Modified Mittag-Leffler Functions with Applications in Complex Formulae for Fractional Calculus
Abstract
:1. Introduction
2. Modified Mittag-Leffler Functions
2.1. A Rigorous Recap of the 1-Parameter Case
- If , then and so has exponential decay.
- If , then and so has exponential decay.
2.2. Extension to the 2-Parameter and 3-Parameter Cases
- If , then for sufficiently large n, and so
- If , then for sufficiently large n, and so
- If , then by assumption. The extra term is bounded by a constant as , namely, either
3. Extensions of Fractional Operators
3.1. Contour Integral Formulae for Prabhakar Fractional Operators
3.2. Contour Integral Formulae for Atangana–Baleanu Fractional Operators
3.3. Series for Negative
4. Conclusions and Further Work
Author Contributions
Funding
Conflicts of Interest
References
- Andrews, L.C. Special Functions of Mathematics for Engineers; SPIE Press: Washington, DC, USA, 1998. [Google Scholar]
- Lebedev, N.N.; Silverman, R.A. Special Functions and Their Applications, 2nd ed.; Dover: New York, NY, USA, 1972. [Google Scholar]
- Nikiforov, A.F.; Uvarov, V.B. Special Functions of Mathematical Physics: A Unified Introduction with Applications; Birkhauser: Boston, MA, USA, 1988. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin, Germany, 2016. [Google Scholar]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Saigo, M. On Mittag-Leffler type function, fractional calculas operators and solutions of integral equations. Integral Transforms Spec. Funct. 1996, 4, 355–370. [Google Scholar] [CrossRef]
- Mathai, A.M.; Haubold, H.J. Mittag-Leffler functions and fractional calculus. In Special Functions for Applied Scientists; Mathai, A.M., Haubold, H.J., Eds.; Springer: Berlin, Germany, 2008; pp. 79–134. [Google Scholar]
- Pillai, R.N. On Mittag-Leffler functions and related distributions. Ann. Inst. Stat. Math. 1990, 42, 157–161. [Google Scholar] [CrossRef]
- Camargo, R.F.; de Oliveira, E.C.; Vaz, J. On the generalized Mittag-Leffler function and its application in a fractional telegraph equation. Math. Phys. Anal. Geom. 2012, 15, 1–16. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Koeller, R.C. Applications of Fractional Calculus to the Theory of Viscoelasticity. J. Appl. Mech. 1984, 51, 299–307. [Google Scholar] [CrossRef]
- Mainardi, F.; Gorenflo, R. On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 2000, 118, 283–299. [Google Scholar] [CrossRef] [Green Version]
- Mittag-Leffler, M.G. Sur la nouvelle fonction E(x). Comptes Rendus l’Académie Sci. 1903, 137, 554–558. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Luchko, Y. Operational method in fractional calculus. Fract. Calc. Appl. Anal. 1999, 2, 463–488. [Google Scholar]
- Saxena, R.K.; Kalla, S.L.; Saxena, R. Multivariate analogue of generalised Mittag-Leffler function. Integral Transforms Spec. Funct. 2011, 22, 533–548. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tomovski, Ž. Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: San Diego, CA, USA, 1974. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon & Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Nekrassov, P. Sur la différentiation générale”. Matemat. Sbornik 1888, 14, 45–166. (In Russian) [Google Scholar]
- Baleanu, D.; Fernandez, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef] [Green Version]
- Hilfer, R.; Luchko, Y. Desiderata for Fractional Derivatives and Integrals. Mathematics 2019, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, G.S.; Machado, J.A.T.; de Oliveira, E.C. A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Saigo, M.; Saxena, R.K. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms Spec. Funct. 2004, 15, 31–49. [Google Scholar] [CrossRef]
- Kiryakova, V.S. Multiple (multiindex) Mittag–Leffler functions and relations to generalized fractional calculus. J. Comput. Appl. Math. 2000, 118, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A.; Baleanu, D. New fractional derivative with non-local and non-singular kernel. Ther. Sci. 2016, 20, 757–763. [Google Scholar]
- Camargo, R.F.; Chiacchio, A.O.; Charnet, R.; de Oliveira, E.C. Solution of the fractional Langevin equation and the Mittag–Leffler functions. J. Math. Phys. 2009, 50, 063507. [Google Scholar] [CrossRef] [Green Version]
- Desposito, M.A.; Viñales, A.D. Memory effects in the asymptotic diffusive behavior of a classical oscillator described by a generalized Langevin equation. Phys. Rev. E 2008, 77, 031123. [Google Scholar] [CrossRef]
- Mankin, R.; Laas, K.; Sauga, A. Generalized Langevin equation with multiplicative noise: Temporal behavior of the autocorrelation functions. Phys. Rev. E 2011, 83, 061131. [Google Scholar] [CrossRef]
- Viñales, A.D.; Despósito, M.A. Anomalous diffusion induced by a Mittag-Leffler correlated noise. Phys. Rev. E 2007, 75, 042102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viñales, A.D.; Paissan, G.H. Velocity autocorrelation of a free particle driven by a Mittag-Leffler noise: Fractional dynamics and temporal behaviors. Phys. Rev. E 2014, 90, 062103. [Google Scholar] [CrossRef] [PubMed]
- Viñales, A.D.; Wang, K.G.; Desposito, M.A. Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise. Phys. Rev. E 2009, 80, 011101. [Google Scholar] [CrossRef]
- Templeton, A. A bibliometric analysis of Atangana-Baleanu operators in fractional calculus. Alex. Eng. J. 2020, 59, 2733–2738. [Google Scholar] [CrossRef]
- Fernandez, A. A complex analysis approach to Atangana–Baleanu fractional calculus. Math. Methods Appl. Sci. 2019, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Hanneken, J.W.; Achar, B.N.N.; Puzio, R.; Vaught, D.M. Properties of the Mittag-Leffler function for negative alpha. Phys. Scrip. 2009, T136, 014037. [Google Scholar] [CrossRef]
- Fernandez, A.; Baleanu, D.; Srivastava, H.M. Series representations for models of fractional calculus involving generalised Mittag-Leffler functions. Commun. Nonlinear Sci. Numerical Simul. 2019, 67, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Fernandez, A. On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numerical Simul. 2018, 59, 444–462. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, A.; Abdeljawad, T.; Baleanu, D. Relations between fractional models with three-parameter Mittag-Leffler kernels. Adv. Differ. Equ. 2020, 2020, 186. [Google Scholar] [CrossRef]
- Lavault, C. Integral representations and asymptotic behaviour of a Mittag- Leffler type function of two variables. Adv. Oper. Theory 2018, 3, 40–48. [Google Scholar] [CrossRef]
- Wang, J.R.; Zhou, Y.; O’Regan, D. A note on asymptotic behaviour of Mittag–Leffler functions. Integral Transforms Spec. Funct. 2018, 29, 81–94. [Google Scholar] [CrossRef]
- Atanacković, T.M.; Konjik, S.; Pilipović, S.; Zorica, D. Complex order fractional derivatives in viscoelasticity. Mech. Time-Depend. Mater. 2016, 20, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Naqvi, Q.A.; Abbas, M. Complex and higher order fractional curl operator in electromagnetics. Opt. Commun. 2004, 241, 349–355. [Google Scholar] [CrossRef]
- Pinto, C.M.A.; Carvalho, A.R.M. Fractional complex-order model for HIV infection with drug resistance during therapy. J. Vib. Control 2015, 22, 2222–2239. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, A.; Husain, I. Modified Mittag-Leffler Functions with Applications in Complex Formulae for Fractional Calculus. Fractal Fract. 2020, 4, 45. https://doi.org/10.3390/fractalfract4030045
Fernandez A, Husain I. Modified Mittag-Leffler Functions with Applications in Complex Formulae for Fractional Calculus. Fractal and Fractional. 2020; 4(3):45. https://doi.org/10.3390/fractalfract4030045
Chicago/Turabian StyleFernandez, Arran, and Iftikhar Husain. 2020. "Modified Mittag-Leffler Functions with Applications in Complex Formulae for Fractional Calculus" Fractal and Fractional 4, no. 3: 45. https://doi.org/10.3390/fractalfract4030045
APA StyleFernandez, A., & Husain, I. (2020). Modified Mittag-Leffler Functions with Applications in Complex Formulae for Fractional Calculus. Fractal and Fractional, 4(3), 45. https://doi.org/10.3390/fractalfract4030045