Re}\left(1+\frac{zH''\left(z\right)}{H'\left(z\right)}\right)>0.$$

This shows that H is convex univalent in \mathbb{E} and H (\mathbb{E}) is symmetric about the real axis, therefore

$$Re(H(z)) \ge H(1) \ge 0.$$
 (19)

Combining (16), (18), and (19), we deduce that

$$\operatorname{Re}(q(z)) > \alpha$$
,

which implies that $f(z) \in \mathcal{N}^{p}_{\alpha}\mathcal{S}(s,t)$. \square

Author Contributions: Conceptualization, S.M., M.A. and H.M.S.; methodology, S.M. and M.A.; software, E.S.A.A.; validation, S.M., M.A. and H.M.S.; formal analysis, S.M.; investigation, S.M.; resources, F.G.; data curation, S.M. and M.A.; writing–original draft preparation, S.M.; writing–review and editing, E.S.A.A.; visualization, S.M. and H.M.S.; supervision, S.M. and M.A.; project administration, S.M.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the reviewers of this paper for his/her valuable comments on the earlier version of the paper. They would also like to acknowledge Salim ur Rehman, Sarhad University of Science & Information Technology, for providing excellent research and academic environment.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Miller, S.S.; Mocanu, P.T. Differential subordinations and inequalities in the complex plane. *J. Differ. Equ.* **1987**, 67, 199–211. [CrossRef]
- 2. Uralegaddi, B.A.; Ganigi, M.D.; Sarangi, S.M. Univalent functions with positive coefficients. *Tamkang J. Math.* **1994**, *25*, 225–230.
- 3. Owa, S.; Nishiwaki, J. Coefficient estimates for certain classes of analytic functions. *J. Ineq. Pure Appl. Math.* **2002**, *3*, 72.
- 4. Nunokawa, M.; Owa, S.; Polattoglu, Y.; Caglar, M.; Duman, E.Y. Some sufficient conditions for starlikeness and convexity. *Turk. J. Math.* **2010**, *34*, 333–337.
- 5. Owa, S.; Srivastava, H.M. Some generalized convolution properties associated with certain subclasses of analytic functions. *J. Ineq. Pure Appl. Math.* **2002**, *3*, 42.
- 6. Polatoğlu, Y.; Blocal, M.; Sen, A.; Yavuz, E. An investigation on a subclass of *p*-valently starlike functions in the unit disc. *Turk. J. Math.* **2007**, *31*, 221–228.
- 7. Dixit, K.K.; Pathak, A.L. A new class of analytic functions with positive coefficients. *Ind. J. Pure. Appl. Math.* **2003**, *34*, 209–218.
- 8. Uyanik, N.; Shiraishi, H.; Owa, S.; Polatoğlu, Y. Reciprocal classes of p-valently spirallike and p-valently Robertson functions. *J. Ineq. Appl.* **2011**, *2011*, 61. [CrossRef]
- 9. Arif, M.; Umar, S.; Mahmood, S.; Sokol, J. New reciprocal class of analytic functions associated with linear operator. *Iran. J. Sci. Technol. Trans. A Sci.* **2018**, 42, 881. [CrossRef]
- 10. Arif, M. Sufficiency criteria for a class of *p*-valent analytic functions of complex order. *Abstr. Appl. Anal.* **2013**, 2013, 517296. [CrossRef]

11. Ponnusamy, S.; Singh, V. Criteria for strongly starlike functions. *Complex Var. Theory Appl.* **1997**, *34*, 267–291. [CrossRef]

- 12. Ravichandran, V.; Selvaraj, C.; Rajalakshami, R. Sufficient conditions for starlike functions of order *α*. *J. Ineq. Pure Appl. Math.* **2002**, *3*, 81.
- 13. Sokół, J.; Spelina, L.T. On a sufficient condition for strongly starlikeness. *J. Ineq. Appl.* **2013**, 2013, 383. [CrossRef]
- 14. Uyanik, N.; Aydogan, M.; Owa, S. Extension of sufficient conditions for starlikeness and convexity of order *α. Appl. Math. Lett.* **2011**, *24*, 1393–1399. [CrossRef]
- 15. Yang, D.-G. Some criteria for multivalently starlikeness. *Southeast Asian Bull. Math.* **2000**, 24, 491–497. [CrossRef]
- 16. Arif, M.; Ayaz, M.; Aouf, M.K. New criteria for functions to be in a class of *p* -valent alpha convex functions. *Sci. World J.* **2013**, 2013, 20191. [CrossRef] [PubMed]
- 17. Arif, M.; Ayaz. M.; Iqbal, J.; Haq, W. Sufficient conditions for functions to be in a class of *p* -valent analytic functions. *J. Comput. Anal. Appl.* **2013**, *16*, 159–164.
- 18. Jack, I.S. Functions starlike and convex of order α. J. Lond. Math. Soc. 1971, 3, 469–474. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).