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Abstract: This paper proposes a fractional-order economic growth model with time delay based on
the Solow model to describe the economic growth path and explore the underlying growth factors. It
effectively captures memory characteristics in economic operations by adding a time lag to the capital
stock. The proposed model is presented in the form of a fractional differential equations system,
and the sufficient conditions for the local stability are obtained. In the simulation, the theoretical
results are verified and the sensitivity analysis is performed on individual parameters. Based on
the proposed model, we predict China’s GDP in the next thirty years through optimization and
find medium-to-high-speed growth in the short term. Furthermore, the application results indicate
that China is facing the disappearance of demographic dividend and the deceleration of capital
accumulation. Therefore, it is urgent for China to increase the total factor productivity (TFP) and
transform its economic growth into a trajectory dependent on TFP growth.

Keywords: economic growth model; fractional differential equation; time delay; economic forecast

1. Introduction

The economic growth model has been extensively followed and studied by economists
since the 1950s [1–5]. Analyzing the dynamics and trends of economic growth helps to
grasp macroeconomic operation as well as formulate economic policies. As the cornerstone
of economic growth theory, the Solow model [6] provided a groundbreaking theoretical
framework for subsequent research work on growth. The model explains how capital
stock, saving rate, labor force growth rate, capital depreciation, technological progress
interact and affect a nation’s total output. Solow’s theory suggests the convergence of
economy towards a steady-state path and emphasizes the role of technological progress
as the ultimate driving force behind the long-run growth. Despite voluminous works
flourishing in the growth literature [7,8], the Solow model is still of great theoretical and
empirical significance, attracting enormous professional interest.

The Solow model is actually presented in the form of an ordinary differential equation
describing the process of capital accumulation. However, a differential equation of integer
order sometimes shows restriction for economic models since amnesia is assumed in all
economic agents and memory fading is neglected. Therefore, a fractional derivative is
developed to construct economic models due to its nonlocality and memory characteristics
in evolutionary processes [9,10]. Compared with the integer-order derivative, the fractional
derivative shows global correlation and better description of long-term dependencies and
memory in economic data. Numerous experimental results indicate that the fractional-order
model is superior to the integer model when dealing with economic dynamic problems
[11–13].

The fractional derivative, as the main mathematical tool to describe economic dy-
namics with memory, has been widely studied in modern mathematical economic theory.
A review on the history of economic application of fractional dynamics was provided [14].
It divided the economic dynamics evolution into five stages of development. The first two
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stages were characterized by fractional brownian motion [15]. Long-term dependencies
in economic data were pointed out and a time-fractional Black–Scholes equation was pro-
posed. The following two stages were characterized by econophysics and deterministic
chaos [16]. Many papers were devoted to the description of power-law memory and
fractional-dynamic behaviors in financial processes. The most recent is the mathematical
economics stage beginning with the proposal of generalizations of basic economic concepts
and classic models. New concepts primarily include economic multiplier with memory,
elasticity and marginal value of fractional order etc. [17,18]. Generalizations of classical
models include the Harrod–Domar model, Keynes model, Phillips model and Kaldor
model etc. [19,20].

Time delay is a common phenomenon widely existing in economic systems. Since most
of the economic processes are not only affected by the present state, but also depend largely
on related indicators and factors in the past, the delayed mathematical models are more
suitable for depicting economic phenomenon. Therefore, some integer-order and fractional-
order differential equation models with time delays are proposed in the economic growth
literature, and some significant results have been drawn in recent years. A continuous-time
neoclassical growth model with time delay was developed to find erratic fluctuations in
the capital accumulation process [21]. Shortly thereafter, a generalized Cai model with
endogenous labor shift was studied by choosing the delay as the parameter and gave
some conditions of stability and bifurcation [22]. Furthermore, the existence and global
attractivity of almost periodic solutions were proven for a delayed differential neoclassical
growth model [23]. More recently, a generalization of the Keynesian macroeconomic model
was proposed with gamma-distributed lag and using fractional differential equations [18].

In terms of economic growth forecasting, empirical researches have been carried
out based on different models. A replicable forecasting model was proposed to find an
L-shaped GDP growth path in China and predict an annual GDP growth rate close to the
6.5% official target in the next five years [24]. Underlying factors of China’s strong growth
were explored using a general framework of cross-country analysis. The forecast results
showed a significant decline of China’s potential GDP growth in the coming decade [25].
In terms of fractional calculus, both integer order and fractional order differential equation
models were considered to predict the economic growth of the countries in the Group of
Twenty [26].

In this paper, we propose an adaptive fractional economic growth model where a
time delay is introduced to describe the time lag from capital input to effect. Therefore,
our method can effectively capture memory characteristics within economic operations.
The traditional Solow model is based on a harsh assumption that the technological progress
is completely exogenous, which is not consistent with practical experience. To make
up for the gap, we assume in our model that technological progress is endogenous and
related to both population and capital. The proposed model is presented in the form of a
fractional differential equations system. To explore the steady state of long-term economic
growth, we analyze the stability of the equilibrium point and how stability changes when
parameters vary. Based on the model, we use China’s economic data to conduct economic
forecast and empirical analysis. To achieve this, we first estimate the fractional order of
each equation through optimization and analyze the trends of main variables affecting
China’s economy. As a meaningful exploration, we compare the delayed fractional model
with the integer derivative model and the no delay model, respectively. We also exhibit the
impacts of different fractional derivatives and delay parameters on predictions. On this
basis, we predict China’s GDP in the next thirty years and analyze its growth potential.
The proposed model shows excellent stability properties and predictive results, making it
a practicable and attractive approach for analyzing long-term economic growth trends in
real applications.

The remainder of this paper is organized as follows. Section 2 provides some defi-
nitions and lemmas in fractional differential equation as well as the detailed description
of the proposed model. Section 3 shows the main theoretical results on the stability of
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equilibrium points. Numerical simulation and parameter sensitivity analysis are given in
Section 4. Finally, China’s economic growth forecast and analysis in the next thirty years
are shown in Section 5.

2. Preliminaries and Model Description
2.1. Definitions and Lemmas

Generally speaking, commonly used definitions of fractional derivatives include
Riemann–Liouville derivative definition, Grünwald–Letnikov derivative definition, Ca-
puto derivative definition, etc. Among them, the Caputo derivative definition shows
more advantages in actual application, since its initial value has a measurable physical
meaning [27–30]. Moreover, it is widely used to describe economic processes because of its
good explanation about the memory characteristics of economic variables [31]. Hence, we
adopt the Caputo derivative definition in this paper.

Definition 1 ([28]). The Caputo fractional derivative of order q for a function f (t) is defined as

0Dq
t f (t) =

1
Γ(n− q)

∫ t

0

f (n)(τ)
(t− τ)q−n+1 dτ,

where n ∈ Z+, n− 1 < q < n, and Γ(· ) is the Gamma function.

Definition 2 ([28]). The Laplace transform of the Caputo fractional derivative is

L{0Dq
t f (t); s} = sqF(s)−

n−1

∑
k=0

sq−k−1 f (k)(0), n− 1 < q < n,

where F(s) is the Laplace transform of f (t). When f (k)(0) = 0, k = 1, 2, · · · , n, then

L{0Dq
t f (t); s} = sqF(s).

We consider the following linear fractional-order system with time delay

0Dq
t X(t) = AX(t) + KX(t− τ), (1)

where A = (aij)n×n, K = (kij)n×n, X(t) = (x1(t), x2(t), · · · , xn(t))T , X(t − τ) = (x1(t −
τ1), x2(t− τ2), · · · , xn(t− τn))T .

Taking Laplace transform on both sides of (1), one gets the characteristic matrix [32]

∆(s) =


sq − k11e−sτ11 − a11 −k12e−sτ12 − a12 · · · −k1ne−sτ1n − a1n
−k21e−sτ21 − a21 sq − k22e−sτ22 − a22 · · · −k2ne−sτ2n − a2n

...
...

. . .
...

−kn1e−sτn1 − an1 −kn2e−sτn2 − an2 · · · sq − knne−sτnn − ann

. (2)

The stability of system (1) is totally determined by the distribution of the eigenvalues
from the characteristic equation det(∆(s)) = 0. If τij = 0, system (1) can be rewritten as

0Dq
t X(t) = AX(t) + KX(t) = MX(t), (3)

where the coefficient matrix M = A + K. Then, two useful results about the stability of
system (1) are introduced as follows

Lemma 1 ([32]). If all the roots of the characteristic equation det(∆(s)) = 0 for q ∈ (0, 1) have
negative real parts, then the zero solution of system (1) is Lyapunov globally asymptotically stable.
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Lemma 2 ([33]). If q ∈ (0, 1), all the eigenvalues of M satisfy |arg(λ)| > π
2 and the characteristic

equation det(∆(s)) = 0 has no pure imaginary roots for any τij > 0, i, j = 1, . . . , n, then the zero
solution of system (1) is Lyapunov asymptotically stable.

2.2. Model Description

The economic growth model based on the Solow model is a three-dimensional system
given by [8] 

dLt
dt = r(1− Lt/Lm)Lt,

dKt
dt = sYt − (δ + g + n)Kt,

dAt
dt = gAt.

(4)

Respectively, we explain and improve the above equations as follows.
The working population Lt: The fisrt equation is a population growth model based

on the logistic approach [34]. r ∈ (0, 1) denotes the natural growth rate of the working
population; Lm > 0 is the maximum number of labor force that can be accommodated
under certain natural resources and market scale.

The capital stock Kt: The second equation represents the basic Solow model that
describes how capital accumulates [6]. Here, s ∈ (0, 1) is the constant saving rate; δ ∈ (0, 1)
is the capital depreciation rate; g ∈ (0, 1) is the growth rate of technology; n ∈ (0, 1) is the
population growth rate, and Yt, Kt denote the gross domestic product and capital stock at
time t. Especially, Yt is defined as Cobb–Douglas production function

Yt = AtKα
t L1−α

t , (5)

where At is an index of the total factor productivity(TFP) and α ∈ (0, 1) is the output
elasticity of capital stock.

The total factor productivity (TFP) At: The third equation determines the growth of
TFP. It is typically measured as the “Solow residual”(total output growth less the weighted
sum of input growth), and equals the rate of technological progress under the assump-
tion of constant return to scale. An important assumption of the Solow framework is
that the technological progress is exogenous and growing at a constant rate g with the
form dAt/dt = gAt. However, one argument of this assumption is that it simply mea-
sures the size of TFP but rarely directly identifies the underlying sources of technological
progress [35]. Therefore, recent studies are attempting to search for more possible deter-
minants of TFP growth. As technical talents and capital investment are important factors
for technological progress, both human capital stock and physical capital stock contribute
to the techonlogical progress rate g [36]. For sake of simplicity, but without losing of
generality, we add Kt and Lt into the determinant of techonlogical progress rate g in a
linear form as follows

g = wlt + hkt + p, (6)

where lt =
Lt

At
and kt =

Lt

At
is the working population per TFP and the capital stock per

TFP, respectively, w and h is the contribution ratio of lt and kt. Substituting expression (6)
into dAt/dt = gAt, we obtain

dAt

dt
= pAt + wLt + hKt. (7)

As we emphasized in the previous statement, economic processes often show lagging
memory characteristics and complex dynamic operations. Therefore, we convert all the
integer orders in the above equations into fractional ones to better describe the dynamic
behavior of financial and economic system. Especially, for capital stock, physical capital
usually cannot play a role in the economic system immediately after installation [37,38].
For example, when an added machine is decided to deploy, it goes through a period of
product manufacturing and processing before it can achieve scale effects and increase
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output. That means there is a time interval between capital input and economic production
output. Furthermore, it is a even more self-evident fact that a time interval exists between
capital installation and depreciation. Therefore, we introduce a time delay τ into the capital
stock Kt to capture such lagging effect. Thus, the capital stock variable is denoted as
K(t− τ).

Integrating the improvements all above, we obtain the following fractional-order
generalization of the Solow-type equation with time delay

Dq1
t Lt = r(1− Lt/Lm)Lt,

Dq2
t Kt = sAtKα

t L1−α
t − (δ + g + n)K(t− τ),

Dq3
t At = pAt + wLt + hK(t− τ),

(8)

where q1, q2, q3 ∈ (0, 1) are the fractional orders. In the next stability analysis part, we take
q1 = q2 = q3 = q.

3. Main Results

Theorem 1. If q ∈ (0, 1), when w = 0, h < 0, 0 < p < (1− α)(δ + g + n), and b − 4y −
2c + b

3−4bc+8d√
8y+b

2−4c
< 0 or b − 4y − 2c − b

3−4bc+8d√
8y+b

2−4c
< 0, then the positive equilibrium point of

system (8) is Lyapunov locally asymptotically stable for any τ > 0, where y is any real root of the
equation 8y3 − 4cy2 + 2(bd− 8e)y + e(4c− b

2
)− d

2
= 0, and the coefficients of the equation are

denoted as
b = −2(α(δ + g + n)− p)(cos qπ cos

qπ

2
+ sin(±qπ) sin(± qπ

2
)),

c = p2 + 2αp(δ + g + n)(1 + cos qπ) + (α2 − 1)(δ + g + n)2,

d = 2αp(δ + g + n)[α(δ + g + n)− p] cos
qπ

2
,

e = p2α2(δ + g + n)2.

(9)

Proof. When w = 0, h < 0, by setting τ = 0 and solving the equations
r(1− L/Lm)L = 0,
sAKαL1−α − (δ + g + n)K = 0,
pA + hK = 0,

(10)

we obtian the unique positive steady-state solution(L, K, A) of system (8) as

L = Lm, K =

(
− p(δ + g + n)

shL(1−α)
m

) 1
α

, A = − h
p

K. (11)

when the delay τ is introduced, the equilibrium point keeps the same and, therefore, we
can take the local coordinates

L̃t = Lt − L, K̃t = Kt − K, Ãt = At − A,

and centre the system’s singular point at the origin. If we have X(t) = (L̃t, K̃t, Ãt), the linear
centralized system (8) can be written in the following vector form

Dq
t X(t) = AX(t) + BX(t) + CX(t). (12)

where

A =

 r 0 0
0 0 0
0 0 p

,
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and B, C denote the Jacobian matrix

B =

 b11 0 0
b21 b22 b23
0 0 0

 =

 −2r 0 0
(1− α)sAKαL−α

αsAKα−1L1−α sKαL1−α

0 0 0

 (13)

=


−2r 0 0

(1− α)(δ + g + n)
(
− p(δ + g + n)

shLm

) 1
α

α(δ + g + n) − p
h
(δ + g + n)

0 0 0

,

C =

 0 0 0
0 c22 0
0 h 0

 =

 0 0 0
0 −(δ + g + n) 0
0 h 0

. (14)

According to matrix (2), applying Laplace transform on both sides of system (12), one
has the following characteristic matrix

∆(s) =

 sq + r 0 0
−b21 sq − c22e−sτ − b22 −b23

0 −he−sτ sq − p

. (15)

Then, it follows that the characteristic equation det(∆(s)) = 0 is given as

(sq + r)(s2q − asq − c22sqe−sτ + be−sτ + pb22) = 0. (16)

Next, it will be verified that the characteristic Equation (16) has no pure imaginary
roots for any τ > 0. The fact is testified by contradiction. It is obvious that there are no pure
imaginary roots in equation sq + r = 0 when r > 0. Therefore, we consider the equation

s2q − asq − c22sqe−sτ + be−sτ + pb22 = 0. (17)

Suppose that s∗ is one of the pure root imaginary of Equation (17) and has the form
s∗ = wi = |w|(cos(π

2 ) + i sin(±π
2 )), where w is a positive real number. The substitution of

s∗ into Equation (17) gives:

|w|2q(cos qπ + i sin(±qπ))− a|w|q(cos
qπ

2
+ i sin(± qπ

2
))

−c22|w|q(cos
qπ

2
+ i sin(± qπ

2
))(cos wτ − i sin wτ)

+b(cos wτ − i sin wτ) + pb22 = 0.

(18)

Separating its real part and imaginary part, we obtain

|w|2q cos qπ − a|w|q cos
qπ

2
+ pb22 = (c22|w|q cos

qπ

2
− b) cos wτ + c22|w|q sin(± qπ

2
) sin wτ, (19)

and

|w|2q sin(±qπ)− a|w|q sin(± qπ

2
) = (b− c22|w|q cos

qπ

2
) sin wτ + c22|w|q sin(± qπ

2
) cos wτ. (20)

We denote that 

β1 = |w|2q cos qπ − a|w|q cos
qπ

2
+ pb22,

β2 = |w|2q sin(±qπ)− a|w|q sin(± qπ

2
),

ρ1 = c22|w|q cos
qπ

2
− b,

ρ2 = c22|w|q sin(± qπ

2
).

(21)
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Thus, Equations (19) and (20) can be changed into{
ρ1 cos wτ + ρ2 sin wτ = β1,
−ρ1 sin wτ + ρ2 cos wτ = β2.

(22)

We square both sides of Equation (22) and add them together

ρ2
1 + ρ2

2 = β2
1 + β2

2. (23)

Substituting expression (21) into Equation (23), we obtain

|w|4q + b|w|3q + c|w|2q + d|w|q + e = 0, (24)

where 
b = −2a(cos qπ cos

qπ

2
+ sin(±qπ) sin(± qπ

2
)),

c = a2 − c2
22 + 2pb22 cos qπ,

d = 2(−apb22 + c22b) cos
qπ

2
,

e = p2b2
22 − b2.

(25)

when 0 < q < 1 and y satisfies the inequations b− 4y− 2c + b
3−4bc+8d√
8y+b

2−4c
< 0 or b− 4y−

2c− b
3−4bc+8d√
8y+b

2−4c
< 0, then there exists no real roots in Equation (17), where y is any real

root of the cubic equation 8y3 − 4cy2 + 2(bd− 8e)y + e(4c− b
2
)− d

2
= 0. That is to say,

the characteristic equation det(∆(s)) = 0 has no pure imaginary roots for any τ > 0.
When τ = 0, the coefficient matrix M of system (12) satisfies

M =

 −r 0 0
b12 b22 + c22 b23
0 h p

.

and its characteristic equation is

f (λ) = (λ + r)[λ2 − (b22 + c22 + p)λ + p(b22 + c22)− hb23]. (26)

We can obtain its eigenvalues λ1,2,3. If 0 < p < (1− α)(δ + g + n), one gets
λ1 = −r < 0,
λ2 + λ3 = p + b22 + c22 = p + (α− 1)(δ + g + n) < 0,
λ2λ3 = p(b22 + c22)− hb23 = αp(δ + g + n) > 0.

(27)

According to (27), one can ensure the three eigenvalues of the coefficient matrix M
have negative real parts, so that all the eigenvalues of M satisfy |arg(λ)| > π

2 . Based on
Lemma 2, system (8) is Lyapunov asymptotically stable at the positive equilibrium point
(L, K, A).

Theorem 2. If q ∈ (0, 1), when p = 0, w > 0, h < 0, and b− 4y− 2c + b
3−4bc+8d√
8y+b

2−4c
< 0 or

b− 4y− 2c− b
3−4bc+8d√
8y+b

2−4c
< 0, then the positive equilibrium point of system (8) is Lyapunov locally
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asymptotically stable for any τ > 0, where y is any real root of the equation 8y3 − 4cy2 + 2(bd−
8e)y + e(4c− b

2
)− d

2
= 0, and the coefficients of the equation are denoted as

b = −2α(δ + g + n)(cos qπ cos
qπ

2
+ sin(±qπ) sin(± qπ

2
)),

c = (α2 − 1)(δ + g + n)2,

d = 2s(−w)αh1−αLm(δ + g + n) cos
qπ

2
,

e = −[s(−w)αh1−αLm]2.

(28)

Proof. When p = 0, w < 0, h > 0. By setting τ = 0 and solving the equations
r(1− L/Lm)L = 0,
sAKαL1−α − (δ + g + n)K = 0,
wL + hK = 0,

(29)

We obtain the unique positive steady-state solution(L, K, A) of system (8) as

L = Lm, K = −w
h

Lm, A =
δ + g + n

s

(
−w

h

)1−α
. (30)

Adopting the same approach of Theorem 1, we can get the equation similar to
Equation (24) as follows

|w|4q + b|w|3q + c|w|2q + d|w|q + e = 0, (31)

where the coefficients are denoted as (28).

When 0 < q < 1 and y satisfies the inequations b − 4y − 2c + b
3−4bc+8d√
8y+b

2−4c
< 0 or

b− 4y− 2c− b
3−4bc+8d√
8y+b

2−4c
< 0, then there exists no real roots in Equation (31), where y is any

real root of the cubic equation 8y3 − 4cy2 + 2(bd− 8e)y + e(4c− b
2
)− d

2
= 0. That is to

say, the characteristic equation det(∆(s)) = 0 has no pure imaginary roots for any τ > 0.
When τ = 0, the coefficient matrix M satisfies

M =

 −r 0 0
b12 b22 + c22 b23
w h 0

,

and its characteristic equation is

f (λ) = (λ + r)[λ2 − (b22 + c22)λ− hb23]. (32)

We can obtain its eigenvalues λ1,2,3. If r > 0, 0 < α < 1, h < 0, w > 0, one gets
λ1 = −r < 0,
λ2 + λ3 = b22 + c22 = (α− 1)(δ + g + n) < 0,
λ2λ3 = −hb23 = −sh

(
−w

h
)αLm > 0.

(33)

According to (33), one can ensure the three eigenvalues of the coefficient matrix M
have negative real parts, so that all the eigenvalues of M satisfy |arg(λ)| > π

2 . Based on
Lemma 2, system (8) is Lyapunov asymptotically stable at the positive equilibrium point
(L, K, A).

Theorem 3. If q ∈ (0, 1), when r > 0, p + b22 + c22 < 0, p(b22 + c22)− hb23 > 0, and b−
4y− 2c + b

3−4bc+8d√
8y+b

2−4c
< 0 or b− 4y− 2c− b

3−4bc+8d√
8y+b

2−4c
< 0, then the positive equilibrium point of

system (8) is Lyapunov locally asymptotically stable for any τ > 0, where b22, b23, c22 is notations in
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Equation (13). y is any real root of the equation 8y3 − 4cy2 + 2(bd− 8e)y + e(4c− b
2
)− d

2
= 0,

and the coefficients of the equation are denoted as
b = −2(p + b22)(cos qπ cos

qπ

2
+ sin(±qπ) sin(± qπ

2
)),

c = (p + b22)
2 − c2

22 + 2pb22 cos qπ,

d = 2[p(c2
22 − b2

22 − b22)− hc22b23] cos
qπ

2
,

e = p2b2
22 − (pc22 − hb23)

2.

(34)

Proof. The proof is similar to Theorems 1 and 2, so it is omitted.

4. Numerical Simulation

In order to present the dynamic operation state of the fractional order system, some
numerical simulations are adopted in this section. Firstly, some numerical examples are
given to illustrate the theoretical results above and demonstrate the comparison between
the fractional model (0 < q < 1) and the memoryless model (q = 1). Secondly, a particular
case is used to determine the effect of parameter variation on the operation state and the
equilibrium point. In the simulation process, we adopt the Adams–Bashforth–Moulton
predictor–corrector scheme [39] and take the step-length h = 0.01.

We assign specific values to some of the parameters in system (8) and consider the
following equation 

Dq
t Lt = 0.05(1− Lt/8)Lt,

Dq
t Kt = 0.4AtKα

t L1−α
t − 0.2K(t− 2),

Dq
t At = pAt + wLt + hK(t− 2).

(35)

Take the data of China in 1978 as the initial value E0 = (4.0152, 0.1383, 1.7788).

Case 1. To verify Theorem 1, we set

q = 0.7, α = 0.6, p = 0.06, w = 0, h = −0.03.

The positive equilibrium point of system (35) is calculated to be E = (8.000, 0.250, 0.125).
It can be verified that corresponding conditions in Theorem 1 are satisfied. According to
Theorem 1, the equilibrium point E is Lyapunov asymptotically stable, and the convergence
behavior of the response curve is shown in Figure 1a. For comparison, we also simulate the
response curve in the case of q = 1 in Figure 1b.
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Figure 1. The timeevolution of System (35) for q = 0.7 (a) and q = 1 (b) in Case 1.
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Case 2. To verify Theorem 2, we set

q = 0.85, α = 0.6, p = 0, w = 0.05, h = −0.01.

The positive equilibrium point of system (35) is calculated to be E = (8.000, 40.000, 0.952).
It can be verified that corresponding conditions in Theorem 2 are satisfied, so the equilibrium
point E is Lyapunov asymptotically stable, and the convergence state of system (35) is shown
in Figure 2a. Similarly, when q = 1, the response curve of the memoryless model is shown in
Figure 2b.
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Figure 2. The time evolution of System (35) for q = 0.85 (a) and q = 1 (b) in Case 2.

Case 3. To verify Theorem 3, we set

q = 0.8, α = 0.4, p = 0.04, w = 0.02, h = −0.01.

One of the positive equilibrium points calculated by numerical methods is E =
(8.000, 19.403, 0.851). It can be verified that corresponding conditions in Theorem 3 are
satisfied, so the equilibrium point E is Lyapunov asymptotically stable, and the conver-
gence state of system (35) is shown in Figure 3a. For q = 1, the reponse curve is shown
in Figure 3b.
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Figure 3. The time evolution of System (35) for q = 0.8 (a) and q = 1 (b) in Case 3.
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In order to analyze the influence of parameter variation on the equilibrium point and
steady state, we perform parameter sensitivity analysis. Take Theorem 1 as an example.
The following parameter values are chosen, and we only observe the influence of parameter
p on the system.

q1 = q2 = q3 = q = 0.8, τ = 2, r = 0.05, Lm = 8,

s = 0.4, α = 0.6, δ + n + g = 0.2, w = 0, h = −0.001.

To obtain a stable equilibrium point, the suitable range of p can be calculated through
the stability condition displayed in Theorem 1, that is p ∈ (0.019, 0.079). As p changes
within the interval, the equilibrium point keeps Lyapunov asymptotically stable, but the
values of the equilibrium point gradually changes, as depicted in Figure 4.
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Figure 4. The influence of p on the equilibrium value Kt (a) and At (b).

Furthermore, we use the Douglas production function Yt = AtKα
t L1−α

t to calculate
GDP value at the equilibrium point, which is shown in Figure 5.
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Figure 5. The influence of p on the equilibrium value Yt.

It can be seen that as p increases, the equilibrium value of Kt and At are also gradually
increasing, which drives GDP to a higher level, indicating economic growth. In system (8),
p is TFP growth rate, reflecting the level of technological progress. On the one hand, when
p increases, the growth rate of TFP speeds up and stabilizes at a higher level. On the
other hand, the acceleration of technological progress promotes capital accumulation,
which further has a positive feedback effect on TFP due to endogenous growth. Therefore,
under the dual influence of capital accumulation and TFP, the steady-state GDP will rise
with the increase in p. The analysis result of the parameter p implies that increasing the TFP
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growth rate contributes to economic growth. It is consistent with the view that falls in TFP
growth appear to explain past growth slowdowns of some middle-income countries [40].

5. Economic Prediction

In this section, we predict China’s GDP in the next thirty years based on model (8)
and analyze its economic growth potential. To enhance the adaptability of the model,
we allow the fractional orders q1, q2, q3 to change dynamically with time t, denoted as
q1(t), q2(t), q3(t). For each period t, we use the prediction error minimization principle
and the grid search method to find the optimal fractional orders q∗1(t), q∗2(t), q∗3(t). Then,
we use curve fitting to predict the trend of q1(t), q2(t), q3(t), and then predict the main
variables (Lt, Kt, At) and GDP(Yt) in the next thirty years 2020–2050. Particularly, to clarify
the impacts of different fractional derivatives and delay parameters on the predictions, we
carefully choose a set of alternative q and τ to compare their prediction performance.

The data is taken from the “China Statistical Yearbook 2020”. It directly provides
the working population (Lt), total capital formation (Kt), and GDP (Yt) from 1978 to 2020.
Among them, the working population data appears an obvious gap around 1990 due to
the different statistical method used. Therefore, we use the total population to regress and
calibrate the working population by Ordinary Least Squares (OLS). For TFP, we use the
Cobb Douglas function Y = AKαL1−α to calculate A as the true value of TFP, where the
contribution ratio of capital to output α is 0.6 as general.

Next, we set the parameters in system (8) For working population Lt, we fit the
integer-order population retardation growth model and get the growth rate r = 5.55%
and the maximum population Lm = 828.38 million. Secondly, according to the final
consumption rate data in 1978–2020, we set the average savings rate s = 41.22%. In addition,
consulting relevant information, we take the contribution ratio of capital to output α = 0.6,
the depreciation rate δ = 5%, the technological progress rate g = 2%, and the natural
population growth rate n = 5%. For the sake of simplicity, we set w = h = 0, that is,
the third equation in system (8) is simplified to Dq3(t)

t At = pAt.
After the necessary data is ready, we start to make predictions. Above all, we show

our approach to choose the suitable fractional derivative parameters q1, q2, q3. To make the
prediction more time-varying, we dynamically change the fractional derivative orders with
time so that they turn into functions of t, i.e., q1(t), q2(t), q3(t). We now use the existing
data and model to solve them. Taking q1(t) as an example, we optimize it by minimizing
the prediction error and obtain

q∗1(t) = argmin‖Lt − L̂t(q1(t))‖, q∗1(t) ∈ (0, 1), (36)

Dq1(t)
t L̂t = r(1− L̂t/Lm)L̂t,

where ‖ · ‖ is 2_norm. To solve (36), for each period t (1980 6 t 6 2020), we perform a grid
search on q1(t) within the interval (0,1) by step length of h = 0.01. In particular, L̂t(q1(t)) is
figured out by the predictor–corrector method. For t > 2020, we fit q1(t) with a quadratic
function and forecast its trend in the next thirty years as shown in Figure 6 (the blue line).
Using the same method, we can obtain the optimal q∗2(t) and q∗3(t)(1980 6 t 6 2020) by
minimizing the prediction error. As shown in Figure 6, q∗3(t) (the red line) finally stabilizes
at 0.73 around 2020, so we directly let q3(t) ≡ 0.73 when 2020 < t 6 2050. As for q2
(the black line), we also perform a quadratic function fitting on q∗2(t) and predict its value
in 2020–2050.
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Figure 6. Optimal q∗1(t), q∗2(t), q∗3(t) and their predicted value in 2020–2050.

Based on q∗1(t), we can calculate L̂t according to Equation Dq∗1(t)
t L̂t = r(1− L̂t/Lm)L̂t

using the predictor–corrector method. The fitted Lt(1980 6 t 6 2020) and the predicted
Lt(2020 < t 6 2050) are shown in Figure 7.

The memory parameter q plays a significant role in our framework. However, it is
currently practically not studied in econometrics. Therefore, it is interesting and meaningful
to explore its role in economic operations and its impact on economic predictions. We
consider a wide range of 0 < q < 1 (q = 0.2, 0.5, 0.8) as well as the memoryless model
q = 1. Then, we take q1 as these fixed values and predict Lt in 1980–2050. As shown
in Figure 7, when q1 decreases, the predicted working population Lt declines, indicating
that q1 describes the growth rate of population. In addition, compared with the optimal
q∗1(t), the memoryless q = 1 overestimates the working population, especially when
2020 < t 6 2050, while q = 0.8, 0.5, 0.2 greatly underestimates the working population.
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Figure 7. The impacts of different fractional derivatives q1 on the prediction of Lt.

The consideration of fractional derivatives does capture the memory and heredity
feature in the population growth process, with its prediction more accurate. However, the
fractional order parameters need to be carefully selected. Our method of minimizing the
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prediction error is proven to be an effective and precise approach to select the fractional
derivative orders.

Similarly, based on the calculated q∗3(t) and the equation Dq∗3(t)
t Ât = gÂt, we can

obtain the fitted and predicted Ât, as shown in Figure 8. We also compare the prediction
performance of q3 = q∗3(t) with a wide range of 0 < q3 < 1 and q3 = 1. As reflected
in Figure 8, we conclude that the growth rate of TFP rises with the increase in q3 and
q3 = q∗3(t) outperforms other fixed q3.
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Figure 8. The impacts of different fractional derivatives q3 on the prediction of At.

As for the capital stock Kt, we have the equation Dq2(t)
t Kt = sAtKα

t L1−α
t − (δ + g +

n)K(t− τ), where At and Lt are replaced by the predicted values Ât and L̂t, respectively.
To select the suitable delay parameter τ as well as examine the impacts of time lag on the
predictions, we evaluate the prediction performance in three cases, namely no delay case
τ = 0, medium delay case τ = 2 and high delay case τ = 4. Similarly, the predictor-
corrector scheme is used again to solve K̂t. The fitting results of different delays are depicted
in Figure 9a.
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Figure 9. The impacts of delay τ on the fitted Kt (a). The predicted Kt in 2020-2050 with τ = 2 (b).

As can be seen in Figure 9a, the fitting result of the medium delay case τ = 2 best
matches with original Kt, so we choose it for our thirty-year prediction. It is worth noticing
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that τ = 0 represents the no delay case, which slightly overestimates the capital stock. It is
because τ = 0 means that ∆Kt is merely determined by Lt, Kt, At at time t, while ignoring
the historical state. In contrast, the time lag can take into consideration the previous values
of economic variables in the capital accumulation process and emphasize the impact of
historical data on the current ∆Kt. It offsets the overestimation compared with the no delay
case and largely improves the prediction performance. Therefore, we use τ = 2 and q∗2(t)
to predict K̂t when 2020 < t 6 2050 as shown in Figure 9b.

Finally, by using Y = AKαL1−α and the predicted values of L̂t, Ât, and K̂t, we can
easily get the predicted GDP (Ŷt) for each year, as shown in Figure 10.
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Figure 10. Fitted GDP and predicted GDP of China in 2020–2050.

We now describe and analyze the prediction results from economic perspective.
In Figure 6, the fractional order q1(t) peaked around 2010 and then began to decline,
leading to a downward trend in the working population (Lt) since 2020, as shown in
Figure 7. The decrease in the working population was attributed mainly to the government-
sponsored family planning program and the so-called “one-child policy” introduced in
the 1970s. The policy led to a sharp decline in total fertility rate and the acceleration of
population aging [41]. Consequently, the shrinking of the working population occurred
and will probably continue in the approaching half a century [42].

As for the prediction of TFP, since the fractional order q3(t) reached a plateau after
2000, fluctuating slightly around 0.73, TFP in 2020–2050 will probably continue to increase
following the previous trend. In a developing country like China, the increase in TFP
is largely caused by the “catch-up effect” which comes from the process of catching up
from post-developed countries to developed countries. Evidence from multiple nations
shows that if developing countries make full use of the advantages of chasers, they have
the opportunity to accelerate development [43].

Figure 9b indicates that the capital stock still holds an upward trend, but the growth
rate will slightly slow down. The increase in capital stock makes it possible for developing
countries to take advantage of advanced technology and accelerate productivity, which has
a significant positive long-term impact on economic growth [44]. Furthermore, the positive
feedback is expected to continue in the short term according to the prediction.

Finally, as can be seen in Figure 10, China’s GDP will continue to grow at a medium-
to-high speed in the next five years, approaching about 3.5× 105 billion in 2050. Despite a
slight decrease in the working population, the increase in capital stock and the rise in TFP
still provide persistent and vigorous impetus to economic growth.

However, in this paper, it is worth emphasizing that China will encounter multiple
obstacles on the road to economic growth, and these impediments have already emerged
in our forecasts. On the one hand, the decline in the working population is an inevitable
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trend, which indicates the disappearance of the demographic dividend. On the other hand,
although the capital stock is still growing, the growth rate has shown signs of decelerating.
We should have a clear understanding that the high-speed economic growth path derived
by the accumulation of capital is unsustainable and will eventually come to an end in the
long run. When capital is accumulated to a certain level, China will probably experience the
development predicament like other developed countries such as Japan and South Korea.
Therefore, in order to break through the dilemma, we should focus on TFP. According to
the regularity of economic growth mode, the high contribution of TFP to economic growth
usually appears when entering the mature period of growth deceleration [45]. In other
words, China needs to transform its economic growth into a trajectory dependent on TFP
growth. In our forecasting model shown as Figure 8, TFP is still growing along the trend
in the short term, which, therefore, leads to sustainable economic growth. In conclusion,
increasing the contribution rate of TFP in the future is the core goal and new engine of
China’s economic growth.

6. Conclusions

In this paper, a delayed fractional differential equation model was established. The time
delay introduced into the capital stock is to characterize the lag effect and memory fea-
tures in economic operations. We used the stability theory of fractional-order system with
time delay and obtained the sufficiency condition for the local stability of the equilibrium
point. In the numerical simulation, we selected appropriate parameters according to the
corresponding conditions and drew the response curve. We also compare the memoryless
model of q = 1 with the factional one and verify the correctness of the theoretical results.
Furthermore, to analyze the influence of parameter variation on the equilibrium point and
steady state, we performed sensitivity analysis on the typical parameter p, and found that
the increase in TFP growth rate contributes to economic growth.

In the application section, we predicted China’s GDP growth in the next thirty years
based on the fractional derivative economic growth framework. In the prediction, the frac-
tional derivatives and delay parameters are carefully selected by the minimum prediction
error principle. We also explore the impacts of fractional derivatives and delay on predic-
tions and clarify the economic implications and stylistic facts brought by the two additional
features. Forecast results suggested that China’s economy would continue to grow at a
medium-to-high speed. In addition, we successively forecasted the working population,
capital stock, and TFP as by-products. A downward trend in the employment population
and a potential slowdown in capital stock growth emerge, which forces us to focus on
TFP. TFP measures the efficiency of resource development and utilization, which is directly
and highly related to the level of technology. Therefore, only by achieving technological
progress and increasing TFP can the pressure on the working population and capital stock
be offset, and economic growth can be sustained.

Economic growth is a goal pursued persistently by countries all over the world. We
will collect more economic data from other countries in the future and use the proposed
model to analyze the economic growth. We will improve the model according to the
characteristics of different countries, hoping to obtain a more general and widely applicable
theoretical framework.
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