On Solvability of the Sonin–Abel Equation in the Weighted Lebesgue Space
Abstract
:1. Introduction
2. Preliminaries
2.1. Jacobi Polynomials
2.2. Simple Properties of Convolution Operators with the Sonin Type Kernel
3. Main Results
3.1. Criterion of Solvability of the Sonin–Abel Equation
3.2. Kernels Close to Power-Type Functions
- (i)
- Bessel-type functions present Sonin kernels in two variants, the first one
- (ii)
- Incomplete gamma function and the power-exponential function:
- (iii)
- Product of the power and Kummer functions
3.3. Convolutions Operators in the Matrix Form
3.4. Application to Existence and Uniqueness Theorems
3.5. Prospective Results
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kukushkin, M.V. Abstract fractional calculus for m-accretive operators. Int. J. Appl. Math. 2021, 34, 1–41. [Google Scholar] [CrossRef]
- Sonine, N. Sur la generalization d’une formulae d’Abel. Acta Math. 1884, 4, 171–176. [Google Scholar] [CrossRef]
- Rubin, B.S. Fractional integrals in Hölder spaces with, and operators of potential type (in Russian). Izv. Akad. Nauk Armyan. SSR Ser. Mat. 1974, 9, 308–324. [Google Scholar]
- Rubin, B.S. The fractional integrals and Riesz potentials with radial density in the spaces with power weight (in Russian). Izv. Akad. Nauk Armyan. SSR Ser. Mat. 1986, 21, 488–503. [Google Scholar]
- Rubin, B.S. One-dimensional representation, inversion and certain properties of the Riesz potentials of radial functions. Math. Notes 1983, 34, 521–533. [Google Scholar] [CrossRef]
- Vaculov, B.G.; Samko, N. Spherical fractional and hypersingular integrals of variable order in generalized Hölder spaces with variable characteristic. Math. Nachr. 2011, 284, 355–369. [Google Scholar]
- Samko, S.G.; Murdaev, K.M. Weighted Zigmund estimates for fractional differentiation and integration, and their applications. Proc. Steklov Inst. Math. 1989, 180, 233–235. [Google Scholar]
- Samko, S.G.; Vakulov, B.G. On equivalent norms in fractional order function spaces of continuous functions on the unit sphere. Fract. Calc. Appl. Anal. 2000, 4, 401–433. [Google Scholar]
- Karapetyants, N.K.; Rubin, B.S. Operators of fractional integration in spaces with a weight (in Russian). Izv. Akad. Nauk Armyan. SSR Ser. Mat. 1984, 19, 31–43. [Google Scholar]
- Karapetyants, N.K.; Rubin, B.S. Radial Riesz potential on the disk and the fractional integration operators. Rep. Acad. Sci. USSR 1982, 25, 522–525. [Google Scholar]
- Hardy, G.H.; Littlewood, J.E. Some properties of fractional integrals I. Math. Z. 1928, 27, 565–606. [Google Scholar] [CrossRef]
- Kukushkin, M.V. On one application of the Zigmund-Marczinkevich theorem. Math. Notes Nefu 2020, 27, 39–51. [Google Scholar] [CrossRef]
- Kukushkin, M.V. Riemann-Liouville operator in weighted Lp spaces via the Jacobi series expansion. Axioms 2019, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Kukushkin, M.V. On Smoothness of the Solution to the Abel Equation in Terms of the Jacobi Series Coefficients. Axioms 2020, 9, 81. [Google Scholar] [CrossRef]
- Samko, S.G. Integral equations of the first kind of Sonine type. Int. J. Math. Math. Sci. 2003, 2003. [Google Scholar] [CrossRef] [Green Version]
- Rubin, B.S. An imbedding theorem for images of convolution operators on a finite segment, and operators of potential type I. Izv. Vyssh. Uchebn. Zaved. Mat. 1982, 34, 53–63. (In Russian) [Google Scholar]
- Muckenhoupt, B. Mean Convergence of Jacobi Series. Proc. Am. Math. Soc. 1969, 23, 306–310. [Google Scholar] [CrossRef]
- Pollard, H. The mean convergence of orthogonal series III. Duke Math. J. 1949, 16, 189–191. [Google Scholar] [CrossRef]
- Gorenflo, R.; Vessella, S. Abel Integral Equations; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1993. [Google Scholar]
- Suetin, P.K. Classical Orthogonal Polynomials; Nauka Fizmatlit: Moscow, Russia, 1979. [Google Scholar]
- Marcinkiewicz, J.; Zygmund, A. Some theorems on orthogonal systems. Fundam. Math. 1937, 28, 309–335. [Google Scholar] [CrossRef]
- Wick, J. Über eine Integralgleichung vom Abelschen Typ. Z. Angew. Math. Mech. 1968, 48, 39–41. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukushkin, M.V. On Solvability of the Sonin–Abel Equation in the Weighted Lebesgue Space. Fractal Fract. 2021, 5, 77. https://doi.org/10.3390/fractalfract5030077
Kukushkin MV. On Solvability of the Sonin–Abel Equation in the Weighted Lebesgue Space. Fractal and Fractional. 2021; 5(3):77. https://doi.org/10.3390/fractalfract5030077
Chicago/Turabian StyleKukushkin, Maksim V. 2021. "On Solvability of the Sonin–Abel Equation in the Weighted Lebesgue Space" Fractal and Fractional 5, no. 3: 77. https://doi.org/10.3390/fractalfract5030077
APA StyleKukushkin, M. V. (2021). On Solvability of the Sonin–Abel Equation in the Weighted Lebesgue Space. Fractal and Fractional, 5(3), 77. https://doi.org/10.3390/fractalfract5030077