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Abstract: Porous structures exhibiting randomly sized and distributed pores are required in biomedi-
cal applications (producing implants), materials science (developing cermet-based materials with
desired properties), engineering applications (objects having controlled mass and energy transfer
properties), and smart agriculture (devices for soilless cultivation). In most cases, a scaffold-based
method is used to design porous structures. This approach fails to produce randomly sized and dis-
tributed pores, which is a pressing need as far as the aforementioned application areas are concerned.
Thus, more effective porous structure design methods are required. This article presents how to
utilize fractal geometry to model porous structures and then print them using 3D printing technology.
A mathematical procedure was developed to create stochastic point clouds using the affine maps of
a predefined Iterative Function Systems (IFS)-based fractal. In addition, a method is developed to
modify a given IFS fractal-generated point cloud. The modification process controls the self-similarity
levels of the fractal and ultimately results in a model of porous structure exhibiting randomly sized
and distributed pores. The model can be transformed into a 3D Computer-Aided Design (CAD)
model using voxel-based modeling or other means for digitization and 3D printing. The efficacy of
the proposed method is demonstrated by transforming the Sierpinski Carpet (an IFS-based fractal)
into 3D-printed porous structures with randomly sized and distributed pores. Other IFS-based
fractals than the Sierpinski Carpet can be used to model and fabricate porous structures effectively.
This issue remains open for further research.

Keywords: fractal geometry; porous structure; 3D printing; geometric modeling; point cloud

1. Introduction

This study relates three issues, namely fractal geometry, porous structure, and three-
dimensional (3D) printing. These issues and their interplay are described as follows.

First, consider the issue of fractal geometry [1,2]. Fractal geometry provides a new
outlook into geometric modeling. It can realistically model objects found in the natural
world and living organisms, which is perhaps beyond the scope of Euclidean geometry.
Moreover, it can model micro–nano-level details of artificially created objects. Two key
concepts of fractal geometry are self-affine shape (popularly referred to as self-similar
shape) and fractal dimension. The concept of self-similar shape has been used in biology
to model structures, identify patterns, investigate theoretical problems, and measure
complexity [3,4]. It has been used in telecommunication to design antennas and relevant
devices, ensuring simultaneous multi-frequency transmission [5–7]. (Without the fractal
antenna, mobile phones do not work.) It has been used in image processing and data
compression [8,9], as well as in chemical systems and fracture mechanics studies [10,11].
It has also been used in architectural design to understand the intrinsic complexity and
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aesthetics of patterns and structures [12,13]—the list of its applications continues. Like the
concept of self-similar shape, the concept of fractal dimension [14–17] has been extensively
used to quantify the complexity of objects or phenomena. For example, it has been used in
manufacturing engineering to process signals [18], detect tool-wear [19,20], and quantify
roughness [21].

Secondly, consider the issue of porous structure. Porous structures perform better than
their non-porous counterparts on many occasions. As a result, these structures have been
used in many areas, including energy [22–24], biomedical [25–28], structural design [29–31],
construction [32–34], and safety [35]. The remarkable thing is that there is an interplay
between porous the structure and fractal geometry (particularly, fractal dimension). The
description is as follows. Fractal dimension can quantify the intrinsic complexity of porous
structures [36–38], including the cermet-based porous structures [39]. It is shown that
the properties of cermet-based porous structures such as thermal conductivity, electric
resistivity, permeability and diffusion, fluidity, and mechanical strengths depend on their
fractal dimensions [40]. Thus, fractal dimension has become a design parameter to optimize
cermet-based porous structures’ chemical composition and porosity. To be more specific,
consider the articles in [41–44]. Wang et al. [41] found that a certain percent of silica fume in
low-heat Portland cement concrete can refine the pores and change its shrinkage behavior.
Moreover, the fractal dimension of the porous surface exhibits a linear correlation with
the concrete shrinkage. Therefore, fractal dimension can be used as a design parameter
for designing cermet-based materials with the right shrinkage behavior. In a similar
study, Wang et al. [42] investigated the effectiveness of adding fly ash, polymer-based
reinforcement, magnesium oxide, and shrinkage-reducing admixtures in enhancing the
frost resistance of concrete. In this study, the fractal dimension played a vital role in
establishing the right design rule (right compositions of additives mentioned above). In
addition, the frost resistance of concrete can be increased by increasing the fractal dimension
by choosing the right combination of fly ash and polymer-based fiber reinforcements [43].
Moreover, fractal dimension has a more profound effect on the abrasion resistance of
concrete than the porosity and helps determine the right composition of silica fume and fly
ash, ensuring cracking and abrasion resistance properties [44].

Consider the other issue, i.e., 3D printing or additive manufacturing. 3D printing
can revolutionize the way in which products have been designed and manufactured [45].
Nowadays, it is used to produce nutritious food (complex protein) [46], tablets for visually
impaired patients [47], and wooden composites extracting shape information from micro
X-ray computed tomography [48]. It is used to produce prototypes of culturally significant
complex objects [49], complex structures of hydroponics (soilless cultivation) [50], hierar-
chically porous micro-lattice electrodes for lithium-ion batteries [51], and even weft-knitted
flexible textile [52,53]. The list continues. Advanced research studies have been carried out
to make 3D printing even more robust and cost-effective, resulting in novel devices [54–56],
geometric modeling techniques [57,58], and materials [59]. The list continues. Despite myr-
iad applications and advancements, 3D printing faces challenges, e.g., topology, support,
and surface optimization [60].

The remarkable thing is that porous structure, 3D printing, and fractal geometry have
an intimate relationship. The description is as follows. Some porous structures used in
biomedical, materials, and engineering applications cannot be fabricated without using
additive manufacturing or 3D printing [61–65]. This fastens porous structure and 3D
printing. Conducting experimental studies employing real porous structures (including
cermet-based porous structures [41–44]) is expensive and requires a long time. Before
performing experimental studies employing real porous structures, preliminary exper-
iments can be performed using 3D printed artificial porous structures. The results of
preliminary experiments can be used to optimize the experimental studies employing real
porous structures.

Thus, “design for additive manufacturing” of porous structure is an important issue
of research and implementation [60–62]. Developing methods, enabling design for additive
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manufacturing of porous structure, fastens fractal geometry, porous structure, and 3D
printing. The explanation is as follows. In most cases, porous structures to be fabricated
by 3D printing are designed using scaffold-based approaches [31,66–68]. These structures
exhibit regularly distributed pores, which is not the case in real porous structures. For
example, consider the cases shown in Figures 1 and 2. In Figure 1, a scaffold-based porous
structure is shown [31]. Particularly, Figure 1a shows the unit cell which is used to create
the scaffold (Figure 1b). Figure 1c shows the 3D printed scaffold (porous structure), and
Figure 1d shows a magnified view of the printed porous structure. These kinds of structures
do not mimic the real porous structures.
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Figure 1. The 3D-printed scaffold-based porous structure: (a) unit-cell; (b) scaffold; (c) 3D-printed
porous structure; and (d) the magnified view of the structure shown in (b).

For example, consider the two real porous structures shown in Figure 2. The structure
shown in Figure 2a is a clay pot used to grow indoor plants. The other structure shown in
Figure 2b is a ceramics-based coffee filter. In both cases (Figure 2), the pores have random
sizes and are distributed randomly, as well. This kind of structure exhibits percolation [69].
As a result, fluids and gases can pass through the structure as required. Stochastic point
cloud-based methods can create a porous structure like the real ones [61,62,70]. Some
simple geometric entities can fill the spaces offered by the randomly distributed points
inside a boundary (e.g., polyhedrons [62] and cylindrical tentacles [70]), leading to a
realistic porous structure.

In stochastic point cloud-based porous structuring, the critical issue is how to generate
the point cloud itself [61,62]. Depending on the density and distribution of points, the
structure changes a lot. For example, consider the case shown in Figure 3. The structures
shown in Figure 3 were created using the system developed by Ullah et al. [62]. Figure 3a
presents the porous structure. Figure 3b shows the representative cross-sections of the
respective porous structures. Figure 3c shows the cross-sections of the respective porous
structures when the density of points was increased by eight times. Thus, depending on
the density and distribution of points, the underlying porous structure exhibits a different
porosity and distribution of pores.
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Figure 2. Real porous structures: (a) a clay-based ceramics pot; and (b) a ceramics coffee filter. Figure (a) (right-hand-side
figure) is reprinted with permission from ref. [62]. Copyright 2021 ELSEVIER LICENSE.
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Figure 3. Point cloud-based porous structuring: (a) porous structures having different boundaries; (b) cross-sections of
the respective porous structures; (c) cross-sections when the density of points increased by eight times. Reprinted with
permission from ref. [62].Copyright 2021 ELSEVIER LICENSE.

As far as the stochastic point cloud-based porous structuring is concerned, fractal
geometry can play an active role. Particularly, point clouds generated by iterative function
system (IFS)-based fractals can help design realistic porous structures. This aspect of fractal
geometry (IFS fractal generated point cloud) has not yet been explored from the perspective
of porous structuring. This article fills this gap and provides some insights into fractal
geometry-based realistic porous structure design and fabrication.

The rest of this article is organized as follows. Section 2 presents the settings to
define an IFS fractal for generating stochastic point clouds. Section 3 presents a mathemati-
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cal procedure to control the self-similarity levels in an IFS-fractal-generated point cloud.
Section 4 presents some results of porous structuring using the modified point clouds
relevant to an IFS fractal called the Sierpinski Carpet. (The Sierpinski Carpet is described
in Sections 3 and 4.) The outcomes of Section 3 are used in Section 4. Section 5 presents the
solid CAD models and 3D-printed porous structures based on the outcomes of Section 4.
The contents presented in Section 5 demonstrate the efficacy of utilizing fractals in the
modeling and 3D printing of realistic porous structures. Section 6 concludes this study.

2. Settings of IFS-Based Fractals

This section presents the mathematical settings to generate IFS-based fractals.
IFS-based fractals are created by some strictly contracting affine maps, as described

in [71–74]. Predefined probabilities control the frequency of participation of each map. To
be more specific, we consider the following mathematical settings.

Let {(xi, yi) | i = 1, . . . , N} be the set of the recursively created point clouds where the
initial point is (x0, y0) = (0, 0). The relationship between two consecutive points (xi−1, yi−1)
and (xi, yi), i = 1, . . . , N, is as follows:

xi = ajxi−1 + bjyi−1 + ej, yi = cjxi−1 + djyi−1 + f j, ∃j ∈ {1, . . . , M} (1)

The vector of parameters (aj, bj, cj, dj, ej, fj) defines the j-th map. The values of the
elements of this vector must be set in a way so that they collectively ensure a strictly
contracting map as described in [71–74]. In the mapping processes, multiple maps can be
used. Let M be the number of maps to be used. While mapping (xi−1, yi−1) into (xi, yi), a
map out of M maps can be selected randomly. The (random) selection process must be
controlled. As such, probabilities pj ∈ [0, 1], ∀j ∈ {1, . . . , M} are assigned to the maps so
that p1 + . . . + pM = 1. Thus, after performing the mapping process N times, the frequency
of the j-th map participating in the mapping process must be about pj × N. To achieve this,
first, the cumulative probability of each map, denoted as cpj, is calculated as follows:

cpj = p1 + . . . + pj (2)

The two consecutive cumulative probabilities produce an interval. This interval, in
turn, determines the weight (wj) of the respective map. For the first and last maps, the
weights are w1 = [0, cp1) and wM = [cpM−1, cpM], respectively. For others, the weights are
wj = [cpj−1, cpj), ∀j∈{2, . . . , M − 1}. This means that the weights are mutually exclusive in-
tervals that partition the interval [0, 1] so that {wj | j = 1, . . . , M} = [0, 1] and wj ∩ wj + 1 = Ø,
∀j∈{1, . . . , M − 1}. Thus, the following relationship holds:

wj =


[0, cp1), j = 1

[cpM−1, cpM = 1], j = M[
cpj−1, cpj

)
otherwise

(3)

If a random number denoted as ri ∀ [0, 1] (i = 1, 2, . . . ) belongs to wj, the corre-
sponding map participates in the mapping process, others not. This ensures the relative
frequencies of the respective maps according to pj provided that the number of iterations N
is relatively large.

Based on the above consideration, the IFS-based point cloud creation process follows
an algorithmic approach. This approach can be defined by an algorithm denoted as the IFS
Algorithm. The main processes of the IFS Algorithm are presented in Algorithm 1.
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Algorithm 1 The main processes of the IFS
Algorithm 1: The main processes of the IFS 

1: 

2: 

3: 

4: 

Define 

N ∈ ℕ (iteration number) 

M ∈ ℕ (number of maps) 

{(aj, bj, cj, dj, ej, fj, pj)|j = 1, …, M} (affine maps) 

(x0 = 0, y0 = 0) (initialize) 

 

5: 

6: 

7: 

Calculate 

For j = 1, …, M 𝑐𝑝 = 𝑝ଵ + ⋯ + 𝑝  

End For 

 

8: 

9: 

10: 

11: 

Define 

w1 = [0, cp1), wM = [cpM−1,cpM = 1] 

For j = 2, …, M – 1 

wj = [cpj−1, cpj) 

End For 

 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

Map 

For i = 1, …, N 

Generate a random number ri ∈ [0,1] 

For j = 1, …, M 

If ri ∈ wj 

Then   𝑥 = 𝑎𝑥 – ଵ + 𝑏𝑦ିଵ + 𝑒                 𝑦 = 𝑐𝑥 – ଵ + 𝑑𝑦 ି ଵ + 𝑓 

End For 

End For 

 

20: Define PC = {(xi, yi)|i = 0, …, N} (output) 

 

 
The point cloud denoted as PC produced by the IFS Algorithm is the stochastic point

cloud representing the given fractal shape. For example, Figure 4 shows nine point-clouds
representing nine different fractal shapes (tree, seahorse, fern leaf, snowflakes, and the
Sierpinski Carpet). The settings of the affine maps {(aj, bj, cj, dj, ej, fj, pj) | j = 1, . . . , M} can
be found in [71–74]. The Sierpinski Carpet (Figure 4i) is considered in this study to model
a porous structure. As far as manufacturing is concerned, the IFS Algorithm generated
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point cloud must undergo some transformation, controlling the self-similarity levels. For
example, consider the case in Figure 5. Figure 5a shows a point cloud of fern leaf (same as
Figure 4c). Figure 5b shows the same shape; this time, the self-similarity is controlled up to
level three. The self-similarity level controlling mechanism employs a set of one-to-one
maps. Sometimes, selected affine maps out of M maps can be omitted for the sake of
controlling the level of self-similarity. See [72,73] for the details. It is worth mentioning
that self-similar structures created by tree-like fractals have been used to reinforce a 3D
printed structure [75,76]. In this case, solid models, not the point cloud, of the self-similar
segments are used, which is not the focus in this study. However, the manufacturability
of these self-similar segments limits the level up to which the self-similar tentacles can be
fabricated with required accuracy [72,73,77].
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Figure 4. Nine point-clouds showing some well-known fractals: (a) tree; (b) seahorse; (c) fern leaf;
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3. Controlling Self-Similarity Levels

This section presents how to control self-similarity levels of IFS fractal-driven point
clouds to create models of porous structures.

A process consisting of five steps is proposed to control the self-similarity levels of IFS
fractal-driven point clouds. The description of these steps is as follows.

Step 1: This step generates a seed point cloud denoted as PCS = {(xsi, ysi)|i = 0, 1,
. . . , N} by an IFS-based fractal or by any other means. The number of points PCS must
be chosen carefully so that the desired pore size can be achieved after performing the
modifications described in Steps 2, . . . , 5.

Step 2: This step generates the first generation modified point cloud represent-
ing the first level of the underlying self-similar fractal or porous structure denoted as
PCG−1 = {(xG−1,i, yG−1,i) | i = 0, 1, . . . , N}. The following one-to-one map is applied to each
point in PCS to get its counterpart in PCG−1. Thus, the following relationship holds:

xG−1,i = acxsi + bcysi + ec, yG−1,i = ccxsi + dcysi + fc, ∀i ∈ {0, . . . , N} (4)

The mapping parameters (ac, bc, cc, dc, ec, fc) are denoted as critical parameters. The
goal here is to bring the PCS to a region resulting in the first level self-similar shape of the
underlying fractal or porous structure.

Step 3: This step generates the second generation modified point cloud denoted as
PCG−2 = {(xG−2,i, yG−2,i) | i = 0, 1, . . . , N} representing the second level of the underlying
self-similar fractal or porous structure. The following one-to-one map is applied to each
point in PCG−1 to get its counterpart in PCG−2. As defined in (4), one of the affine maps
of the underlying IFS fractal out of M maps are randomly selected to map a point (xG−1,i,
yG−1,i) to (xG−2,i, yG−2,i). Thus, the random selection process is defined in Algorithm 2,
which is like “Map” segment of IFS Algorithm 1:

Step 4: This step generates the third, fourth, . . . , generations of modified point clouds,
denoted as PCG−3, PCG−4, . . . , respectively, repeating the mapping process defined in Step
3. The repetition process can be terminated based on the preference of the modeler. For
example, if the modeler wants the third level self-similar shapes, Step 4 will be repeated
one time only. Similarly, if the modeler wants the fourth level self-similar shapes, Step 4
will be repeated twice.

Step 5: This step first generates a filler point could denoted as PCF = {(xF,k, yF,k) | k =
0, . . . , L} and fills the empty regions PCG−1, PCG−2, PCG−3, . . . , following the mapping
processes defined in Step 2,3, . . . , respectively. Let PCF′ be the point clouds generated in
this step.

Algorithm 2 IFS-inspired mapping
Algorithm 2: IFS-inspired mapping 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

Map 

For i = 1, …, N 

Generate a random number ri ∈ [0, 1] 

For j = 1, …, M 

If ri ∈ wj 

Then   𝑥ீିଶ, = 𝑎𝑥ீିଵ, + 𝑏𝑦ீିଵ, + 𝑒 𝑦ீିଶ, = 𝑐𝑥ீିଵ, + 𝑑𝑦ீିଵ, + 𝑓  
End For 

End For 

 
A point cloud consisting of PCG−1, PCG−2, . . . , and PCF′ can be used to model a

porous structure. Nevertheless, the above steps are the general procedure for creating a
model of a porous structure. The sequences of the steps can be designed based on the need
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of the modeler. For example, a modeler can apply Step 1, Step 2, Step 5, Step 3, Step 4, Step
4, and Step 4 successively. Another modeler can apply Step 1, Step 2, Step 3, Step 4, Step 5,
successively. This means that depending on the need or preferences of a model, the steps
and their sequence can be determined. There is no restriction as such.

4. Modeling Porous Structures Using Sierpinski Carpet

This section shows how to modify the Sierpinski Carpet-driven point cloud (an IFS
fractal, shown in Figure 4i) so that it becomes a porous structure model. The steps presented
in the previous section will be used to achieve this goal.

First, consider the settings of the IFS fractal called the Sierpinski Carpet. The settings
of the Sierpinski Carpet [74] are listed in Table 1. As listed in Table 1, the Sierpinski Carpet
needs eight affine maps with equal weights (probability) of 1/8. The maps create a point
cloud that resides in a square-shaped boundary given by vertices (0, 0) (1, 0), (1, 1), and (0,
1). The distribution of points creates self-similar squares, as shown in Figure 6. As seen in
Figure 6, the self-similarity is scaled by 1/3. The maps symmetrically distribute the points
around the scaled squares. As seen in Figure 6, the self-similar levels above the third level
are not visible. If more points are injected (i.e., N is increased), the higher levels might be
visible. This issue is, however, beyond the scope of this study.

Table 1. Settings of the Sierpinski Carpet [74].

Parameters

Affine Maps

j =

1 2 3 4 5 6 7 8

aj 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3
bj 0 0 0 0 0 0 0 0
cj 0 0 0 0 0 0 0 0
di 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3
ej 0 0 0 1/3 1/3 2/3 2/3 2/3
fj 0 1/3 2/3 0 2/3 0 1/3 2/3
pj 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
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Figure 6. Sierpinski Carpet and its self-similarity nature.

Let us apply Steps 1, . . . ,5 and modify the point cloud in Figure 6.
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Step 1 is applied as follows: the seed point cloud (PCS) is created using the zero-
level shape (Figure 6). The zero-level shape consists of lines P1P2, P2P3, P3P4, and P4P1,
where P1 = (0, 0), P2 = (1, 0), P3 = (1, 1), and P4 = (0, 1), as shown in Figure 7a. As
such, PCS = {(xsi, ysi)|i = 0, 1, . . . , N} consists of the points on the lines P1P2, P2P3, P3P4,
and P4P1.

Step 2 is applied as follows: the first-level self-similar shape is created by scaling the
points of PCS by a factor of 1/3, resulting in PCG−1 = {(xG−1,i, yG−1,i) | i = 0, 1, . . . , N}. For
this, the following formulation is used:

xG−1,i =
1
3

xsi +
1
3

, yG−1,i =
1
3

ysi +
1
3

, ∀i ∈ {0, . . . , N} (5)

As such, the values of the critical parameters are ac = 1/3, bc = 0, cc = 0, dc = 1/3,
ec = 1/3, and fc = 1/3. The point clouds PCS and PCG−1 are shown in Figure 7b.

Step 3 is applied as follows. The affine maps shown in Table 1 are used to create the
second-generation modified point cloud PCG−2 from PCG−1, as defined in Algorithm 2.
The point clouds PCS, PCG−1, and PCG−2 are shown in Figure 7c.

Step 4 is applied as follows. This time, it is applied thrice. The first execution of Step 4
on the point cloud PCG−2 results in the third level self-similar squares given by the point
cloud PCG−3. The point clouds PCS, PCG−1, PCG−2, and PCG−3 are shown in Figure 7d.
The second execution of Step 4 on the point cloud PCG−3 results in the fourth level self-
similar squares given by the point cloud PCG−4. The point clouds PCS, PCG−1, PCG−2,
PCG−3, and PCG−4 are shown in Figure 7e. The third execution of Step 4 on the point
cloud PCG−4 results in the fifth level self-similar squares given by the point cloud PCG−5.
The point clouds PCS, PCG−1, PCG−2, PCG−3, PCG−3, PCG−4, and PCG−5 are shown in
Figure 7f. Note that starting from the fourth level, the self-similar squares are not clearly
manifested. This is because of the shortage of points in the seed, i.e., the PCS. For example,
Figure 8 shows a case of the point clouds up to the fourth level. This time, a smaller
number of points in the seed point cloud is used compared to the case shown in Figure 7.
As seen in Figure 8, starting from the third level, the self-similar squares were not clearly
manifested. Whether or not this is desirable from the context of porous structuring needs
further investigation. This issue is kept out of the scope of this study, however.

Step 5 is applied as follows. Recall that Step 5 is an additional step, which can be
applied before or after Steps 3 and 4. The goal is to fill the voids in certain regions of a
given level of self-similarity. In this case, a filler point cloud PCF = {(xF,k, yF,k) | k = 0, 1,
. . . , L} is a random point cloud in the interval of [0, 1]. Thus, xF,k ∈ [0, 1] and yF,k ∈ [0, 1],
∀k ∈ {0, . . . , L}. One of the examples of PCF is shown in Figure 9a. This point cloud is
mapped using the procedure underlying Steps 2–4, where the affine maps of the Sierpinski
Carpet are used. The resulting point cloud (PCF′) is shown in Figure 9b. As seen in
Figure 9b, this time, the level-controlled pores are filled by points. Therefore, this point
cloud (PCF’) can be added to the level-controlled point cloud if the pores are not desired.



Fractal Fract. 2021, 5, 40 11 of 19Fractal Fract. 2021, 5, 40 11 of 19 
 

 

 

Figure 7. Level-controlled point clouds of the Sierpinski Carpet: (a) seed point cloud; (b) point 

cloud of (a) and the first level point cloud; (c) point clouds of (b) and the second level point cloud; 

(d) point clouds of (c) and the third level point cloud; (e) point clouds of (d) and the fourth level 

point cloud; and (f) point clouds of (e) and the fifth level point cloud. 

(b)

(c)

(e)

(a)

x

y

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P1

P2 P3

P4

x
y

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P1

P2 P3

P4

x

y

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(d)

x

y

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(f)

Figure 7. Level-controlled point clouds of the Sierpinski Carpet: (a) seed point cloud; (b) point cloud of (a) and the first
level point cloud; (c) point clouds of (b) and the second level point cloud; (d) point clouds of (c) and the third level point
cloud; (e) point clouds of (d) and the fourth level point cloud; and (f) point clouds of (e) and the fifth level point cloud.
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Figure 8. Level-controlled point clouds of the Sierpinski Carpet up to the fourth level generated from
a relatively small seed point cloud.
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Figure 9. Filling pores using a random filler point cloud: (a) a random filler point cloud; and (b) the
fifth level point cloud after filling operation by filler point cloud (a).

5. Solid Modeling and 3D Printing

This section shows some solid models of porous structures, as well as the 3D
printed structures.

Figure 10 shows the point clouds controlled up to the fourth level and its solid
model. The point clouds used in this case are shown in Figure 10a. The solid CAD model,
shown in Figure 10b, is created using commercially available software that can convert a
raster graphics entity into a vector graphics entity using voxel-based geometric modeling.
Figure 11 shows another similar case. This time, the point clouds, shown in Figure 11a,
controlled up to the fifth level is considered. The corresponding solid CAD model is shown



Fractal Fract. 2021, 5, 40 13 of 19

in Figure 11b. This way, a user can apply the procedure described in Sections 3 and 4 to
digitize a porous structure model given the level-controlled point clouds of the IFS fractal.
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Figure 10. Point clouds controlled up to the fourth level and its solid CAD model: (a) the point clouds; and (b) the solid
CAD model.
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Figure 11. Point clouds controlled up to the fifth level and its solid CAD model: (a) the point clouds; (b) the solid CAD
model.

To obtain more insights into the fabrication of porous structures, a commercially
available 3D printer is used. Several 3D-printed structures have been produced. Three of
the results are shown in this section. Figure 12 shows the point clouds controlled up to
level five, the corresponding 3D-printed structure, and a magnified view of the structure.
As seen in Figure 12, the porous structure exhibits a complex network among the pores in
the structure. This is partly because of the limitation of the solid CAD model and partly
because of the limitation of the 3D printer.
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Figure 12. Point clouds controlled up to the fifth level and the 3D-printed porous structure: (a) point clouds; (b) 3D-printed
porous structure; and (c) a magnified view of the printed structure.

Figure 13 shows the point clouds controlled up to level five, the corresponding 3D-
printed structure, and a magnified view of the structure. This time, the filling operation
was carried out, as descried in the previous section. Thus, in the point clouds (Figure 13a),
the first and second level self-similar square regions are not filled with points. The corre-
sponding porous structure (Figure 13b,c) exhibits a complex network among pores. As
seen in Figure 13, the porous structure exhibits a complex network among the pores in the
structure. Like the previous case, this is partly because of the limitation of the solid CAD
model and partly because of the limitation of the 3D printer.
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Figure 13. Point clouds controlled up to the fifth level with a filling operation and the 3D-printed porous structure: (a) point
clouds; (b) 3D-printed porous structure; and (c) a magnified view of the printed structure.

What if the structure is scaled down while printing it? When the structure is produced
by reducing the scale, the pore network becomes more complex. As a result, randomness
in the pore sizes increases. This is because of the limitation of the 3D printer. For example,
consider the case shown in Figure 14. The point clouds shown in Figure 13 are used to
print the structure shown in Figure 14. The structure is scaled down by half during the
printing, resulting in a more complex network among the pores than that of Figure 13.
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Figure 14. 3D-printed porous structure: (a) 3D-printed porous structure; and (b) a magnified view of the printed structure.

In addition to using a voxel-based solid modeling of porous structure from level-
controlled point clouds of IFS fractals, other solid modeling approaches can be used. In this
respect, one of the obvious modeling approaches is to model each point of the point clouds
by using special polyhedrons (e.g., prismoid). For example, consider the case shown in
Figure 15. In this case, the modeling concept is to model each point of an IFS-generated
point cloud (in this case, a point cloud representing Sierpinski Carpet created by the IFS
Algorithm defined in Algorithm 1) by a hexagonal cylinder (see Figure 15a). This way,
multiple point clouds can be created and solid modeled. The point clouds look alike but
are not the same due to the stochasticity involved in point cloud creation process (see IFS
Algorithm 1). In Figure 15b, three point clouds are shown to be modeled by the proposed
concept. The solid models of these point clouds are shown in Figure 15c. Finally, these
solid models can be combined to print a porous structure. One printed porous structure is
shown in Figure 15d.
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6. Concluding Remarks 

There are many application areas where porous structures with randomly sized and 

distributed pores are required, e.g., biomedical applications (producing implants), mate-

rials science (developing cermet-based materials with desired properties), engineering ap-

plications (objects having controlled mass and energy transfer properties), and smart ag-

riculture (devices for soilless cultivation). In most cases, a scaffold-based method is used 

to design porous structures. This approach fails to produce randomly sized and distrib-

uted pores. Thus, more effective porous structure design methods are required. In this 

respect, methods capable of filling the spaces offered by a stochastic point cloud are quite 

effective. IFS-based fractals manifest stochastic point clouds. Thus, these point clouds are 

candidates for porous structure design. This possibility is explored in this study, and some 

promising results are obtained. 
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Figure 15. Prismoid-based solid modeling of IFS fractal generated point clouds and a 3D printed porous structure:
(a) modeling concept; (b) three different point clouds generated by the IFS Algorithm; (c) prismoid-based solid models of
the respective point clouds; and (d) 3D-printed porous structure of combining solid models in (c).
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In synopsis, IFS-generated stochastic point clouds provide a flexible means to model
porous structures, and thereby, to fabricate them using 3D printing or additive manufacturing.

6. Concluding Remarks

There are many application areas where porous structures with randomly sized
and distributed pores are required, e.g., biomedical applications (producing implants),
materials science (developing cermet-based materials with desired properties), engineering
applications (objects having controlled mass and energy transfer properties), and smart
agriculture (devices for soilless cultivation). In most cases, a scaffold-based method is used
to design porous structures. This approach fails to produce randomly sized and distributed
pores. Thus, more effective porous structure design methods are required. In this respect,
methods capable of filling the spaces offered by a stochastic point cloud are quite effective.
IFS-based fractals manifest stochastic point clouds. Thus, these point clouds are candidates
for porous structure design. This possibility is explored in this study, and some promising
results are obtained.

A mathematical procedure is developed to create stochastic point clouds using the
affine maps of a predefined IFS-based fractal. In addition, a method is developed to
modify a given IFS fractal-generated point cloud. The modification process controls the
self-similarity levels of the fractal and ultimately results in a model of porous structure
exhibiting randomly sized and distributed pores. The model can be transformed into a 3D
CAD model using voxel-based modeling or other means for digitization and 3D printing.

The efficacy of the proposed method is demonstrated by transforming the Sierpinski
Carpet (an IFS-based fractal) into 3D printed porous structures. The condition of achieving
fractal geometry-created porous structure must follow a definite sequence of mapping com-
bining some predefined one-to-one and affine mappings. The sequence of mapping must
control the self-similar structures as well as fill some preselected regions. The sequence of
mapping for the Sierpinski Carpet-based porous structuring is elucidated. The proposed
mathematical procedure is effective in this regard, as demonstrated in this study using
the case of Sierpinski Carpet-generated point clouds. Other IFS-based fractals than the
Sierpinski Carpet can be used to model and fabricate porous structures effectively. This
issue remains open for further research.

The four different printed porous structures presented here demonstrate that the
fractal-based porous structuring creates a complex network among randomly sized and
distributed pores in the structure.

Fractal geometry is well known for modeling and quantifying complex shapes ob-
served in the natural world, living organisms, and artificial objects (particularly in micro-
nano scale). In this respect, the concepts of self-similarity and fractal dimensions are
extensively used. On the other hand, fractal geometry’s ability to produce stochastic points
has not yet been explored. As demonstrated in this study, IFS-based fractals are an effective
means to produce a stochastic point cloud, which can model realistic porous structures.
Thus, this study extends the scope of fractal geometry to a large extent.

Conducting experimental studies employing real porous structures (including cermet-
based porous structures), is expensive and requires a long time. Before performing ex-
perimental studies employing real porous structures, preliminary experiments can be
performed using 3D printed artificial porous structures. The results of preliminary experi-
ments can be used to optimize the experimental studies employing real porous structures.
Thus, the outcomes of this study can be used to reduce the expense and time of porous
structure-related experimental studies. This issue is also open for further investigation.
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