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Abstract: In this paper, we investigate the solution of fractional kinetic equation (FKE) associated
with the incomplete I-function (IIF) by using the well-known integral transform (Laplace transform).
The FKE plays a great role in solving astrophysical problems. The solutions are represented in terms
of IIF. Next, we present some interesting corollaries by specializing the parameters of IIF in the
form of simpler special functions and also mention a few known results, which are very useful in
solving physical or real-life problems. Finally, some graphical results are presented to demonstrate
the influence of the order of the fractional integral operator on the reaction rate.

Keywords: fractional kinetic equation; Riemann–Liouville fractional integral operator; incomplete
I-functions; Laplace transform

1. Introduction

Arbitrary-order calculus (AOC) is a useful mathematical device that enables the study of
arbitrary-order integrals and derivatives [1–4]. Its origin dates back to the 1695 letter from Leibniz
to L’Hôpital. The noble developments in the field of fractional-order calculus (FOC) in relevant
conceptual research and in solving real-time problems have been extensively studied comparatively
recently. The pioneering contributions in fractional calculus were given by legendary mathematicians
viz. Euler, Fourier, Abel, Liouville, or Riemann. For explicit knowledge of arbitrary-order derivatives
and integrals, one can refer to [5] and the references therein. The intellect of fractional derivative
equations (FDEs) along with their implications have had a significant impact on various science and
engineering systems. In particular, the kinetic equations (KEs) characterize the relationship between
concentrations of the materials and time. KE is applied in gas theory, plasma physics, aerodynamics,
etc. The solution of KE gives the distribution function of the dynamical states of a single particle,
which often depends on the coordinates, time, and velocity. The expansions and generic nature of
arbitrary-order kinetic equations associated with the fractional-order operators was well established
in [6–9]. Since the last few decades, fractional kinetic equations in several shapes and configurations
have been widely and productively employed in describing various significant problems of physics
and astrophysics (see the recent papers [10–17]).
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The FDE describing the rates at which the reaction, destruction, and production change
was determined by Haubold and Mathai [6], which is presented in the following equation:

dΘ
dw

= −d(Θw) + p(Θw), (1)

where Θ = Θ(w) gives the reaction rate, d = d(Θ) gives the destruction rate, p = p(Θ) is the
production rate, and Θw represents the function defined by Θw(w∗) = Θ(w− w∗), w∗ > 0.

Now, if the spatial fluctuation and the inhomogeneities in the quantity Θ(w) are ignored, then (1)
is converted into:

dΘi
dw

= −ciΘi(w), (2)

subject to the initial condition that Θi(w = 0) = Θ0 is the number density of species iat initial time
(w = 0), ci > 0.

Equation (2) can be written after integrating:

Θ(w)−Θ0 = −c 0D−1
w Θ(w), (3)

where D−1
w is known as the integral operator.

Haubold and Mathai [6] gave the extension of Equation (3) (known as the fractional kinetic
equation (FKE)) as follows:

Θ(w)−Θ0 = −cβ
0D−β

w Θ(w), (4)

where D−β
w denotes the familiar Riemann–Liouville fractional integral operator.

The solution of FKE (4) is given below:

Θ(w) = Θ0

∞

∑
κ=0

(−1)κ

Γ(βκ + 1)
(cw)βκ . (5)

From the perspective of the effectiveness and great significance of the KE in many physics and
astrophysical problems, we established a solution of FKE involving the IIF.

The very familiar gamma function Γ(s) is defined as follows:

Γ(=) =


∫ ∞

0 e−uu=−1du, (<(=) > 0)

Γ(=+K)
(=)K

, (= ∈ C \Z−0 ; K ∈ N0),
(6)

where (=)K denotes the Pochhammer symbol defined (for = ∈ C and K ∈ N0) by:

(=)K =
Γ(=+ K)

Γ(=) =

{
1, (K = 0; = ∈ C \ {0})
=(=+ 1) · · · (=+ s− 1), (K = s ∈ N; = ∈ C),

(7)

provided that the gamma quotient exists.
The incomplete gamma functions (IGFs) γ(=, x) and Γ(=, x) are presented in the

following manner:

γ(=, x) =
∫ x

0
u=−1e−udu, (<(=) > 0; x = 0), (8)
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and:

Γ(=, x) =
∫ ∞

x
u=−1e−udu, (x = 0; <(=) > 0 when x = 0), (9)

respectively, which satisfy the subsequent decomposition formula:

γ(=, x) + Γ(=, x) = Γ(=), (<(=) > 0). (10)

The gamma function Γ(=) and IGFs γ(=, x) and Γ(=, x), which is defined in (6), (8), and (9),
respectively, play the main role in the field of communication theory, probability theory, groundwater
pumping modeling, quantum physics, mathematical physics, statistics, solid state physics, engineering,
and science (see, for example, [18,19]; see also the recent papers [20–28]).

Recently, Bansal and Kumar ([29], p. 1248, Equations (1.6)–(1.9)) defined the incomplete I-functions
(Γ) Im,n

pi ,qi ,r(z) and (γ) Im,n
pi ,qi ,r(z) associated with the IGFs γ(=, x) and Γ(=, x) as follows:

(Γ) Im,n
p`,q`,r(z) =

(Γ) Im,n
p`,q`,r

z

∣∣∣∣∣∣∣
(e1, E1, x), (ej, Ej)2,n, (ej`, Ej`)n+1,p`

( f j, Fj)1,m, ( f j`, Fj`)m+1,q`

 (11)

=
1

2πi

∫
L
K(ξ, x)z−ξ dξ,

for all z 6= 0; here, i =
√
−1 and:

K(ξ, x) =

Γ(1− e1 − E1ξ, x)
m
∏
j=1

Γ( f j + Fjξ)
n
∏
j=2

Γ(1− ej − Ejξ)

r
∑
`=1

[
q`
∏

j=m+1
Γ(1− f j` − Fj`ξ)

p`
∏

j=n+1
Γ(ej` + Ej`ξ)

] , (12)

and:

(γ) Im,n
p`,q`,r(z) =

(γ) Im,n
p`,q`,r

z

∣∣∣∣∣∣∣
(e1, E1, x), (ej, Ej)2,n, (ej`, Ej`)n+1,p`

( f j, Fj)1,m, ( f j`, Fj`)m+1,q`

 (13)

=
1

2πi

∫
L
L(ξ, x)z−ξdξ,

for all z 6= 0; here, i =
√
−1 and:

L(ξ, x) =

γ(1− e1 − E1ξ, x)
m
∏
j=1

Γ( f j + Fjξ)
n
∏
j=2

Γ(1− ej − Ejξ)

r
∑
`=1

[
q`
∏

j=m+1
Γ(1− f j` − Fj`ξ)

p`
∏

j=n+1
Γ(ej` + Ej`ξ)

] . (14)

The incomplete I-functions (Γ) Im,n
p`,q`,r(z) and (γ) Im,n

p`,q`,r(z) in (11) and (13) exist for all x ≥ 0 under
the set of conditions as mentioned below.

The contour L in the complex ξ-plane extends from γ− i∞ to γ + i∞, γ ∈ R, and poles of the
gamma functions Γ(1− ej − Ejξ), j = 1, n do not exactly match with the poles of the gamma functions
Γ( f j + Fjξ), j = 1, m. The parameters m, n, p`, q` are non-negative integers satisfying 0 ≤ n ≤ p`,
0 ≤ m ≤ q` for i = 1, r. The parameters Ej, Fj, Ej`, Fj` are positive numbers, and ej, f j, ej`, f j` are
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complex. All poles of K(ξ, x) and L(ξ, x) are supposed to be simple, and the empty product is treated
as unity.

Hi > 0, | arg(z)| < π

2
Hi, i = 1, r, (15)

Hi ≥ 0, | arg(z)| < π

2
Hi and R(ζi) + 1 < 0, (16)

where:

Hi =
n

∑
j=2

Ej +
m

∑
j=2

Fj −
pi

∑
j=n+1

Eji −
qi

∑
j=m+1

Fji, (17)

ζi =
m

∑
j=2

f j −
n

∑
j=2

ej +
qi

∑
j=m+1

Eji −
pi

∑
j=n+1

Fji +
1
2
(pi − qi), i = 1, r. (18)

The incomplete I-functions (Γ) Im,n
p`,q`,r(z) and (γ) Im,n

p`,q`,r(z) presented in (11) and (13) reduce to the
many well-known special functions as follows:

1. On setting x = 0, (11) and (13) reduce to the I-function proposed by Saxena [30]:

(Γ) Im,n
p` ,q` ,r

z

∣∣∣∣∣∣∣
(e1, E1, 0), (ej, Ej)2,n, (ej`, Ej`)n+1,p`

( f j, Fj)1,m, ( f j`, Fj`)m+1,q`

 = Im,n
p` ,q` ,r

z

∣∣∣∣∣∣∣
(ej, Ej)1,n, (ej`, Ej`)n+1,p`

( f j, Fj)1,m, ( f j`, Fj`)m+1,q`

 . (19)

2. Again, setting r = 1 in (11) and (13), then it reduces to the IHFs introduced by Srivastava [31]
(see also [32]):

(Γ) Im,n
p`,q`,1

z

∣∣∣∣∣∣∣
(e1, E1, x), (ej, Ej)2,n, (ej`, Ej`)n+1,p`

( f j, Fj)1,m, ( f j`, Fj`)m+1,q`

 = Γm,n
p,q

z

∣∣∣∣∣∣∣
(e1, E1, x), (ej, Ej)2,p

( f j, Fj)1,q

 , (20)

and:

(γ) Im,n
p`,q`,1

z

∣∣∣∣∣∣∣
(e1, E1, x), (ej, Ej)2,n, (ej`, Ej`)n+1,p`

( f j, Fj)1,m, ( f j`, Fj`)m+1,q`

 = γm,n
p,q

z

∣∣∣∣∣∣∣
(e1, E1, x), (ej, Ej)2,p

( f j, Fj)1,q

 . (21)

A complete description of IHFs can be found in the article [31].
3. Further, taking m = 1, n = p`, q` is replaced by q` + 1, and taking the suitable parameter, then the

functions (20) and (21) reduce to the incomplete Fox–Wright Ψ-functions pΨ(Γ)
q and pΨ(γ)

q , which
were defined by Srivastava et al. [31].

Γ1,p
p,q+1

−z

∣∣∣∣∣∣∣
(1− e1, E1, x), (1− ej, Ej)2,p

(0, 1), (1− f j, Fj)1,q

 = pΨ(Γ)
q

 (e1, E1, x), (ej, Ej)2,p;

( f j, Fj)1,q;
z

 , (22)

and:

γ
1,p
p,q+1

−z

∣∣∣∣∣∣∣
(1− e1, E1, x), (1− ej, Ej)2,p

(0, 1), (1− f j, Fj)1,q

 = pΨ(γ)
q

 (e1, E1, x), (ej, Ej)2,p;

( f j, Fj)1,q;
z

 . (23)
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4. Next, we take x = 0 and r = 1 in (11). The incomplete I-function reduces to the familiar Fox’s
H-function, which is defined and expressed in the following manner (see, for example, [33], p. 10):

(Γ) Im,n
p`,q`,1

z

∣∣∣∣∣∣∣
(e1, E1, 0), (ej, Ej)2,n, (ej`, Ej`)n+1,p`

( f j, Fj)1,m, ( f j`, Fj`)m+1,q`

 = Hm,n
p,q

z

∣∣∣∣∣∣∣
(e1, E1), · · · , (ep, Ep)

( f1, F1), · · · , ( fq, Fq)

 . (24)

Numerous special functions can be obtained from the incomplete I-functions for which some
interesting functions are used in Section 3.

2. Arbitrary-Order Kinetic Equation

This part deals with the solution of FKE associated with the incomplete I-functions (11) and (13).

Theorem 1. If x > 0, α > 0, β > 0, c > 0,℘ > 0, Eı > 0(ı = 1, · · · , p), and Fı > 0(ı = 1, · · · , q), then the
following arbitrary-order kinetic equation:

Θ(w)−Θ0wα−1(Γ) Im,n
p`,q`,r

−℘βwβ

∣∣∣∣∣∣∣
(e1, E1, x), (eı, Eı)2,n, (eı`, Eı`)n+1,p`

( fı, Fı)1,m, ( fı`, Fı`)m+1,q`

 = −cβ
0D−β

w Θ(w), (25)

has a solution of the form:

Θ(w) = Θ0wα−1
∞

∑
κ=0

(−cβwβ)κ(Γ) Im,n+1
p`+1,q`+1,r

−℘βwβ

∣∣∣∣∣∣∣
(e1, E1, x), (1− α, β), (eı, Eı)2,n, (eı`, Eı`)n+1,p`

( fı, Fı)1,m, (1− α− βκ, β), ( fı`, Fı`)m+1,q`

 . (26)

Proof. Taking the Laplace transform [34] on both sides of FKE (25), we obtain:

Θ̄(p)−Θ0
1

2πi

∫
L
K(ξ, x)(−℘β)−ξ Γ(α− βξ)

pα−βξ
dξ = −cβp−βΘ̄(p),

where K(ξ, x) is given in (12).
Upon simplifying the above equation, we get:

Θ̄(p) =
Θ0

(1 + cβp−β)

1
2πi

∫
L
K(ξ, x)(−℘β)−ξ Γ(α− βξ)

pα−βξ
dξ,

= Θ0

∞

∑
κ=0

(−1)κ(cβp−β)κ 1
2πi

∫
L
K(ξ, x)(−℘β)−ξ Γ(α− βξ)

pα−βξ
dξ.

Finally, taking the inverse Laplace transform on both sides of the trailing equation, we get the
desired result (26).

Theorem 2. If x > 0, α > 0, β > 0, c > 0,℘ > 0, Eı > 0(ı = 1, · · · , p), and Fı > 0(ı = 1, · · · , q), then the
following arbitrary-order kinetic equation:

Θ(w)−Θ0wα−1(γ) Im,n
p`,q`,r

−℘βwβ

∣∣∣∣∣∣∣
(e1, E1, x), (eı, Eı)2,n, (eı`, Eı`)n+1,p`

( fı, Fı)1,m, ( fı`, Fı`)m+1,q`

 = −cβ
0D−β

w Θ(w), (27)
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has a solution of the form:

Θ(w) = Θ0wα−1
∞

∑
κ=0

(−cβwβ)κ(γ) Im,n+1
p`+1,q`+1,r

−℘βwβ

∣∣∣∣∣∣∣
(e1, E1, x), (1− α, β), (eı, Eı)2,n, (eı`, Eı`)n+1,p`

( fı, Fı)1,m, (1− α− βκ, β), ( fı`, Fı`)m+1,q`

 . (28)

Proof. The proof of Theorem 2 is given in a similar way as that of Theorem 1.

3. Special Cases and Remarks

In this part, we record certain interesting corollaries of the main results (Theorems 1 and 2):

Corollary 1. If α > 0, β > 0, c > 0,℘ > 0, Eı > 0(ı = 1, · · · , p), and Fı > 0(ı = 1, · · · , q), then the
following arbitrary-order kinetic equation:

Θ(w)−Θ0wα−1 Im,n
p`,q`,r

−℘βwβ

∣∣∣∣∣∣∣
(eı, Eı)1,n, (eı`, Eı`)n+1,p`

( fı, Fı)1,m, ( fı`, Fı`)m+1,q`

 = −cβ
0D−β

w Θ(w), (29)

has a solution of the form:

Θ(w) = Θ0wα−1
∞

∑
κ=0

(−cβwβ)κ Im,n+1
p`+1,q`+1,r

−℘βwβ

∣∣∣∣∣∣∣
(1− α, β), (eı, Eı)1,n, (eı`, Eı`)n+1,p`

( fı, Fı)1,m, (1− α− βκ, β), ( fı`, Fı`)m+1,q`

 . (30)

Proof. Taking x = 0 in the result (25), we get the desired result.

Corollary 2. If x > 0, α > 0, β > 0, c > 0,℘ > 0, Eı > 0(ı = 1, · · · , p), and Fı > 0(ı = 1, · · · , q), then the
following arbitrary-order kinetic equation:

Θ(w)−Θ0wα−1Γm,n
p,q

−℘βwβ

∣∣∣∣∣∣∣
(e1, E1, x), (eı, Eı)2,p

( fı, Fı)1,q

 = −cβ
0D−β

w Θ(w), (31)

has a solution of the form:

Θ(w) = Θ0wα−1
∞

∑
κ=0

(−cβwβ)κΓm,n+1
p+1,q+1

−℘βwβ

∣∣∣∣∣∣∣
(e1, E1, x), (1− α, β), (eı, Eı)2,p

( fı, Fı)1,q, (1− α− βκ, β)

 . (32)

Proof. Again, setting r = 1 in Theorem 1, we achieve the desired result (32).

Corollary 3. If x > 0, α > 0, β > 0, c > 0,℘ > 0, Eı > 0(ı = 1, · · · , p), and Fı > 0(ı = 1, · · · , q), then the
following arbitrary-order kinetic equation:

Θ(w)−Θ0wα−1γm,n
p,q

−℘βwβ

∣∣∣∣∣∣∣
(e1, E1, x), (eı, Eı)2,p

( fı, Fı)1,q

 = −cβ
0D−β

w Θ(w), (33)
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has a solution of the form:

Θ(w) = Θ0wα−1
∞

∑
κ=0

(−cβwβ)κγm,n+1
p+1,q+1

−℘βwβ

∣∣∣∣∣∣∣
(e1, E1, x), (1− α, β), (eı, Eı)2,p

( fı, Fı)1,q, (1− α− βκ, β)

 . (34)

Proof. Setting r = 1 in Theorem 2, we arrive at the desired result (34).

Corollary 4. If x > 0, α > 0, β > 0, c > 0,℘ > 0, Eı > 0(ı = 1, · · · , p), and Fı > 0(ı = 1, · · · , q), then the
following arbitrary-order kinetic equation:

Θ(w)−Θ0wα−1
pΨ

(Γ)
q

℘βwβ

∣∣∣∣∣∣∣
(e1, E1, x), (eı, Eı)2,p

( fı, Fı)1,q

 = −cβ
0D−β

w Θ(w), (35)

has a solution of the form:

Θ(w) = Θ0wα−1
∞

∑
κ=0

(−cβwβ)κ
p+1Ψ

(Γ)
q+1

℘βwβ

∣∣∣∣∣∣∣
(e1, E1, x), (1− α, β), (eı, Eı)2,p

( fı, Fı)1,q, (1− α− βκ, β)

 . (36)

Proof. Taking the suitable parameter in Equation (31), we get the desired result.

Corollary 5. If x > 0, α > 0, β > 0, c > 0,℘ > 0, Eı > 0(ı = 1, · · · , p), and Fı > 0(ı = 1, · · · , q), then the
following arbitrary-order kinetic equation:

Θ(w)−Θ0wα−1
pΨ

(γ)
q

℘βwβ

∣∣∣∣∣∣∣
(e1, E1, x), (eı, Eı)2,p

( fı, Fı)1,q

 = −cβ
0D−β

w Θ(w), (37)

has a solution of the form:

Θ(w) = Θ0wα−1
∞

∑
κ=0

(−cβwβ)κ
p+1Ψ

(γ)
q+1

℘βwβ

∣∣∣∣∣∣∣
(e1, E1, x), (1− α, β), (eı, Eı)2,p

( fı, Fı)1,q, (1− α− βκ, β)

 . (38)

Proof. Taking the suitable parameter in Equation (33), we get the desired result.

Corollary 6. If α > 0, β > 0, c > 0,℘ > 0, Eı > 0(ı = 1, · · · , p), and Fı > 0(ı = 1, · · · , q), then the
following arbitrary-order kinetic equation:

Θ(w)−Θ0wα−1Hm,n
p,q

−℘βwβ

∣∣∣∣∣∣∣
(eı, Eı)1,p

( fı, Fı)1,q

 = −cβ
0D−β

w Θ(w), (39)

has a solution of the form:

Θ(w) = Θ0wα−1
∞

∑
κ=0

(−cβwβ)κ Hm,n+1
p+1,q+1

−℘βwβ

∣∣∣∣∣∣∣
(1− α, β), (eı, Eı)1,p

( fı, Fı)1,q, (1− α− βκ, β)

 . (40)

Proof. Again, taking x = 0 in (31), we achieve the required result.
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Corollary 7. If α > 0, β > 0, c > 0,℘ > 0, Eı > 0(ı = 1, · · · , p), and Fı > 0(ı = 1, · · · , q), then the
following fractional kinetic equation:

Θ(w)−Θ0wα−1
pΨq

℘βwβ

∣∣∣∣∣∣∣
(eı, Eı)1,p

( fı, Fı)1,q

 = −cβ
0D−β

w Θ(w), (41)

has a solution of the form:

Θ(w) = Θ0wα−1
∞

∑
κ=0

(−cβwβ)κ
p+1Ψq+1

℘βwβ

∣∣∣∣∣∣∣
(1− α, β), (eı, Eı)1,p

( fı, Fı)1,q, (1− α− βκ, β)

 . (42)

Proof. Again, taking x = 0 in (35) and (37), we arrive at the required result.

Corollary 8. If x > 0, α > 0, β > 0, c > 0,℘ > 0, then the following arbitrary-order kinetic equation:

Θ(w)−Θ0wα−1
pΓq

℘βwβ

∣∣∣∣∣∣∣
(e1, x), e2, · · · , ep

f1, · · · , fq

 = −cβ
0D−β

w Θ(w), (43)

has a solution of the form:

Θ(w) = Θ0wα−1
∞

∑
κ=0

(−cβwβ)κΓ1,p+1
p+1,q+2

℘βwβ

∣∣∣∣∣∣∣
(1− e1, 1, x), (α, β), (1− eı, 1)2,p

(0, 1), (1− fı, 1)1,q, (α + βκ, β)

 . (44)

Proof. Again, setting Eı = Fk = 1(ı = 1, · · · , p; k = 1, · · · , q) in Equation (31), we arrive at the desired
result (44).

Corollary 9. If x > 0, α > 0, β > 0, c > 0,℘ > 0, then the following arbitrary-order kinetic expression:

Θ(w)−Θ0wα−1
pγq

℘βwβ

∣∣∣∣∣∣∣
(e1, x), e2, · · · , ep

f1, · · · , fq

 = −cβ
0D−β

w Θ(w), (45)

has a solution of the form:

Θ(w) = Θ0wα−1
∞

∑
κ=0

(−cβwβ)κγ
1,p+1
p+1,q+2

℘βwβ

∣∣∣∣∣∣∣
(1− e1, 1, x), (α, β), (1− eı, 1)2,p

(0, 1), (1− fı, 1)1,q, (α + βκ, β)

 . (46)

Proof. Again, setting Eı = Fk = 1(ı = 1, · · · , p; k = 1, · · · , q) in Equation (33), we arrive at the desired
result (46).

Corollary 10. If α > 0, β > 0, c > 0,℘ > 0, then the following arbitrary-order kinetic expression:

Θ(w)−Θ0wα−1
pFq

℘βwβ

∣∣∣∣∣∣∣
e1, · · · , ep

f1, · · · , fq

 = −cβ
0D−β

w Θ(w), (47)
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has a solution of the form:

Θ(w) = Θ0wα−1
∞

∑
κ=0

(−cβwβ)κ H1,p+1
p+1,q+2

℘βwβ

∣∣∣∣∣∣∣
(1− e1, 1), (α, β), (1− eı, 1)2,p

(0, 1), (1− fı, 1)1,q, (α + βκ, β)

 . (48)

Proof. Again, setting x = 0 in Equation (43), we arrive at the desired result (48).

Remark 1. If Fox’s H-function reduces to generalized M-series
α,β

p Mq(a1, · · · , ap; b1, · · · , bq; z) in
Equation (39), then the result is that recorded by Chaurasia and Kumar ([35], p. 777, Equation (14)).

Remark 2. If the Fox–Wright function pΨq(z) reduces to the Mittag–Leffler function Eα,β(z) in Equation (41),
then the result is that recorded by Saxena et al. ([15], Equation (21)).

Remark 3. If the incomplete H-function reduces to the Bessel function of the first kind Jν(z) in (31), then the
result is that recorded by Habenom et al. [12].

4. Numerical Results and Discussion

In this section, we simulate the numerical results for FKE (25) at different values of various
parameters presented in the form of Figures 1 and 2 by using Maple. We can see from Figures 1 and 2
that the value of Θ decreases with time w. It is also noticed from Figures 1 and 2 that as the value
of β increases, the corresponding value of Θ initially enhances, but after some time, it depicts the
opposite nature.

Figure 1. Plots of solution Θ for the fractional kinetic equation (FKE) (25) when Θ0 = 5,℘ = 0,
and c = 0.5.
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Figure 2. Plots of solution Θ for FKE (25) when Θ0 = 10,℘ = 0, and c = 1.

5. Conclusions

In this work, we introduced generalized FKEs of the FKE associated with the incomplete
I-functions and found their solutions in terms of incomplete I-functions. The novelty and importance of
the present work were that we suggested a novel computable extension of FKEs in terms of incomplete
I-functions and presented some numerical results in graphical form, which were very useful to study
reaction rate. The FKEs could be employed to determine the particle reaction rate and interpret the
statistical mechanics pertaining to the particle distribution function. We also derived some special
cases by assigning particular values to the parameters of incomplete I-functions and also provided
some known and important results. The outcomes of the present study are very useful in astrophysics
and space science.
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