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Abstract: In this paper, we study a coupled system of Caputo-Hadamard type sequential fractional
differential equations supplemented with nonlocal boundary conditions involving Hadamard fractional
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are obtained. We make use of the Leray-Schauder alternative and contraction mapping principle to
derive the desired results. Illustrative examples for the main results are also presented.
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1. Introduction

Fractional calculus has emerged as an important area of investigation in view of its extensive
applications in mathematical modeling of many complex and nonlocal nonlinear systems. An important
characteristic of fractional-order operators is their nonlocal nature that accounts for the hereditary
properties of the underlying phenomena. The interactions among macromolecules in the damping
phenomenon give rise to a macroscopic stress-strain relation in terms of fractional differential operators.
For the fractional law dealing with the viscoelastic materials, see [1] and the references cited therein.
In [2], transport processes influenced by the past and present histories are described by the Caputo
power law. For the details on dynamic memory involved in the economic processes, see [3,4].

In 1892, Hadamard [5] suggested a concept of fractional integro-differentiation in terms of the
fractional power of the type (t% )9 in contrast to its Riemann-Liouville counterpart of the form (% )9,
The Hadamard fractional derivative contains a logarithmic function of an arbitrary exponent in the
kernel of the integral appearing in its definition. For the details of Hadamard fractional calculus,
we refer the reader to the works [6-9]. Fractional differential equations involving Hadamard derivative
attracted significant attention in recent years, for instance, see [10-20] and the references cited therein.

More recently, Jarad et al. [21] introduced Caputo modification of Hadamard fractional derivative
which is more suitable for physically interpretable initial conditions as in case of Caputo fractional
differential equations. One can find some recent results on Caputo-Hadamard type fractional differential
equations in [22-28] and the references cited therein.
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In this paper, we introduce a new class of boundary value problems consisting of Caputo-Hadamard
type fractional differential equations and Hadamard type fractional integral boundary conditions.
In precise terms, we investigate the following boundary value problem:

(CDY + ACD* Vu(t) = f(t,u(t),v(t), Déo(t)), 1<a <2,0<E<1,A>0,
(CDP + ACDP Yo (t) = g(t, u(t), “Dlu(t),v(t),1 < p<2,0 < E<1,

1
u(l) =0, allﬁv(iyl) + blu(T) =Ky, 11>0,1< m < T,

(1) =0, aZ"u(np) + bov(T) =Ky, 12 >0, 1 < < T,

where D) and Z() respectively denote the Caputo-Hadamard fractional derivative and Hadamard
fractional integral (to be defined later), f, ¢ : [1, T] x R® — R are given appropriate functions and
a;, b;, K;, (i = 1,2) are real constants.

The rest of the paper is organized as follows. In Section 2, we recall the background material
related to the topic under investigation and prove an auxiliary lemma which plays a key role in deriving
the desired results. Section 3 contains the main results.

2. Preliminaries

In this section, we recall some preliminary concepts of Hadamard and Caputo-Hadamard
fractional calculus related to our work. We also prove an auxiliary lemma, which plays a key role in
converting the given problem into a fixed point problem.

Definition 1 ([6,7]). The Hadamard fractional integral of order ¢ € C, R(q) > O, for a function g € LF|a, b],
0<a<t<b< oo, is defined as

) = o [ (logt)q_l 8) g,

I'(q s s
b -1
Il g(t) = 1”(1!1)/t (log?)q @ds.

Definition 2 ([6,7]). Let [a,b] C R, § = t& and AC}[a,b] = {g: [a,b] — R : 6" '(g(t)) € ACla,b]}.
The Hadamard derivative of fractional order q for a function g € ACJ [a, b] is defined as

D) = o0 = ey (1) [ (eg?) "

wheren —1 < q < n, n = [q] + 1 and [q] denotes the integer part of the real number q and log(-) = log,(-).

Definition 3 ([21]). For R(q) > 0, n = [R(q)] +1,and g € ACJ[a,b]0 < a <t < b < oo, the
Caputo-type modification of the Hadamard fractional derivative is defined by

CDZ+g(t) = DZ+

771—1 g(a) o k]
3(s) k;o 0 (10 2) |0,

CDZ,g(t) =D]

n—=1_1\ksk
OEDY (nkang;)k] o)

k=0
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Theorem 1 ([21]). Let R(q) > 0,n = [R(q)] + 1and g € AC}[a,b], 0 < a <t < b < oco. Then D7, g(t)
and “D]_g(t) exist everywhere on [a, b] and

(a) ifg & No,
Ci _ 1 ' f e n @_ n=qy sn
Diat) =gy [ (lsg) 95T = (7es0)

n—

CDZ_g(t) = Fggl_)r;) /tb (10g;>”_‘7—1 5@(5)% = (—1)n(12’__’1)5ng(t);
(b) ifqg=necNy,
O “Dl.g(t) =d"g(t),  “Dl_g(t) = (=1)"6"g(¢t).

In particular,
‘DY g(t) = “Dy-g(t) = g(t).

Remark 1 ([29]). For q € Csuch that 0 < q < 1, the Caputo-Hadamard fractional derivative is defined as
1 t £\
Cpi — _ /
D,-8(t) = T =q) /a (IOg S) 8 (s)ds,

“Dj g(t) = 1“(1_—117) /tb (10g§)_q g/ (s)ds.

Lemma 1 ([21]). Let R(q) > 0,n = [R(q)] + 1and g € C[a,b]. f R(q) # 0or g € N, then
DL (I1.8)(t) = g(1), Dy (Ij-8)() = g(t).

Lemma 2 ([21]). Let g € AC}[a,b] or Cf[a,b] and q € C, then

[uny

n—

k
1,620 =50~ £ 25 (10g ).

n—1 5k (b) bk
I (“Di_ — o(t) — CONSTCAN
b (Dy-8) (1) = g(t) kZZO, i (Ogt)

Now we present an auxiliary lemma dealing with the linear variant of the problem (1).
Lemma 3. Let hy, hy € AC}[1, T]. Then the solution of the linear system of fractional differential equations:

(CD*+ ACD* Du(t) = h(t),
(CDP+ADP No(t) = hy(t), @)

supplemented with the boundary conditions:

u(l)=0 , ;mZMo(p) +bu(T) =Ky, 11 >0, 1<y <T,
0(1) =0 , aZ"u(n2)+bo(T) =Kz, 72 >0, 1<y <T, ©)
is given by
_t=A T T
ut) = “Ai){(KzAzKle) +T {ble/l s’\’lI""lhl(s)ds—bzAz/l s’\’llﬁ’lhz(s)ds]

a1By (™M 1AM (g /s A1yt
" r('Yl)-/l (log s) s (_1 m* L hz(m)dm>ds
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 mAy 12\ /s A—17a—1
/1 (log ) s (1m z hl(m)dm>ds

I(72) s
t
+ / 1Ty (s)ds, @)
1
and
1_t7)\ T T
o(t) = (M){(KlBl—KzAl)JrT"[bzA1 /1 M 1TP 1y (s)ds — by By /1 s)‘*ll“*lhl(s)ds}
+ 2241 /Wz (log @)72715*“‘*1)(/5 m’\’ll""lhl(m)dm)ds
T(72) 5 N
_ mBy [/ R A W A L W g N
o) /1 (log s) s (/1 m* T hz(m)dm)ds
t
v o /1 11y (s)ds. ®)
where
A =B1Ay — A1By #£0, (6)
by Y ! /’71 A —(A+1)
Al =—=(1- Ay = —— log % 7
N ey L (o) LS
_ & 1\ __(A+1) _ b A
B]_F(%H)/1 (108 S) s ds, Bo=2(1-T). ®)

Proof. In view of Theorem 1 and lemma 2, the general solution of the system (2) can be written as

t
u(t) = cot 4 A=) 1 [T U (s)ds, ©)
1

t
o(t) = dot ™ + %(1 —t )+t / APy (s)ds, (10)
1

where ¢;, d;(i = 0,1) are unknown arbitrary constants. Using the data u(1) = 0, v(1) = 0 given by (3)
in (9) and (10), we find that ¢y = 0 and dg = 0. Thus (9) and (10) take the form:

a) = G-t [T s (1)
o) = -+t [T () 1)

Using the nonlocal integral boundary conditions: a,Z7v(171) + byu(T) = Ky and a,Z7?u(12) + byo(T) = K;
in (11) and (12), we obtain
Aqcr + Axdy = T, Biey + Bady = o, (13)

where A; and B; (i = 1,2) are respectively given by (7) and (8), and

—1 S
T o= K- ai /1'71 (logﬂ)% s—(A+1) (/1 mA‘llﬁ‘lhz(m)dm) ds

I(1) . s
T
by TN /1 1Ty (s)ds, (14)
_ @ 2 mA\”2"t g /s A—17a—1
T = K r(’Yz)/l (logs) s " Z% “hy(m)dm ) ds

T
by /1 A 1TP 1y (5)ds. (15)



Fractal Fract. 2020, 4, 13 50f 15

Solving the system (13) for c; and dq, we find that

_ —A T .
°T (KZAZA ba) TA [ble/ s)‘*lI“*lhl(s)ds—bzAz/ sLlIﬁflhz(s)dS}
1 1
Elle M ﬂ - 1 _(A+1) /s 1Bt
- a2A2 " 1\ () /s Alra—1
AT (72) / ( s) ( 1 m* T hl(m)dm)ds,
— —A T T
di = (K1B; — K2 Aq) +T {bzAl/ SAilIﬁilhz(S)dS—blBl/ SA*lI”‘flhl(s)ds}
A A " A
T2— 1

—(A+1) ( /1 : mA—lga—lhl(m)dm) ds (17)

azAl /772 1
* AT (72) ( %8s
@By /’“ (1052
AT (1) 5
where A is given by (6). Substituting the values of ¢; and d; in (11) and (12), we obtain the solution (4)
and (5). This completes the proof. O

)
)71 1 —(A+1) ( /15 mA*115*1h2(m)dM)d5/

3. Existence and Uniqueness Results

This section is concerned with the main results of the paper. First of all, we fix our terminology.
Let X = {x : x € C([L,T],R) and  Déx € C([I,T,R)} and Y = {y : y € C([1,T],R)
and _CDéy € C([1, T]|,R)} be the spaces respectively equipped with the norms ||x|x = /x| +
ICDEx]| = sup,cp g [x(1)] + sup,cp 71 [CDEx(D)] and Ilylly = [yl + ICDEY] = supyepy 7 ly(8)] +
SUP;e1,1] |“Déy(t)|. Observe that (X,|.|x) and (Y,].]|y) are Banach spaces. In consequence,
the product space (X x Y, |.||xxy) is a Banach space endowed with the norm ||(x,y)|xxy =
Jllx + lylly for (x,) € X x Y.

Using Lemma 3, we introduce an operator T : X X Y — X X Y as follows:

T(u,0)(t) == (T1(,0)(t), Ta(u,0)(1)), (18)
where

Ti(u,0)(t) = (1 7\2_/\) {(KzAz —Ki1By) + T [ble /1T S/\flzailf(s,H(S),U(S),C'DgU(S))ds

- b /1TSHI’Hg(S,u(s),CDfu(s),v(s))ds]

g " (og )" s O ([ 12 g, u(on), D), o)) s

-~ tog (e LY e ( [Tz (m,u(m)w(m),%@v(m))dm)ds}

0 [T ) 006), Do), (19)
B - G5 {(KlBl ~KoA) 4+ T s [ ST g5, u), ODu(s), o(s) s

- B /1Ts}“lI"‘*lf(s,u(s),v(s),Cng(s))ds}

+ ayAq /1"72 (10g77—2>727157()‘+1)(/:m)‘*lz“’lf(m,u(m),v(m),Cng(m))dm)ds (20)

S

I‘lel /1"71 (logm)%15_(A+1)(/15m)x—lf/g—lg(m,u(m),CDgu(m),v(m))dm>ds}
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t
+ tJ/l SMATZP g (s,u(s), “Dlu(s), o(s))ds.

Next we enlist the assumptions that we need in the sequel.

(H1) Let f,g: [1,T] x R3 — R be continuous functions and there exist real constants y;, 7; > 0 (j =
1,2,3) and pg > 0, 19 > 0 such that

Ho + palx1| + pa|xa| + palxs],
T + T1 | x1] +’L’2|x2‘ +T3|X3|,VXJ' eR,j=1,23.

|f(t,x1, %2, x3)|

<
|g(tl X1,X2, X3>| S

(Hz) There exist positive constants [, /1 such that

|f(t x1,x2,x3) — f(t,y1,v2,3)] < [(|x1 —ya|+ |x2 —y2| + |x3 —y3]),
g(t,x1,x2,x3) = (L, y1,y2,93)| < hi(lx1i =yl +|x2 =yl + [x3 —ys]) , VE € [LT], x, y; € R.
For computational convenience, we set
o = sup ‘lftf/\lzllfT*’\, (21)
te[1,T]
_ p‘KzAz —Kle| = |K2A2 —Kle‘ 1*6
_ P‘KlBl *K2A1| = |KlBl *KzAl‘ 1-¢
R oo laalls] ez (logT)
M = AT+ D) [\b1\|32|(10gT) + m(log'h) ] + Tar1)’ (24)
1-¢
u _ (osT) ealldl (o e : o1
M, = m“blHBz\(logT) + m(long) +A18|(1ogT)" +ala|(logT) |, (25)
- 0 |111HB2| B+m B
M2 = ArG+D [F(71+1) (log”l) + ‘bz”Aﬂ(logT) ] (26)
1-¢
o (logT) b Bl pon
_ 14 «, laallA] &+72
Ni= amn [lBlGes T + e s (lognz) ], (28)
1—
— (logT) a2l e
Ny = m[\blll&l(logﬂ +m<10g772) ], (29)
B
o mlBl B by (losT)
N = A|A\r(,3+1)[r(ylﬂ)(log’“) + Il r] (1o )| + T(B+1)’ (30)
1-¢
— (log T) B |ay||B] Ftn p p-1
N, = m[\bQHAﬂ(logT) +m<logm) +A181(10gT)" + pla|(1ogT)" |, (31)
0, 0, M N:
= O +0,+ — + +po( My + Ny + — +
1 Ot g Trpog (M N g i)
M, N,
+ T0<M2+N2+1"(2—§)+1"(276))’ (32)
M N M N
@ = m(Ml+N1+F(2—1¢f)+F(2i§))+max{r1’T2}<M2+N2+l"(2—2§)+F(Zj§))' (33)
_ M, Ny M, N,
@ = max{p, ps}(Mi+ N + faen e )) +15 (M + Ny + feon r(z_g)). (34)
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Now, we are in a position to present our first existence result for the boundary value problem (1),
which is based on Leray-Schauder alternative.

Lemma 4 (Leray-Schauder alternative [30]). Let F : E — E be a completely continuous operator. Let ¢(F) =
{x € E: x = «F(x) forsome 0 < x < 1}. Then either the set €(F) is unbounded or F has at least one
fixed point.

Theorem 2. Assume that (Hy) holds and that max{w@,, @3} < 1, where @, and w3 are given by (33) and
(34) respectively. Then the boundary value problem (1) has at least one solution on [1, T].

Proof. In the first step, we establish that the operator T: X x Y — X x Y is completely continuous.
By continuity of the functions f and g, it follows that the operators T; and T, are continuous. In consequence,
the operator T is continuous. In order to show that the operator T is uniformly bounded, let 3 C X x Y
be a bounded set. Then there exist positive constants L; and L, such that | f(t, u(t), v(t), Do (t))| <
Ly, |g(t,u(t), S Dfu(t),v(t))| < Ly, ¥(u,v) € Q. Then, for any (u,v) € O, we have

[KaAz — KiBalp | pLy | |b1]|Bo| T /T A-1 /s s \*~2dm
< = it
(o) (B < AAL T Ap]) Ta-1) ) (f (ros3,) )ds

AL ()0 ()
b ([ () )

o AT [ g £

L [ ()00 f g ) ),

< [Kads — KiBylp pLq
_l’_
= ATA| AAT(a + 1)

|az|| Az e
[ S —
1111821 (0 T)* + 7 =2 (logrz)

© (7)o (o) el (s 7)

which, on taking the norm for t € [1, T] and using (22), (24) and (26) yields

T (u,0)|| < ©1+ LiMy + LyMy.

Since 0 < ¢ < 1, we use Remark 1 to get

ICDETy (1, 0) ()| < ml)/lt (1og£)_5 T(u,0)()| % < — 1 (@ + LMy + LoM) ,

Z s STR-0)

where ®;, M; and M, are respectively given by (22), (25) and (27). Hence

T3 (,9) | x = T (1, 0) || + |“DETy (u, 0)[| < @1 + Ly My + LoM; + (@1 + LiM; + LoMp) . (35)

r2-9¢)
Similarly, using (23), (28) and (30), we obtain
p|K1B1 — Ka A pL1 o, la2flAd] 2
< @4l
Ta(u,0) ()] < At Al LBl Gos T 2 s (log )]
pLz |b2‘ ‘Al | B+m B Ly B
T AArBED [ty Ulosm) " 1l 41 (10g T) | + TE+1) (logT)
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< O+ LNy + LN,

As before, one can find that

|CD€T2(u, v) (t)| < (@2 + Llﬁl + Lzﬁz) ,

1
r2-2¢)
where ©,, N; and N} are respectively given by (23), (29) and (31).

In consequence, we get

HTz(u,v)Hy = HTz(u,U)H + HCDgTz(u,TJ)H < @2+L1N1+L2N2+ @2+L1Nl +L2N2). (36)

1
rz g

From the inequalities (35) and (36), we deduce that T; and T, are uniformly bounded, which implies
that the operator T is uniformly bounded.
Next, we show that T is equicontinuous. Let t;, t; € [1, T| with t; < t,. Then we have

|T1(u,0)(t2) — T1(u,0)(t1)]

v
M|

IN

T
{|K2A2 —KiBy| + T [|b1||Bz| /1 AT f(s,u(s), v(s), SDCo(s)) |ds

Illaal [T (s, u), CDu(s), 0(5) ]

-1 s -
+ |{;1(|’|Y?§| 1q1(log%)% s*()‘ﬂ)(/l m’\*lfﬁfl\g(m,u(m),CDgu(m),v(m))Mm)ds

N MﬂMﬂ W 5 12) [ ONE) /”m\%wwﬂmu<><m»%ﬁmmmm@“}

+ ‘ti)\ _ t{A

ﬂ LA (s, u(s), o(s), SDRu(s)) s
5 [T ), 000,

Oasty — ty,

+

independent of (u,v) on account of | f(t,u(t),v(t),“Dév(t))| < Ly and |g(t, u(t), “Déu(t),v(t))| < Ls.
Also we have

ICDETy (1, 0) (2) — CDE Ty (u, 0) (1)

r(zl_g) /;2 (108%)75711/(“/0)(5)0{5 - /;1 (log%){T{(u,v)(S)ds‘

I@{Atl (10g%2> ¢ (10g ) 5‘ _A—1d5+/t1fz(log?)—és_(A+1)d5} y

T
X {|K2A2 — KyBy| + T {|b1||B2| /1 s)‘*lI"‘*l|f(s,u(s),v(s),C’ng(s))Ms

IN

IN

s ol Aol [ 5T gls, (), CDu(s) o)l

. -1 .S _
+ |Lll"1(|'|y?§| 1’71(10g77s—1)71 s_(/\“)(/1 mA_llﬁ_l|g(m,u(m),CDgu(m),v(m))Mm)ds

|ﬂz||A2| ’72 772 71 () /m/\ LT £ (m, u(m), o (m)lcp%(m))mm)ds}
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)
_ (log tl)_ ‘S,(/\+1) (/15 Wl)‘ilzﬂhl‘f(m,u(m),v(m),c'ng(m))|dm)ds
+ _ /tlfz (10g%2)_§s—(A+1) (/15 m)\_lfa_l|f(m,u(m),U(M),CD§v(m))|dm)ds
1 h
* =g _
b (108 2) T s s, 000, Do) s 0as 1 1

independent of (u,v). In a similar manner, one can obtain that

(log %2) B - (log %) _5‘5_11"‘_1 |f(s,u(s),v(s), “D%v(s)|ds

T2 (1, 0)(t2) — Ta(u,0)(t1)| — 0 and |SDéTo(u,v)(t2) — DTy (u,v)(t1)| — 0

as tp — t; independent of (u,v) on account of the boundedness of f and g. Thus the operator T
is equicontinuous in view of equicontinuity of T; and T,. Therefore, by Arzela-Ascoli’s theorem,
it follows that the operator T is compact (completely continuous).

Finally, it will be shown that the set ¢(T) = {(u,v) € X x Y : (u,v) = «T(u,v) ; 0 < x < 1}
is bounded. Let (u,v) € ¢(T). Then (u,v) = «T(u,v). For any t € [1,T]|, we have u(t) =
«Ty(u,0)(t), v(t) = xTp(u,v)(t). Using (Hy) in (19), we get

u(t)
< AfN{KZAZ—Kle|+TA[r”(’;||_le|) ATsAfl(As(log%)“_zx
x (o + palu(m)| + pelo(m)] + s “Deo(m)]) ) s
gy o (os)" (o )+ i Dutm + wfoton)) 5 )]
+ r(7|1a)1r||(1;2|_ 1) /1771 (10g%)”_1s—@+1> x

(L ([ (108 ™) [0+ b)) + olDEu0) + ()] L) dm)as
+ iy T (os ) ([ (s 2)
% (o + mlu(r)| + palo(r)| + ps|“DEo(r)]) d[)dm)ds}

i r(';_f1> [ ([ (10.2)" [0+ palstm) + alo(m)| -+ sl Do) | 22 s,

which, on taking the norm for t € [1, T], yields

lull < @1+ (pro+ ol + max{pes, s} olly ) My

+ (w0 +max{z, w}ullx+wloly) M

Similarly one can find that

ISDéu|| <

1 _ _
1O+ (vt mllullx +max{ye wa} ol )
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+ (7o +max{m, o Hlullx + sllolly ) Ma }.
Consequently, we have
lullx = full+ [ “Deu|

< 01+ F(2®1§) + (Ml + r(é\/hg)) (ﬂo + paflul x + max{uz, P‘3}||U||Y)

+ (Mo r(zMj 5) (0 + max{z, w ulx + ol ). (37)

Likewise, we can derive that

lolly < ®2+r<2® €)+(N1+r(11\[ =) (v pllul + max{ s o) o]y
+ (Nt 2y (o madn nlulx + wloly). (39)
From (37) and (38), we get

\|u||x+\|v||Y—@1+@z+r(2@ ey
+ yo(Ml—&—Nl—kr(leC_) )+T0<M2+N2+ reon (Eg))
+ \|u||X[y1<M1+N1+ oo C )+max{rl,r2}(M2+N2+r(2M 5+ (ZN C))] (39)
+ Hv|\x[max{y2,y3}(Ml+N1+r(éw_g)+r(2N7§)>+T3(M2+N2+F(2M_2§)+r(2Nj§))]
< @1 +max{@, @3} (u, )| xxv,

which, together with || (i, v)| xxy = ||u||x + ||v]]y, yields

1
— max{@y, @3}

”(ulv)HXxY < 1

This shows that ¢(T) is bounded. Thus, Lemma 4 applies and that T has at least one fixed point.
This implies that the boundary value problem (1) has at least one solution on [1, T]. The proof is
completed. O
Example 1. Consider the following coupled system of Caputo-Hadamard type sequential fractional differential equations
1
(CDF+ 2 DIx(t) = f(t,x(1),y(),“Diy(H)), te (1,10,
(CDF + % CDhy(t) = gt x(t),“Dix(t),y(t), te[1,10], (40)

equipped with nonlocal coupled non-conserved boundary conditions:

u(l) = 0, —27%0(2) +u(10) = 3,
v(1) = 0, —Ziu(3)+20(10) = 7. (41)
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Here, A = 1/2,& = 3/2,p = 5/4,T = 10,a1 = —2,ap = —1,by = 1,by = 2,K; = 3,K, = 7,11 =
2,1 =3,711=3/2,72=1/4,¢8=1/3, =1/4,

1 1

300,50, DHy(0) = 5t (3= 1)+ gsin(x(0) + (0] + DIy(0) )

and

ol 1 (1t ICDIx(t)| .
8(t,x(t),"Dix(t), y(t) = 15 (2 + [x(6)] + W +Sm(y(f))> :
Clearly, the functions f and g satisfy the condition (Hy) with py = %,‘ul = 11@,;42 =z = 51—0,1'0 =
5 Tl =T = T3 = 5. Using the given data, we find that Ay ~ 1.3675, | Az| ~ 0.2186, |B;| ~ 0.7865, B, ~
2.7351, |A| ~ 3.5684, p ~ 0.6838, ©1 ~ 2.5581, ©®; ~ 3.49653, O, ~ 2.76436, O, ~ 3.52477, M; ~
5.4654, M, ~ 0.9275, M ~ 9.5348, M, =~ 1.2677, N; ~ 1.8178, N, ~ 5.2756, N1 ~ 1.6640, N, ~
7.9915, @ =~ 25.0711, @, ~ 0.530375, @3 ~ 0.725385. With max{@,, w3} < 1, all the conditions of
Theorem 2 are satisfied. Therefore, the problem (40) and (41) has a solution on on [1,10].

The next result deals with the uniqueness of solutions for the problem (1) and relies on Banach
contraction mapping principle. For computational convenience, we introduce the notations:

q)l = @1 + 7‘1M1 + 7’2M2, Tl = €M1 + éle, (1)2 = @2 + 7’1N1 + 7’2N2, ‘I’z = £N1 + élNz,
D = O1+rM+1rMy, ¥1 =M + My, 3 = Oy + 11Ny + 1Ny, ¥ = (N7 + 1Ny,
r1 = sup f(+£0,0,0) <oo, 1, = sup g(£0,0,0) < oo. 42)
te[LT] te[1,T]

Theorem 3. Assume that (Hy) holds. Then the boundary value problem (1) has a unique solution on [1,T],
provided that
¥, 1 ¥, 1
< — and Yo+ =,
r(2-3) -9 "2

where ¥; and ¥; (i = 1,2) are given by (42).

(43)

Proof. Let us fix

D+ b, +
rzmax{ ( é) o o) e:) }
(11;1 =+ I(2— é)) 2 (‘PZ + r(2— g))

where ®;, ®;, and ¥;, ¥; (i = 1,2) are given by (42). Then we show that TB, C B,, where
B, ={(u,v) € Xx X :|(u,0)||xxy <r}.
For (u,v) € B,, we have

|£(8,u(t),0(t), “Dlo(1))] |£(¢,u(t),0(t), “DEo(t)) — £(t,0,0,0)| + |£(£,0,0,0)|

Ulu®)] + o))+ “DE ()] + 11
Elllullx +llolly] +r1 < 0 (u,0) Ixxy +11 < br +11.

ININ A

Similarly, we can find that

g (t,u(t), S Déu(t),v(t))| < byr + 1y
Then

IT1(u,0)(t)] < O1+rMy+roMy+ (M) + 6 Mp)r < P+ ¥y,
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and

CDETy (u,0)(1)] <

(@1 + My + 12y + (VD + 7)1 | < 21 : @+ 70|,

r2-¢) r(2-¢)
Therefore,
- o) ¥ r
T =|T CpeT <d L4y L 44
TG0 o)l = 1T o)l + DT o)l < @1+ s + [N+ prtglr <y @9
In similar manner, we obtain
1 __ _
T B <D+ ¥ CPeT: H| < D, + Fyr|.
T, 0)(1)] < @2+ Yor,  [DITa(,0)(1)] < 5 |2+ For]
In consequence, we get
62 ?2 r
T = ||T: CpiT: <P+ —2 4+ |¥ <. 4
ITwo)ly = T+ D@ o) < @+ ot s+ Bt g lrsy @)
Thus, it follows from (44) and (45) that
IT(w,0)llxxy = [Ti(u,0)l|x+|T2(w,0)|x <7,

which implies that TB, C B;.
Next we show that the operator T is a contraction. For that, let u;, v; € B, (i = 1,2). Then,
for each t € [1, T], we have
| Ty (u1,01)(t) — T1(u2,02)(t)]
1=t a1 [b1|Bo] /T A1 /s EAa
R [l"(a—l) () (s )
dm
X ’f(m,ul(m),vl(m),c ngl(m) — f(m, u2(m),vz(m),c D‘:vz(m)‘w)ds
‘b2A2| T A—1 s s\ B2
* F(ﬁ—l)/1 ; (/1 <1°g%) %
z z dm
X |g(m, (), Dy (m), 01 (m)) — g (m, uz (), Déuz (m), 0a(m))| = ) ds|
|a1B| n MM o [Foa-1f " my F=2
+ F('yl)F(/%—l)/l (k’g?) ° (/1 " (/1 (k’g?
z : dr
X Ig(nul(V)ICDgul(f)fvl(f))—g(r,uz(r)fcpguz(r),vz(r))\7)dm

o ey U R O TR O B

X ’f(f’,M1(r),01(r),CDévl(r) — f(r, uz(r),vz(r),CDévz(r)’g)dm> ds

IN

——

—A t s a—
1“(;—1)/1 SH(/l (k’g%> E

x ’f(m, uy (m), 01 (m), “DEor (m) — f(m,ua(m), vz (m), “Déovy () ’ dﬁm)ds

IN

Mt [lur = wal] + [[or = 03] + |DE0y — CDFo |

+Maty [ 11 = ]| + | Dy = CDua | + oy — o]
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< Wy llug —uzllx + llor — v2ly] .

Also we have

: 3 1 t t\ ¢
SDETy (g, 01)(t) =€ DTy (u, 02) (1) < m/l (logg) ‘T{(levl)(s) — Ty (u2,02)(s) |ds
Y
< I _1 R [[lur — ualx + llor — v2(lv]-
From the foregoing inequalities, we get
ITu(u,01) = iz, 02)[x = [T, 01) = Tr(uz,02) | + | DTy (g, 01) = “DET1 (uz, 02) |
Y
< {‘1’1+r(11§—)} [[[1 — 2|l x + [lo1 — 02]l¥] - (46)
Similarly, we can find that
¥,
1T2(u1,01) = To(uz, 02)|ly < Y2+ T2-9 [[lr = uzlx + [lor — v2]ly] (47)

Consequently, it follows from (46) and (47) that

[ T(u1,01) = T(uz,02)llxxy = [Ti(u1,01) — Ti(uz,02)|Ix + || T2 (11, 01) — To(u2,v2) || x
¥, Y,
< |¥, 4+ _ - - .
< [ttt otg gt - el o= el

This shows that T is a contraction by (43). Hence, by Banach fixed point theorem, the operator T has a
unique fixed point which corresponds to a unique solution of problem (1). This completes the proof. [

Example 2. Consider the following coupled system of fractional differential equations

(€D} + 2 “Dhyx(t) = 2(241+tz) (3+sin(x(t)) +[y(t)] + tan~'(CD3y(1))), t e [1,10]
s 1ot 1t |CD}Ix(t)\ .
(CD + 5 Cp () = 9 <2 + [x()] + W + sm(y(t))) , (48)

supplemented with nonlocal coupled non-conserved boundary conditions:

0, —2720(2) +u(10) = 3,
o(1) = 0, —Ziu(3)+20(10) = 7. (49)

=
—~

—_
~—

Here, A = 1/2,& = 3/2,p = 5/4,T = 10,a1 = —2,ap = —1,by = 1,by = 2,K; = 3,K, = 7,11 =
2,7, =3,711=3/2,7=1/4¢=1/3,{ =1/4,

(1 3(0), (0, D (D) = 3oz (3-+ sin(x(t) + [y(0) |+ tan ™ (“Dy(1)
and ot
. 1 ([ CDix(t)]
g(t,x(1), “Dex(t), y(t)) = 107 (2 + [x(6)] + m +Sln(y(t))> :

From the inequalities:

£t 21 (8),y1(8), SDoya (1) = F(£ xa(8), 92 (1), D ya (1))
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| =

< o (I (t) =20+l (1) = y2(8) + D3 (1) = Diya(1)]),

18t x1 (), S D x1 (1), 11 (1)) — g(t, x2(t), CDExa (1), y2 (1))

03

N

1 . 1
< 15 (1) =x2(D)] +[°Dix (1) = Dz (1) + 11 () — v2(1)]),
we have | = & and Iy = 5. Using the given data, we find that A; ~ 1.3675,|A,| ~ 0.2186, |By| ~
0.7865, By ~ 2.7351, |A| ~ 3.5684, p ~ 0.6838, M; ~ 5.4654, M, ~ 0.9275, ¥, ~ 0.1282, M; ~
9.5348, M, ~ 1.2677,%; ~ 0.2166, N; ~ 1.8178, N, ~ 5.2756, ¥, ~ 0.1439, N; ~ 1.6640, N, ~
7.9915,%, ~ 0.1964. Further
Y Y2
Y+ ——— ~ 03639 < 0.5, ¥» + ——— ~ 0.3615 < 0.5.
STy 2t T (5/3)

Thus all the conditions of Theorem 3 are satisfied. In consequence, by Theorem 3, there exists a unique solution
for the problem (48) and (49) on [1,10].

4. Conclusions

We have developed the existence theory for a nonlocal integral boundary value problem of
coupled sequential fractional differential equations involving Caputo-Hadamard fractional derivatives
and Hadamard fractional integrals. Several results follow as special cases by fixing the values of the
parameters involved in the problem. For example, by taking a; = —1,b; =1,K; =0=Kyand T =,
our results correspond to the ones associated with coupled strip boundary conditions of the form:

u(1) =0, u(T)=IZ"ov(m), 11 >0, 1< <e,
v(1) =0, o(T)=Z"u(na), 12>0, 1< <e.

If we take a7 = 0 = ay in the results of this paper, we obtain the ones for a coupled system of
Caputo-Hadamard fractional differential equations and uncoupled Dirichlet boundary conditions.
We emphasize that the main results as well as the special cases presented in this paper are new and
enrich the existing literature on the topic.
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