Existence and Uniqueness Results for a Coupled System of Caputo-Hadamard Fractional Differential Equations with Nonlocal Hadamard Type Integral Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries
3. Existence and Uniqueness Results
- Let be continuous functions and there exist real constants and such that
- There exist positive constants such that
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Di Paola, M.; Pinnola, F.P.; Zingales, M. Fractional differential equations and related exact mechanical models. Comput. Math. Appl. 2013, 66, 608–620. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Vieru, D.; Fetecau, C.; Shah, N.A. Convective flows of generalized time-nonlocal nanofluids through a vertical rectangular channel. Phys. Fluids 2018, 30, 052002. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: New York, NY, USA, 2010. [Google Scholar]
- Tarasova, V.V.; Tarasov, V.E. Logistic map with memory from economic model. Chaos Solitons Fractals 2017, 95, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Hadamard, J. Essai sur l’etude des fonctions donnees par leur developpment de Taylor. J. Math. Pure Appl. Ser. 1892, 8, 101–186. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 348–360. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. Sequential fractional differential equations and inclusions with semi-periodic and nonlocal integro-multipoint boundary conditions. J. King Saud Univ. Sci. 2019, 31, 184–193. [Google Scholar] [CrossRef]
- Aljoudi, S.; Ahmad, B.; Nieto, J.J.; Alsaedi, A. On coupled Hadamard type sequential fractional differential equations with variable coefficients and nonlocal integral boundary conditions. Filomat 2017, 31, 6041–6049. [Google Scholar] [CrossRef]
- Aljoudi, S.; Ahmad, B.; Nieto, J.J.; Alsaedi, A. A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions. Chaos Solitons Fractals 2016, 91, 39–46. [Google Scholar] [CrossRef]
- Garra, R.; Polito, F. On some operators involving Hadamard derivatives. Integral Transforms Spec. Funct. 2013, 24, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Liu, L. Existence of solutions for a sequential fractional differential system with coupled boundary conditions. Bound. Value Probl. 2016. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; O’Regan, D.; Xu, J.; Fu, Z. Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions. J. Inequal. Appl. 2019. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Ma, Q.; Wang, R.; Wang, J.; Ma, Y. Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Comput. 2015, 257, 436–445. [Google Scholar] [CrossRef]
- Wang, J.R.; Zhou, Y.; Medved, M. Existence and stability of fractional differential equations with Hadamard derivative. Topol. Methods Nonlinear Anal. 2013, 41, 113–133. [Google Scholar]
- Wang, J.R.; Zhang, Y. On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives. Appl. Math. Lett. 2015, 39, 85–90. [Google Scholar] [CrossRef]
- Jarad, J.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012. [Google Scholar] [CrossRef] [Green Version]
- Abbas, S.; Benchohra, M.; Hamidi, N.; Henderson, J. Caputo-Hadamard fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal. 2018, 21, 1027–1045. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Existence and uniqueness of solutions for Caputo-Hadamard sequential fractional order neutral functional differential equations. Electron. J. Differ. Equ. 2017, 36, 1–11. [Google Scholar]
- Benchohra, M.; Bouriah, S.; Graef, J.R. Boundary Value Problems for Non-linear Implicit Caputo-Hadamard-Type Fractional Differential Equations with Impulses. Mediterr. J. Math. 2017, 14, 206–216. [Google Scholar] [CrossRef]
- Cichon, M.; Salem, H.A.H. On the solutions of Caputo-Hadamard Pettis-type fractional differential equations. Rev. R. Acad. Cienc. Exactas FÃs. Nat. Ser. A Mat. RACSAM 2019, 113, 3031–3053. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Ren, X.; Zhang, L.; Ahmad, B. Explicit iteration and unique positive solution for a Caputo-Hadamard fractional turbulent flow model. IEEE Access 2019, 7, 109833–109839. [Google Scholar] [CrossRef]
- Yukunthorn, W.; Ahmad, B.; Ntouyas, S.K.; Tariboon, J. On Caputo-Hadamard type fractional impulsive hybrid systems with nonlinear fractional integral conditions. Nonlinear Anal. Hybrid Syst. 2016, 19, 77–92. [Google Scholar] [CrossRef]
- Zhang, X. On impulsive partial differential equations with Caputo-Hadamard fractional derivatives. Adv. Differ. Equ. 2016. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Kong, H. Existence of solutions for nonlinear Caputo-Hadamard fractional differential equations via the method of upper and lower solutions. J. Nonlinear Sci. Appl. 2017, 10, 5744–5752. [Google Scholar] [CrossRef] [Green Version]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljoudi, S.; Ahmad, B.; Alsaedi, A. Existence and Uniqueness Results for a Coupled System of Caputo-Hadamard Fractional Differential Equations with Nonlocal Hadamard Type Integral Boundary Conditions. Fractal Fract. 2020, 4, 13. https://doi.org/10.3390/fractalfract4020013
Aljoudi S, Ahmad B, Alsaedi A. Existence and Uniqueness Results for a Coupled System of Caputo-Hadamard Fractional Differential Equations with Nonlocal Hadamard Type Integral Boundary Conditions. Fractal and Fractional. 2020; 4(2):13. https://doi.org/10.3390/fractalfract4020013
Chicago/Turabian StyleAljoudi, Shorog, Bashir Ahmad, and Ahmed Alsaedi. 2020. "Existence and Uniqueness Results for a Coupled System of Caputo-Hadamard Fractional Differential Equations with Nonlocal Hadamard Type Integral Boundary Conditions" Fractal and Fractional 4, no. 2: 13. https://doi.org/10.3390/fractalfract4020013
APA StyleAljoudi, S., Ahmad, B., & Alsaedi, A. (2020). Existence and Uniqueness Results for a Coupled System of Caputo-Hadamard Fractional Differential Equations with Nonlocal Hadamard Type Integral Boundary Conditions. Fractal and Fractional, 4(2), 13. https://doi.org/10.3390/fractalfract4020013