Parameter Identification in the Two-Dimensional Riesz Space Fractional Diffusion Equation
Abstract
:1. Introduction
2. Formulation of the Problem
3. Methods of Solution
3.1. Solution of the Direct Problem
- First we solve the problem in the direction of the axis (for the fixed ):This way we get the intermediate solution .
- In the next step we solve the problem in the direction of axis (for the fixed ):
3.2. Minimalization of the Objective Function
nT—number of threads, M = nT · p—number of ants in the population,
I—number of iterations, L—number of pheromone spots, q, ξ—algorithm parameters.
- 1.
- Set the algorithm’s input parameters: .
- 2.
- Generate L initial solutions serving as pheromone spots. Assign them to the set (which is the initial archive).
- 3.
- Compute the values of the objective function for all of the pheromone spots (parallel computing) and sort the archive T0 from the best solution to the worst.
- 4.
- Assign the probabilities to the pheromone spots according to the formula:
- 5.
- The ant must randomly chose the l-te solution with the probability .
- 6.
- The ant must transform the j-th coordinate () of the l-th solution by sampling the neighborhood using the probability density function (in this case the Gauss function):
- 7.
- The steps 5 and 6 must be repeated by every ant. This way, we get M new solutions (pheromone spots).
- 8.
- Partition the new solutions into groups. Compute the value of the objective function for each of the new solutions (parallel computing).
- 9.
- Add the new solutions to the archive ; sort them by the quality and reject the M worst solutions.
- 10.
- The steps 3–9 must be repeated I times.
4. Numerical Example
- Four points placed in the “corners” of the domain: ; then we have .
- Two points placed in the opposite “corners” of the domain: ; then we have .
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tenreiro Machado, J.A.; Silva, M.F.; Barbosa, R.S.; Jesus, I.S.; Reis, C.M.; Marcos, M.G.; Galhano, A.F. Some applications of fractional calculus in engineering. Math. Probl. Eng. 2010, 2010, 639801. [Google Scholar] [CrossRef] [Green Version]
- Carpinteri, A.; Mainardi, F. Fractal and Fractional Calculus in Continuum Mechanics; Springer: New York, NY, USA, 1997. [Google Scholar]
- Mathieu, B.; Melchior, B.; Oustaloup, A.; Ceyral, C. Fractional differentiation for edge detection. Signal Process. 2003, 83, 2421–2432. [Google Scholar] [CrossRef]
- Voller, V.R. Anomalous heat transfer: Examples, fundamentals, and fractional calculus models. Adv. Heat Transf. 2018, 50, 338–380. [Google Scholar]
- Brociek, R.; Słota, D. Application of Real Ant Colony Optimization algorithm to solve space and time fractional heat conduction inverse problem. In International Conference on Information and Software Technologies; Springer: Cham, Switzerland, 2017; Volume 46, pp. 171–182. [Google Scholar]
- Obrączka, A.; Kowalski, J. Modeling the distribution of heat in the ceramic materials using fractional differential equations. In Materiały XV Jubileuszowego Sympozjum “Podstawowe Problemy Energoelektroniki, Elektromechaniki i Mechatroniki”, PPEEm; Szczygieł, M., Ed.; Archiwum Konferencji PTETiS; Komitet Organizacyjny Sympozjum PPEE i Seminarium BSE: Gliwice, Poland, 2012; Volume 32, pp. 132–133. (In Polish) [Google Scholar]
- Brociek, R.; Słota, D.; Król, M.; Matula, G.; Kwaśny, W. Comparison of mathematical models with fractional derivative for the heat conduction inverse problem based on the measurements of temperature in porous aluminum. Int. J. Heat Mass Transf. 2019, 143, 118440. [Google Scholar] [CrossRef]
- Zhuag, Q.; Yu, B.; Jiang, X. An inverse problem of parameter estimation for time-fractional heat conduction in a composite medium using carbon–carbon experimental data. Physical B 2015, 456, 9–15. [Google Scholar] [CrossRef]
- Majka, Ł. Fractional derivative approach in modeling of a nonlinear coil for ferroresonance analyses. In Non-Integer Order Calculus and Its Applications; Ostalczyk, P., Sankowski, D., Nowakowski, J., Eds.; Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2019; Volume 496, pp. 135–147. [Google Scholar]
- Sowa, M. A harmonic balance methodology for circuits with fractional and nonlinear elements. Circuits Syst. Signal Process. 2018, 37, 4695–4727. [Google Scholar] [CrossRef] [Green Version]
- Jday, F.; Mdimagh, R. Uniqueness result for a fractional diffusion coeffcient identification problem. Bound. Value Probl. 2019, 2019, 170. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Scapellato, A. Mixed Morrey spaces and their applications to partial differential equations. Nonlinear Anal. Theory Methods Appl. 2017, 151, 51–65. [Google Scholar] [CrossRef]
- Liu, F.; Chen, S.; Turner, I.; Burrage, K.; Anh, V. Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term. Cent. Eur. J. Phys. 2013, 11, 1221–1232. [Google Scholar] [CrossRef] [Green Version]
- Socha, K.; Dorigo, M. Ant colony optimization for continuous domains. Eur. J. Oper. Res. 2008, 185, 1155–1173. [Google Scholar] [CrossRef] [Green Version]
- Meerschaert, M.; Tadjeran, C. Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 2004, 172, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Brociek, R.; Słota, D.; Król, M.; Matula, G.; Kwaśny, W. Modeling of heat distribution in porous aluminum using fractional differential equation. Fractal Fract. 2017, 1, 17. [Google Scholar] [CrossRef] [Green Version]
- Tam, J.H.; Ong, Z.C.; Ismail, Z.; Ang, B.C.; Khoo, S.Y.; Li, W.L. Inverse identification of elastic properties of composite materials using hybrid GA-ACO-PSO algorithm. Inverse Probl. Sci. Eng. 2018, 26, 1432–1463. [Google Scholar] [CrossRef]
- Hetmaniok, E. Solution of the inverse problem in solidification of binary alloy by applying the ACO algorithm. Inverse Probl. Sci. Eng. 2016, 24, 889–900. [Google Scholar] [CrossRef]
- Kaipio, J.; Somersalo, E. Statistical and Computational Inverse Problems; Springer: New York, NY, USA, 2005. [Google Scholar]
- Kaipio, J.; Somersalo, E. Statistical inverse problems: Discretization, model reduction and inverse crimes. J. Comput. Appl. Math. 2007, 198, 493–504. [Google Scholar] [CrossRef] [Green Version]
Measurements Intervals | Noise | J | ||||||
---|---|---|---|---|---|---|---|---|
1 s | ||||||||
2 s | ||||||||
4 s | ||||||||
Measurements Intervals | Noise | J | ||||||
---|---|---|---|---|---|---|---|---|
1 s | ||||||||
2 s | ||||||||
4 s | ||||||||
Noise | |||||||||
---|---|---|---|---|---|---|---|---|---|
co 1 s | co 2 s | co 4 s | |||||||
Noise | |||||||||
---|---|---|---|---|---|---|---|---|---|
co 1 s | co 2 s | co 4 s | |||||||
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brociek, R.; Chmielowska, A.; Słota, D. Parameter Identification in the Two-Dimensional Riesz Space Fractional Diffusion Equation. Fractal Fract. 2020, 4, 39. https://doi.org/10.3390/fractalfract4030039
Brociek R, Chmielowska A, Słota D. Parameter Identification in the Two-Dimensional Riesz Space Fractional Diffusion Equation. Fractal and Fractional. 2020; 4(3):39. https://doi.org/10.3390/fractalfract4030039
Chicago/Turabian StyleBrociek, Rafał, Agata Chmielowska, and Damian Słota. 2020. "Parameter Identification in the Two-Dimensional Riesz Space Fractional Diffusion Equation" Fractal and Fractional 4, no. 3: 39. https://doi.org/10.3390/fractalfract4030039
APA StyleBrociek, R., Chmielowska, A., & Słota, D. (2020). Parameter Identification in the Two-Dimensional Riesz Space Fractional Diffusion Equation. Fractal and Fractional, 4(3), 39. https://doi.org/10.3390/fractalfract4030039