Integral Representation of Fractional Derivative of Delta Function
Abstract
:1. Introduction
2. Preliminaries
3. Integral Representation of δ(v)(t)
4. Discussions
5. Conclusions
Funding
Conflicts of Interest
References
- Harris, C.M. Shock and Vibration Handbook, 5th ed.; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Korn, G.A.; Korn, T.M. Mathematical Handbook for Scientists and Engineers; McGraw-Hill: New York, NY, USA, 1961. [Google Scholar]
- Mitra, S.K.; Kaiser, J.F. Handbook for Digital Signal Processing; John Wiley & Sons: Hoboken, NJ, USA, 1993. [Google Scholar]
- Palley, O.M.; Bahizov, Γ.B.; Voroneysk, E.Я. Handbook of Ship Structural Mechanics; Xu, B.H., Xu, X., Xu, M.Q., Eds.; National Defense Industry Publishing House: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Li, M. Three classes of fractional oscillators. Symmetry 2018, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Li, C. The powers of the Dirac delta function by Caputo fractional derivatives. J. Fract. Calc. Appl. 2016, 7, 12–23. [Google Scholar]
- Dirac, P.A.M. The Principle of Quantum Mechanics; Oxford University Press: Oxford, UK, 1958. [Google Scholar]
- Robinson, E.A. A historical perspective of spectrum estimation. Proc. IEEE 1982, 70, 885–907. [Google Scholar] [CrossRef]
- Walton, J.R. A note on certain asymptotic expressions for the unit-step and Dirac delta functions. SIAM J. Appl. Math. 1976, 31, 304–306. [Google Scholar] [CrossRef]
- Novomestky, F. Asymptotic expressions for the unit-step and Dirac delta functions. SIAM J. Appl. Math. 1974, 27, 521–525. [Google Scholar] [CrossRef]
- Hoskins, R.F. Delta Functions: An Introduction to Generalized Functions; Horwood Pub: Chichester, UK, 2009; pp. 43–46. [Google Scholar]
- Gelfand, I.M.; Vilenkin, K. Generalized Functions; Academic Press: New York, NY, USA, 1964; Volume 1. [Google Scholar]
- Li, C.K.; Li, C.P. Remarks on fractional derivatives of distributions. Tbil. Math. J. 2017, 10, 1–18. [Google Scholar] [CrossRef]
- Makris, N. The fractional derivative of the Dirac delta function and new results on the inverse Laplace transform of irrational functions. arXiv 2020, arXiv:2006.04966. Available online: https://arxiv.org/pdf/2006.04966.pdf (accessed on 17 August 2020).
- Fractional Derivative of Delta Function δ(x). Available online: https://math.stackexchange.com/questions/201656/fractional-derivatives-of-delta-function-delta-x (accessed on 27 August 2020).
- Liouville, J. Memoire sur le theoreme des complementaires. J. Reine Angew. Math. 1834, 11, 1–19. [Google Scholar]
- Ross, B. Fractional Calculus and Its Applications; Lecture Notes in Mathematics; Springer: New York, NY, USA, 1975; Volume 457. [Google Scholar]
- Weyl, H. Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung. Vierteljschr Naturforsch. Ges. Zur. 1917, 62, 296–302. [Google Scholar]
- Raina, R.K.; Koul, C.L. On Weyl Fractional Calculus. Proc. Am. Math. Soc. 1979, 73, 188–192. [Google Scholar] [CrossRef]
- Klafter, J.; Lim, S.C.; Metzler, R. Fractional Dynamics: Recent Advances; World Scientific: Singapore, 2012. [Google Scholar]
- Sabatier, J.; Farge, C. Comments on the description and initialization of fractional partial differential equations using Riemann-Liouville’s and Caputo’s definitions. J. Comput. Appl. Math. 2018, 339, 30–39. [Google Scholar] [CrossRef]
- Giusti, A. A comment on some new definitions of fractional derivative. Nonlinear Dyn. 2018, 93, 1757–1763, Addendum in 2018, 94, 1547. [Google Scholar] [CrossRef] [Green Version]
- Hristov, J. Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models. In Frontiers in Fractional Calculus; Bhalekar, S., Ed.; Bentham Science Publishers: Sharjah, UAE, 2017; Volume 1, pp. 270–342. [Google Scholar]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Gao, G.-H.; Sun, Z.-Z.; Zhang, H.-W. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 2014, 259, 33–50. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhao, W.; Dai, H. A new definition of fractional derivative. Int. J. NonLinear Mech. 2019, 108, 1–6. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Caputo, M.; Fabrizio, M. The kernel of the distributed order fractional derivatives with an application to complex materials. Fractal Fract. 2017, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
- Lavoie, J.L.; Osler, T.J.; Tremblay, R. Fractional derivatives and special functions. SIAM Rev. 1976, 18, 240–268. [Google Scholar] [CrossRef]
- Li, C.P.; Zeng, F.H. Numerical Methods for Fractional Calculus; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015. [Google Scholar]
- Li, C.P.; Cai, M. Theory and Numerical Approximations of Fractional Integrals and Derivatives; SIAM: Philadelphia, PA, USA, 2019. [Google Scholar]
- Yang, H.; Guo, J.Y.; Jung, J.-H. Schwartz duality of the Dirac delta function for the Chebyshev collocation approximation to the fractional advection equation. Appl. Math. Lett. 2017, 64, 205–212. [Google Scholar] [CrossRef]
- Li, M. Dependence of a class of non-integer power functions. J. King Saud Univ. (Sci.) 2016, 28, 355–358. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Sun, X.; Xiao, X. Revisiting fractional Gaussian noise. Phys. A 2019, 514, 56–62. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M. Integral Representation of Fractional Derivative of Delta Function. Fractal Fract. 2020, 4, 47. https://doi.org/10.3390/fractalfract4030047
Li M. Integral Representation of Fractional Derivative of Delta Function. Fractal and Fractional. 2020; 4(3):47. https://doi.org/10.3390/fractalfract4030047
Chicago/Turabian StyleLi, Ming. 2020. "Integral Representation of Fractional Derivative of Delta Function" Fractal and Fractional 4, no. 3: 47. https://doi.org/10.3390/fractalfract4030047
APA StyleLi, M. (2020). Integral Representation of Fractional Derivative of Delta Function. Fractal and Fractional, 4(3), 47. https://doi.org/10.3390/fractalfract4030047