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Abstract: In this paper we present a method of studying a convolution operator under the Sonin
conditions imposed on the kernel. The particular case of the Sonin kernel is a kernel of the fractional
integral Riemman–Liouville operator, other various types of the Sonin kernels are a Bessel-type
function, functions with power-logarithmic singularities at the origin e.t.c. We pay special attention
to study kernels close to power type functions. The main our aim is to study the Sonin–Abel equation
in the weighted Lebesgue space, the used method allows us to formulate a criterion of existence
and uniqueness of the solution and classify a solution, due to the asymptotics of the Jacobi series
coefficients of the right-hand side.
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1. Introduction

The central point of fractional calculus is a concept of fractional differentiation. In this
regard, we should admit that the Riemann–Liouville operator of fractional differentiation is
at the origin of the concept and plays a special role in the science. Such operators as Caputo
and Marchaud certainly are worth mentioning in this context, the first one is not interesting
for us since it is more like a reduction of the Riemann–Liouville operator on smooth func-
tions disappearing at the initial point (if we consider the matter from the point of view that
is of functional analysis), but the second one does completely reflect a true mathematical na-
ture of fractional derivative as a notion, since it has a representation in terms of infinitesimal
generator of the corresponding semigroup [1]. It is clear that considering such an approach
we are forced to deal with more general notions of the operator theory and in this way the
understanding of the notion of fractional derivative as a fractional power of infinitesimal
generator is harmoniously completed, on the one hand. On the other hand, we can make
another generalization, if we interpret the fractional differential Riemann–Liouville opera-
tor as a particular case of the derivative of the convolution operator for which the so called
Sonin condition holds [2]. Here we should note that initially our interest was inspired by
lots of previously known results related to mapping theorems for fractional integral opera-
tors obtained by mathematicians such as Rubin B.S. [3–5], Vakulov B.G. [6], Samko S.G. [7,8],
and Karapetyants N.K. [9,10]. Let us remember that the so called mapping theorem for the
Riemann–Liouville operator (the particular case of the Sonin operator) were first studied
by H. Hardy and Littlewoo [11] and nowadays is known as the Hardy–Littlewood theorem
with limit index. However, there was an attempt to extend this theorem on some class of
weighted Lebesgue spaces defined as functional spaces endowed with the following norm
‖ f ‖Lp(I, β,γ) := ‖ f ‖Lp(I,µ), µ(x) = ω β,γ(x) := (x− a)β(b− x)γ, β, γ ∈ R, I := (a, b). In this
direction the mathematicians such as Rubin B.S., Karapetyants N.K. [9] had success, the fol-
lowing problem was considered Iα

a+ : Lp(I, β, γ) −→ ? However, the converse theorem was
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not considered. All these create the prerequisite to invent another approach for studying
mapping properties of the Riemann–Liouville operator or, more generally, integral opera-
tors. Thus, trying to solve (at least in particular) the more general problem, in the paper [12]
we deal with mapping theorems for operators acting on Banach spaces in order to obtain
afterwards the desired results applicable to integral operators. In this regard the following
papers are worth noticing [13,14], where in addition, a special technique based on the
properties of the Jacobi polynomials was introduced. Based on this approach, in this paper
we offer a method of studying the Sonin operator [2], which is defined as a convolution
operator s I$

a+ϕ := $ ∗a ϕ under some conditions (the so called Sonin conditions) imposed
on the kernel $, i.e., there exists the function ϑ such that $ ∗ ϑ = 1. The particular case of the
Sonin kernel is a kernel of the fractional integral Riemann–Liouville operator, many other
examples can be found in the papers [15,16], the first one gives us a survey considering
various types of kernels such as the Bessel-type function, the power-exponential function,
the incomplete gamma function e.t.c., the main concept of the second one is to construct
a widest class of functions being a Sonin kernel. In our study, we pay a special attention
to kernels presented as xα−1a(x), α ∈ (0, 1), where a(x) is an analytic function. The main
our aim is to study the Sonin–Abel equation s I$

a+ϕ = f in the weighted Lebesgue space,
the used method allows us to formulate the criterion of existence and uniqueness of the
solution and in addition (what we particularly want to highlight) to classify a solution, in
accordance with belonging to a weighted Lp space, due to the asymptotics of the Jacobi
series coefficients of the right-hand side. Note that an opportunity to consider the whole
problem in the matrix form is worth noticing itself and such remarkable results as [17,18]
give us a tool—a basis property of the Jacobi polynomials. This approach leads to a similar
problem, we can consider more wide class of operators if we use the matrix form and a
valuable fact is that the criterion of the solvability of the Sonin–Abel equation is naturally
formulated in the very matrix form. We stress that the used method was not previously
considered in the well-known monographs [19,20] devoted to the topic. The paper is orga-
nized as follows. In Section 1 a brief historical review as well as some facts that motivated
the author to write the paper are presented. In Section 2 some denotations and notions that
are used throughout the paper are presented. Section 3.1 is devoted to the central result
of the paper; the criterion of solvability of the Sonin–Abel equation in terms of the Jacobi
series coefficients is formulated. Sections 3.2–3.5 are devoted to study of various particular
cases of the Sonin kernel.

2. Preliminaries
2.1. Jacobi Polynomials

Let C be a real positive constant, we assume that a value of C can be different in various
formulas and parts of formulas. We use special notations q := max{β, γ}, σ := β− 1,
ς := γ− 1, β, γ ∈ R, ν := −1/2 for a more convenient form of writing and understand the
following symbols as

n

∑
i=−k

ai :=
n

∑
i=0

ai, n, k ∈ N0,
n

∑
i=k

ai := 0, n, k ∈ Z, n < k.

We use the following notations for Jacobi polynomials and related expressions

p β,γ
n (x) =

(−1)nδ′n(β, γ)

(b− a)n+(β+γ+1)/2
× (x− a)−β(b− x)−γ ϕ

(n)
n (x), β, γ > −1, n ∈ N0,

where

ϕ
(n)
n (x) := (x− a)β+n(b− x)γ+n, δ′n(β, γ) :=

√
(β + γ + 2n + 1)Γ(β + γ + n + 1)

n!Γ(β + n + 1)Γ(γ + n + 1)
,
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δ′0(β, γ) =
1√

Γ(β + 1)Γ(γ + 1)
, β + γ + 1 = 0,

We also use short-hand notations

δn(β̃, γ) = δ′n(β, γ)Γ(n + β + 1), δn(β, γ̃) = δ′n(β, γ)Γ(n + γ + 1).

In accordance with Formula (3) [21], p. 282, we have

p β,γ (1)
n (x) =

√
n(β + γ + n + 1) pβ+1,γ+1

n−1 (x),

It gives us the formula

p β,γ (k)
n (a) = Cn,k(β, γ) pβ+k,γ+k

n−k (a), k ≤ n, (1)

where the following denotations are used

Cn,k(β, γ) =
δ′n−k(β + k, γ + k)

δ′n(β, γ)
. (2)

If we take into account the normalized multiplier, then Formula (6) [21], p. 283, in
terms of the used notations, can be rewritten as follows

pβ,γ
n (a) = (−1)n δ′n(β, γ)Γ(β + n + 1)

(b− a)(β+γ+1)/2Γ(β + 1)
,

combining the above formulas, we have

p β,γ (k)
n (a) = (−1)n+k δ′n(β, γ)C2

n,kΓ(β + n + 1)

(b− a)k+(β+γ+1)/2Γ(β + k + 1)
. (3)

Using the Taylor series expansion for the Jacobi polynomials, we get

pβ,γ
n (x) =

n

∑
k=0

(−1)n+k δ′n(β, γ)C2
n,kΓ(β + n + 1)

(b− a)k+(β+γ+1)/2k!Γ(β + k + 1)
(x− a)k. (4)

Applying the Formulas (2.44) and (2.45) [20], p. 40, of the fractional integral and
derivative (see definitions in Section 2.2) of a power function, we obtain

(
Iα
a+pβ,γ

n

)
(x) =

n

∑
k=0

(−1)n+k δ′n(β, γ)C2
n,kΓ(β + n + 1)

(b− a)k+(β+γ+1)/2Γ(k + 1 + α)Γ(β + k + 1)
(x− a)k+α, α ∈ R,

Here we used the formal notation I−α
a+ := Dα

a+. Thus, using integration by parts
(see [13]), we get

b∫
a

pβ,γ
m (x)(Iα

a+pβ,γ
n )(x)ωβ,γ(x)dx = δ′mδ′n

n
∑

k=0
(−1)n+k C2

n,kΓ(β+n+1)B(α+β+k+1,γ+m+1)
Γ(β+k+1)Γ(k+α−m+1) ,

α ∈ R \ {0}, α + β > −1.
(5)

Note that the last formula appeared in [14] in terms C̃k
n(β, γ) := C2

n,kΓ(β + n + 1)/
Γ(β + k + 1). Having noticed (3), we conclude that the latter formal equality becomes
natural if we note that in accordance with notations given in [14] we have

C̃k
n(β, γ) = (−1)n+k p β,γ (k)

n (a)
(b− a)k+(β+γ+1)/2

δ′n(β, γ)
, k ≤ n.
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Further, we use notations

fn(β, γ) =

b∫
a

f (x)p β,γ
n (x)ω β,γ(x)dx, S β,γ

n f :=
n

∑
k=0

fn p β,γ
n .

Throughout this paper we use conditions that guarantee passing to the limit in integral
constructions. Muckenhoupt’s result (see [17]) is in the following, assume that

f ∈ Lp(I, β, γ), |(β + 1)/p− 1/2− β′/2| < min{1/4, 1/2 + β′/2},

and the same holds for γ, γ′, then

S β′ ,γ′

k f
Lp(I,β,γ)
−→ f , k→ ∞.

The particular case corresponding to β, γ ≥ −1/2, β′ = β, γ′ = γ is Pollard’s result.
In this case the condition can be reformulated in the author’s (initial) form

M(β, γ) < p < m(β, γ),

M(β, γ) := 4 max
{

β + 1
2β + 3

,
γ + 1

2γ + 3

}
, m(β, γ) := 4 min

{
β + 1

2β + 1
,

γ + 1
2γ + 1

}
,

but the conclusion is obviously the same.

2.2. Simple Properties of Convolution Operators with the Sonin Type Kernel

We use a denotation

( f ∗a g)(x) :=
x∫

a

f (x− τ)g(τ)dτ,

if a = 0, then we write f ∗ g. Throughout the paper we assume that the functions $,
ϑ ∈ L1(I0), I0 = (0, b− a) ⊂ R are such that the so called Sonin condition holds $ ∗ ϑ = 1.
Consider the left-hand side and right-hand side integral operators

(
s I$

a+ϕ
)
(x) :=

x∫
a

$(x− t)ϕ(t)dt,
(

s I$
b−ϕ

)
(x) :=

b∫
x

$(t− x)ϕ(t)dt, ϕ ∈ L1(I, β, γ);

and the differential operators

sDϑ
a+ f (x) :=

d
dx

(
s Iϑ

a+ϕ
)
(x), sDϑ

b− f (x) := − d
dx

(
s Iϑ

b−ϕ
)
(x),

where f belongs to the class of functions representable by the corresponding fractional in-
tegral s I$

a+(L1(I)), s I$
b−(L1(I)). The latter assumption gives us an opportunity to conclude

that (compare with [20], p. 29)

sDϑ
a+ s I$

a+ϕ =
d

dx

(
s Iϑ

a+ s I$
a+ϕ

)
(x) =

d
dx

x∫
a

ϕ(t)dt = ϕ(x), ϕ ∈ L1(I).

Indeed, by virtue of the obvious relation ‖ |$| ∗a |ϕ| ‖L1(I) ≤ ‖$‖L1(I0)
‖ϕ‖L1(I) (the

proof is by direct application of the corollary of the Fubini theorem) we can deduce that
|ϑ| ∗a |$| ∗a |ϕ| ∈ L1(I). Therefore the following integral is convergent for almost all x ∈ I

x∫
a

|ϑ(x− t)|dt
t∫

a

|$(t− τ)||ϕ(τ)|dτ < ∞ a.e.
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It is clear that the latter integral converges for x ∈ I, since the functions under the
integral are non-negative. Hence, applying the Fubini theorem, we can change the order
of integration

x∫
a

ϑ(x− t)dt
t∫

a

$(t− τ)ϕ(τ)dτ =

x∫
a

ϕ(τ)dτ

x∫
τ

ϑ(x− t)$(t− τ)dt, x ∈ I.

Thus, by virtue of the Sonin conditions $ ∗ ϑ = 1 we obtain the desired result in
the case ϕ ∈ L1(I). Absolutely analogously we obtain sDϑ

b− s I$
b−ϕ = ϕ, ϕ ∈ L1(I). Note

that in the particular case $(x) = xα−1/Γ(α), ϑ(x) = x−α/Γ(1 − α), 0 < α < 1, we
have reduction to the fractional integral and differential Riemann–Liouville operators i.e.,
s I$

a+ = Iα
a+, sDϑ

a+ = Dα
a+. We use the following notations

Aϑ,β,γ
mn :=

b∫
a

p β,γ
m (x)

(
s Iϑ

a+p β,γ
n

)
(x)ω β,γ(x)dx, B

β,γ
p ( f , ξ) :=

∞

∑
n=1
| fn(β, γ)|pnξ ,

ϕ
$
n(β, γ) :=

b∫
a

(s I$
a+ϕ)(x)p β,γ

n (x)ω β,γ(x)dx

and short-hand notations pn := p β,γ
n , fn := fn(β, γ), if their meaning is quite understandable.

3. Main Results
3.1. Criterion of Solvability of the Sonin–Abel Equation

Throughout this section we deal with the case β, γ ∈ (0, 1). Consider the Sonin–Abel
equation under the previously made assumptions regarding the kernel (see preliminaries
section) and most general assumptions regarding the right-hand side

s I$
a+ϕ = f ∈ L1(I). (6)

We have the following theorem

Theorem 1. Assume that the following conditions hold

i)Bσ,ς
p (s Iϑ

a+ f , ξ) < ∞, ii)
∞

∑
m=0

f ϑ
m(σ, ς)pσ,ς

m (a) = 0, (7)

where ξ = (5/2 + max{β, γ})(p− 2) + 2, then there exists a unique solution of the Sonin–Abel
Equation (6), the solution is represented by the series convergent in the sense of norm Lp(I, β, γ)

ψ =
∞

∑
m=0

ψm(β, γ)pβ,γ
m .

Moreover, in the case p = 2 we claim that conditions (7) are necessary, so that we have
a criterion.

Proof. The sufficient part of existence. Consider the following coefficients, let us de-
note them

gm := Cm+1,1(σ, ς)

∣∣∣∣∣∣
b∫

a

p σ,ς
m (x)

(
s Iϑ

a+ f
)
(x)ω σ,ς(x)dx

∣∣∣∣∣∣,
where according to Formula (2), we can calculate Cm+1,1(σ, ς) =

√
(m + 1)(β + γ + m).

Thus, due to the theorem conditions we have

∞

∑
m=1
|gm|pmξ−p ≤ C B

σ,ς
p (s I$

a+ f , ξ) < ∞.
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Let us calculate

ξ − p = (5/2 + max{β, γ})(p− 2) + 2− p = (1/2 + max{β, γ})(p− 2) + p− 2.

It implies that

∞

∑
m=1
|gm|p Mp−2

m mp−2 < ∞, Mm = m1/2+max{β,γ}.

Having applied the Zygmund–Marcinkiewicz theorem (see [22]), we get that there
exists a function ψ ∈ Lp(I, β, γ), such that

ψm(β, γ) = gm, m ∈ N0, S β,γ
k ψ

Lp(I,β,γ)
−→ ψ, k→ ∞.

In other terms, we have

b∫
a

p β,γ
m (x)ψ(x)ω β,γ(x)dx = Cm+1,1(σ, ς)

b∫
a

p σ,ς
m+1(x)

(
s Iϑ

a+ f
)
(x)ω σ,ς(x)dx. (8)

Using the integration by parts formulae, then the Fubini theorem, it is not hard to
calculate the following relation

b∫
a

p β,γ
m (x)

(
S β,γ

k ψ
)
(x)ω β,γ(x)dx = Cm+1,1(σ, ς)

b∫
a

p σ,ς
m+1(x)ω σ,ς(x)dx

x∫
a

(
S β,γ

k ψ
)
(t)dt,

m, k = 0, 1, . . . , .
(9)

Also, we have b∫
a

∣∣∣∣∣∣
x∫

a

(
S β,γ

k ψ
)
(t)dt

∣∣∣∣∣∣
p

ω σ,ς(x)dx

1/p

≤
b∫

a

(
S β,γ

k ψ
)
(t)dt

 b∫
t

ω σ,ς(x)dx

1/p

≤

≤ ‖S β,γ
k ψ‖Lp(I,β,γ)

 b∫
a

ω−p′/p(t)dt
b∫

t

ω σ,ς(x)dx

1/p

≤ C‖S β,γ
k ψ‖Lp(I,β,γ), k = 0, 1, . . . , .

Taking into account this fact and passing to the limit in the left-hand and right hand
sides of the inequality (9), we get

b∫
a

p β,γ
m (x)ψ(x)ω β,γ(x)dx = Cm+1,1(σ, ς)

b∫
a

p σ,ς
m+1(x)ω σ,ς(x)dx

x∫
a

ψ(t)dt, m = 0, 1, . . . , .

Substituting the relation s Iϑ
a+ s I$

a+ψ = I1
a+ψ a.e. to the obtained formula, we get

b∫
a

p β,γ
m (x)ψ(x)ω β,γ(x)dx = Cm+1,1(σ, ς)

b∫
a

p σ,ς
m+1(x)

(
s Iϑ

a+ s I$
a+ψ

)
(x)ω σ,ς(x)dx =

= Cm+1,1(σ, ς)
b∫
a

p σ,ς
m+1(x)

(
s I$

a+ s Iϑ
a+ψ

)
(x)ω σ,ς(x)dx.

(10)

Combining (8) with (10), we obtain

b∫
a

p σ,ς
m+1(x)

(
s Iϑ

a+ s I$
a+ψ

)
(x)ω σ,ς(x)dx =

b∫
a

p σ,ς
m+1(x)

(
s Iϑ

a+ f
)
(x)ω σ,ς(x)dx, m ∈ N0.
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It implies that
s Iϑ

a+ s I$
a+ψ = s Iϑ

a+ f + δ a.e. , (11)

where

δ =

b∫
a

(p σ,ς
0 )2

{(
s Iϑ

a+ s I$
a+ψ

)
(x)−

(
s Iϑ

a+ f
)
(x)
}

ω σ,ς(x)dx. (12)

Using ordinary properties of the convolution operator (see preliminaries section), it is
not hard to obtain the formula s I$

a+ s Iϑ
a+ s I$

a+ψ = I1
a+ s I$

a+ψ a.e. Note that the proof of the
formula s Iϑ

a+ s I$
a+ f = I1

a+ f a.e. is given at the same place. Having applied the obtained
results to (11), we get I1

a+ s I$
a+ψ = I1

a+ f +s I$
a+δ a.e. Since the given functions at the left-hand

and right-hand sides of the previous inequality are absolutely continuous, then

I1
a+ s I$

a+ψ = I1
a+ f +s I$

a+δ.

Differentiating the left-hand side and right-hand side, we obtain

s I$
a+ψ = f + δ · $(x− a) a.e.

Now, let us express the constant δ in terms of the theorem conditions. By easy
calculation, we have

b∫
a

∣∣∣∣∣∣
x∫

a

ψ(t)dt

∣∣∣∣∣∣ω σ,ς(x)dx ≤
b∫

a

|ψ(t)|dt

 b∫
t

ω σ,ς(x)dx

 ≤ C‖ψ‖L2(I,β,γ).

By virtue of this relation (we need it to pass to the limit), using the formula s Iϑ
a+ s I$

a+ψ =
I1
a+ψ a.e. and the fact

S β,γ
k ψ

L2(I,β,γ)−→ ψ, k→ ∞,

we can easily obtain

b∫
a

(
I1
a+S β,γ

k ψ
)
(x)ω σ,ς(x)dx →

b∫
a

(
s Iϑ

a+ s I$
a+ψ

)
(x)ω σ,ς(x)dx, k→ ∞.

Therefore, combining this relation with (12), we get

b∫
a

(p σ,ς
0 )2

{(
I1
a+S β,γ

k ψ
)
(x)−

(
s Iϑ

a+ f
)
(x)
}

ω σ,ς(x)dx → δ, k→ ∞. (13)

Using the formula (see [21], p. 282)

(
pσ,ς

m+1
)′

=
√
(m + 1)(β + γ + m) p β,γ

m ,

we have

x∫
a

(
S β,γ

k ψ
)
(t)dt =

k

∑
m=0

ψm(β, γ)

x∫
a

p β,γ
m (t)dt =

k

∑
m=0

ψm(β, γ)
(

pσ,ς
m+1(x)− pσ,ς

m+1(a)
)√

(m + 1)(β + γ + m)
.

It follows that

b∫
a

(
I1
a+S β,γ

k ψ
)
(x)ω σ,ς(x)dx =

b∫
a

k
∑

m=0

ψm(β,γ)(pσ,ς
m+1(x)−pσ,ς

m+1(a))√
(m+1)(β+γ+m)

ω σ,ς(x)dx =

= −
k
∑

m=0

ψm(β,γ)pσ,ς
m+1(a)√

(m+1)(β+γ+m)

b∫
a

ω σ,ς(x)dx = −B(β, γ)(b− a)β+ς
k
∑

m=0

ψm(β,γ)pσ,ς
m+1(a)√

(m+1)(β+γ+m)
.
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Taking into account the established above fact ψm(β, γ) = Cm+1,1 f ϑ
m+1(σ, ς), we get

b∫
a

(
I1
a+S β,γ

k ψ
)
(x)ω σ,ς(x)dx = −B(β, γ)(b− a)β+ς

k

∑
m=0

f ϑ
m+1(σ, ς) pσ,ς

m+1(a).

Hence, a substitution in (13) gives us

b∫
a

(p σ,ς
0 )2

{(
I1
a+S β,γ

k ψ
)
(x)−

(
s Iϑ

a+ f
)
(x)
}

ω σ,ς(x)dx =

= − f ϑ
0 (σ, ς)p σ,ς

0 −
k

∑
m=0

f ϑ
m+1(σ, ς)pσ,ς

m+1(a) = −
k+1

∑
m=0

f ϑ
m(σ, ς)pσ,ς

m (a)→ δ, k→ ∞.

Thus, the theorem conditions guarantee that δ = 0 and we complete the proof of the
sufficient part.

The proof of the necessary part of existence. Now assume that there exists a solution
of the Sonin–Abel equation in L2(I, β, γ), β, γ ∈ (0, 1). Then, using the fact that Jacobi
polynomials form a basis in L2(I, β, γ), applying Formula (10), we get

b∫
a

p β,γ
m (x)ψ(x)ω β,γ(x)dx = Cm+1,1(σ, ς)

b∫
a

p σ,ς
m+1(x)

(
s Iϑ

a+ s I$
a+ψ

)
(x)ω σ,ς(x)dx =

= Cm+1,1(σ, ς)

b∫
a

p σ,ς
m+1(x)

(
s Iϑ

a+ f
)
(x)ω σ,ς(x)dx, m ∈ N0.

It follows that
B

σ,ς
2 (s Iϑ

a+ f , 2) < ∞.

Since ψ is a solution, then (11) is fulfilled, where δ = 0. We can also establish (13), in
the way that was used above. Further, having repeated the above reasonings, we come to
the relation

∞

∑
m=0

f ϑ
m(σ, ς)pσ,ς

m (a) = 0.

The proof of the necessary part is complete.
The proof of uniqueness: the proof can be obtained by direct calculation, we should

apply the inverse operator to the left-hand and the right-hand side of the Sonin–Abel
equation, then the desired result follows directly from the obtained formula for the solution.
But here we want to stress more general nature of the solution existence considering
the abstract scheme, presented in the paper [12], of the proof. Assume that there exists
a solution ψ and another solution φ in Lp(I, β, γ) of the Sonin–Abel equation, and let
us denote ξ := ψ− φ. Denote In := (a + 1/n, b− 1/n), then the following assumptions
are fulfilled

∞⋃
n=1

In = I, In ⊂ In+1, µ(I\ In)→ 0, n→ ∞, Lp(I, β, γ) ⊂ Lp(In).

The verification is left to the reader. In terms of these notations, it is also clear that

∞⋃
n=1

C∞
0 (In) = C∞

0 (I), C∞
0 (In) ⊂ C∞

0 (In+1).

Thus to apply the scheme of the proof presented in [12], we need to show that

∀η ∈ C∞
0 (I), ∃g ∈ Lp′(I, β, γ) : (ξ, η)L2(I) = (ξ, s I$∗

a+g)L2(I,β,γ).
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For this purpose it is sufficient to show that

∃h ∈ L∞(I) :
b∫

a

ξ(x)η(x)dx =

b∫
a

ξ(x)
(

s I$
b−ωβ,γh

)
(x)dx. (14)

Let us prove that sDϑ
b−η(x) ∈ L∞(I). Making substitution of the expression

η(x) = −
b∫

x

η′(τ)dτ + η(b),

to the formula sDϑ
b−η(x), we can calculate easily

(sDϑ
b+η)(x) = η(b)ϑ(b− x)−

b∫
x

ϑ(t− x)η′(t)dt = −
b∫

x

ϑ(t− x)η′(t)dt a.e. (15)

It is clear that∣∣∣∣∣∣
b∫

x

ϑ(t− x)η′(t)dt

∣∣∣∣∣∣ ≤ C
b∫

x

|ϑ(t− x)|dt ≤
b−a∫
0

|ϑ(t)|dt < ∞,

thus we have Dϑ
b−η ∈ L∞(I). Let the desired function be h := ω−β,−γ · sDϑ

b−η, then by
direct calculation, we get ωβ,γh ∈ Lp′(I, β, γ). Using Formula (15), applying the Fubini
theorem, then using the condition $ ∗ ϑ = 1, we get

(
s I$

b− sDϑ
b−η

)
(x) = −

b∫
x

$(τ − x)dτ
b∫

τ
ϑ(t− τ)η′(t)dt = −

b∫
x

η′(t)dt
t∫

x
ϑ(t− τ)$(τ − x)dτ =

= −
b∫

x
η′(t)dt

x−t∫
0

ϑ(y)$(x− t− y)dy = −
b∫

x
η′(t)dt = η(x).

Thus, combining the obtained facts, we have η= s I$
b−ωβ,γh, h ∈ L∞(I), from what follows

Formula (14). Using the Hölder inequality, the generalized Cauchy–Schwarz inequality,
we get

b∫
a

|ξ(x)|
(

s I$
b−ωβ,γ|h|

)
(x)dx ≤ C

b∫
a

|ξ(x)|
(

s I$
b−ωβ,γ

)
(x)dx ≤ C‖ξ‖Lp′ (I,β,γ).

Thus we can apply the Dirichlet formula to relation (14) and rewrite it as follows

b∫
a

ξ(x)η(x)dx =

b∫
a

ξ(x)
(

s I$
b−ωβ,γh

)
(x)dx =

b∫
a

ωβ,γ(x)h(x)
(

s I$
a+ξ
)
(x)dx. (16)

Hence ω−β,−γ ·s I$
b− ⊂ s I$∗

a+ and we can complete the proof having applied Theorem 3 [12].
However, for readers’ convenience, we present the rest part of the proof below. By virtue
of (16), we have ∫

In

ξ(x)η(x)dx = 0, ∀η ∈ C∞
0 (In).

We claimed that ξ 6= 0. Note that in accordance with the corollary of the Hahn-Banach
theorem there exists an element v ∈ Lp′(In), such that (v, ξ)L2(In)

= ‖ψ− φ‖Lp(In) > 0.
On the other hand, there exists the sequence {ηk}∞

1 ⊂ C∞
0 (In), such that ηk → v with

respect to the norm Lp′(In). Hence, using the Hölder inequality it is not hard to prove
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that 0 = (ηk, ξ)L2(In)
→ (v, ξ)L2(In)

. Therefore ψ = φ almost everywhere on the set
In, n = 1, 2, . . . . In its own turn, it implies that ψ = φ almost everywhere on the set I. The
uniqueness has been proved.

The next fact follows immediately from the proof of the previous theorem.

Corollary 1. Consider a formal equation with a perturbed right-hand side

s I$
a+ψ = f + δ · $(x− a), (17)

where

δ := −
∞

∑
m=0

f ϑ
m(σ, ς)pσ,ς

m (a). (18)

Assume that condition (i) of Theorem 1 holds, then there exists a unique solution of Equation (17),
that is satisfied the conditions claimed in the conclusion part of Theorem 1.

Note that condition (i) gives us | f ϑ
m(σ, ς)|m(ξ−1)/p ≤ C. Combining this relation with

the well-known fact pσ,ς
m (a) ∼ (−1)mCmσ+1/2 (see [21], p. 288), calculating (ξ − 1)/p we

can easily establish the convergence of series (18). Thus, under assumption (i), we get
δ ∈ R; if δ = 0, then we have a regular Sonin–Abel equation. If δ 6= 0, then we call a
solution of Equation (17) quasi-solution of the Sonin–Abel equation. In this case Equation (6) is
unsolvable, but the question that may be relevant in applications is how large a perturbation
of the right-hand side, in some sense, should be to obtain a regular solution? Thus, we
come to the following definition in a natural way. We will call the following norm a defect
of the right-hand side

‖ s I$
a+ψ− f ‖L2(I,β,γ) = |δ| · ‖$‖L2(I0,β,γ).

It is clear that the defect of the right-hand side can be completely described by a value
of δ, the following corollary gives an example how we can estimate the latter in the concrete
case. The following reasonings are based on the formula for a value of pσ,ς

m (a), m ∈ N0
(see [21]) and the main property of the alternative series.

Example 1. Assume additionally that

∃k ∈ N0 : sign
{

f ϑ
m(σ, ς)

}
= const, f ϑ

m+1(σ, ς)/ f ϑ
m(σ, ς) < Km(β, γ), m = k, k + 1, . . . ,

K0(β, γ) =

√
(β + 1)(γ + 1)
(β + γ + 3)

, Km(β, γ) =

√
(m + 1)(β + m)(γ + m)(β + γ + 2m− 1)

(β + γ + m− 1)(β + γ + 2m + 1)
,

then

|δ| <
∣∣∣∣∣ k−1

∑
m=0

f ϑ
m(σ, ς)pσ,ς

m (a)

∣∣∣∣∣+ | f ϑ
k (σ, ς)p σ,ς

k (a)|.

The proof is simple and left to the reader. Thus, we can estimate δ by a finite sum.

Corollary 2. Assume that Bσ,ς
2 (s Iϑ

a+ f , 2) < ∞, then s Iϑ
a+ f ∈ AC( Ī).

Proof. In accordance with Corollary 1, we have that there exists a quasi-solution ψ ∈
L2(I, β, γ), such that(

s I$
a+ψ

)
(x) = f (x)− $(x− a)

∞

∑
m=0

f ϑ
m(σ, ς)pσ,ς

m (a).
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Using the Cauchy–Schwarz inequality, it is not hard to prove that ψ ∈ L1(I). Applying
the operator s Iϑ

a+ to both sides of the previous relation, we get

x∫
a

ψ(t)dt =
(

s Iϑ
a+ f

)
(x)−

∞

∑
m=0

f ϑ
m(σ, ς)pσ,ς

m (a)
x∫

a

ϑ(x− t)$(t− a)dt =

=
(

s Iϑ
a+ f

)
(x)−

∞

∑
m=0

f ϑ
m(σ, ς)pσ,ς

m (a).

This relation proves the desired result.

3.2. Kernels Close to Power-Type Functions

In this section we consider concrete Sonin kernels such that:

(i) Bessel-type functions present Sonin kernels in two variants, the first one

$(x) = x−ν/2 Jν(2
√

x), ϑ(x) = x(ν−1)/2 Iν−1(2
√

x),

and the second one

$(x) = x−ν/2 Iν(2
√

x), ϑ(x) = x(ν−1)/2 Jν−1(2
√

x),

where

Jν =
∞

∑
n=0

(−1)n(x/2)2n+ν

n!Γ(n + ν + 1)
, Iν =

∞

∑
n=0

(x/2)2n+ν

n!Γ(n + ν + 1)
.

(ii) Incomplete gamma function and the power-exponential function:

$(x) = λ1−α +
1− α

Γ(α)

∞∫
x

e−λttα−2dt, ϑ(x) =
e−λx

Γ(1− α)xα
, α ∈ (0, 1), λ ≥ 0.

(iii) Product of the power and Kummer functions

$(x) = xα−1Φ(β, α,−λx), ϑ(x) =
x−αΦ(−β, 1− α,−λx)

Γ(α)Γ(1− α)
, α ∈ (0, 1), β, λ > 0.

where the following function is the Kummer function

Φ(β, α, z) =
∞

∑
n=0

(β)kzk

(α)kk!
.

Now, consider more general construction, assume that

$(x) :=
xα−1a(x)

Γ(α)
, a(x) =

∞

∑
n=0

anxn, a0 6= 0, α ∈ (0, 1), (19)

then in accordance with Theorem 7.1 [23], there exists a unique analytic function b(x) such
that the function

ϑ(x) =
x−αb(x)
Γ(1− α)

(20)

is an associated kernel with respect to ϑ; the series for b(x) converges where the series for
a(x) converges. To apply naturally Theorem 1 in this concrete case, let us establish the
asymptotics of the coefficients of s Iϑ

a+ f having known the asymptotics of the coefficients
of f . Note that this problem can be principally solved due to the results of [14], here we
also offer a slight improvement of them. Let us describe the coefficients f ϑ

n (σ, ς) via the
coefficients fn(σ, ς).
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3.3. Convolutions Operators in the Matrix Form

It is a well-known fact that we have a representation of a bounded operator in a matrix
form if we have a basis in the corresponding space. Below we present an approach that
allows us to reformulate Theorem 1 in the matrix form. The following lemma is devoted to
a power-type kernel.

Lemma 1. Suppose ϑ(x) = x−α, α ∈ (−∞, 0) ∩ (0, 1), f ∈ Ls(I, σ, ς), where we assume that
s > 1, if both numbers β, γ belong to the set (0, 1/2], and s > 4/3, if at least one of the numbers
β, γ belongs to the set (1/2, 1). Then the following representation holds

f ϑ
m(σ, ς) =

∞

∑
n=0

f σ,ς
n Aϑ,σ,ς

mn , m ∈ N0,

where
Aϑ,σ,ς

mn := (−1)nδm(σ, ς)δn(σ, ς)
n
∑

k=0
(−1)k C2

n,kΓ(σ+n+1)B(2−α+σ+k,ς+m+1)
Γ(σ+k+1)Γ(k−α−m+2) . (21)

In the matrix form this Lemma can be formulated as follows
Aϑ,σ,ς

00 Aϑ,σ,ς
01 . . .

Aϑ,σ,ς
10 Aϑ,σ,ς

11 . . .
·
·
· . . .

×


f0(σ, ς)
f1(σ, ς)
·
·
·

 =


f ϑ
0 (σ, ς)

f ϑ
1 (σ, ς)
·
·
·

.

Proof. Consider the following reasonings

b∫
a

|
(

s Iϑ
a+ f

)
(x)|ω σ,ς(x)dx =

b∫
a

| f (t)|
b∫

t

ω σ,ς(x)(x− t)−αdx ≤ C
b∫

a

| f (t)|
b∫

t

ω σ,ς(x)(x− t)−αdx ≤

≤ C
b∫

a

| f (t)|(t− a)β−1
b∫

t

(b− x)γ−1(x− t)−αdx ≤

≤ C


b∫

a

(t− a)p(β−1)+d1(b− t)d2

∣∣∣∣∣∣
b∫

t

(b− x)γ−1(x− t)−αdx

∣∣∣∣∣∣
p

dt


1/p

‖ f ‖Lp′ (I,β′ ,γ′) =

= C · B(γ, 1− α)


b∫

a

(t− a)p(β−1)+d1(b− t)p(γ−α)+d2 dt


1/p

‖ f ‖Lp′ (I,β′ ,γ′) ≤ C‖ f ‖Ls1 (I,β′ ,γ′),

where β′ = −d1 p′/p, γ′ = −d2 p′/p, numbers p′, s1 are chosen so that 0 < p′ ≤ s1 < s,
numbers d1, d2 are chosen so that p(β− 1) + d1 > −1, p(γ− 1) + d2 > −1. It follows that
β′ < p′β− 1, γ′ < p′γ− 1. Thus, we should assume that β′ = p′β− 1− ε, γ′ = p′γ− 1− ε
to guarantee the finiteness of the integral. Note, that we can rewrite the previously obtained
relation in the following form, we have omitted the reasonings since they are too obvious∣∣∣∣∣∣

b∫
a

p σ,ς
m (x)

(
s Iϑ

a+ f
)
(x)ω σ,ς(x)dx

∣∣∣∣∣∣ ≤ C‖ f ‖Ls1 (I,β′ ,γ′). (22)

In this case consider the question whether the Muckenhoupt conditions are satisfied
or not (see Theorem 1 [17]), i.e., in the used terms, we should verify the fulfilment of
the conditions∣∣∣∣ p′β− ε

s1
− β

2

∣∣∣∣ < min
{

1
4

,
β

2

}
,
∣∣∣∣ p′γ− ε

s1
− γ

2

∣∣∣∣ < min
{

1
4

,
γ

2

}
.
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It is clear that the last relation holds for β ∈ (0, 1/2], p′ ≤ s1 and for β ∈ (1/2, 1),
4/3 ≤ s1/p′ < 4 (compare the last condition with the Pollard condition of the basis
property of the Legendre polynomials). The same reasonings are held for γ. Therefore by
virtue of the proved basis property, we have

S σ,ς
k f

Ls1 (I,β′ ,γ′)
−→ f , k→ ∞.

Now, combining (22) and this relation, we can easily establish the fact

k

∑
n=0

f σ,ς
n Aϑ,σ,ς

mn =

b∫
a

p σ,ς
m (x)

(
s Iϑ

a+S σ,ς
k f

)
(x)ω σ,ς(x)dx →

b∫
a

p σ,ς
m (x)

(
s Iϑ

a+ f
)
(x)ω σ,ς(x)dx,

k→ ∞, m ∈ N0.

We should note in the reminder that we can chose ε such that ‖ f ‖Ls1 (I,β′ ,γ′) ≤
C‖ f ‖Ls(I,σ,ς). Indeed, having applied the Hölder inequality, we have

‖ f ‖Ls1 (β′ ,γ′ ,I) =


b∫

a

| f (t)|s1(t− a)p′β−1−ε(b− t)p′γ−1−εdt


1/s1

≤

≤ C


b∫

a

| f (t)|s1(t− a)β−1−ε(b− t)γ−1−εdt


1/s1

≤ C


b∫

a

| f (t)|s(t− a)β−1(b− t)γ−1dt


1/s

.

To complete the proof, we should note that representation (21) follows directly from
Formula (5).

The following lemma establishes a similar result, in comparison with the previous one,
under more strong conditions imposed on the kernel. It can be justified by the opportunity
to consider a kernel in an abstract form in the contrary to Lemma 1. Such an approach
completely suits us since we deal with the kernels close to a power-type function which
admit a decomposition on a sum where the summands are described in the lemmas.

Lemma 2. Suppose ϑ ∈ Lp(I0, ν, ν), ν = −1/2, p > 1, f ∈ Lp′(I, σ, ς), where we assume that
p′ > 1, if both numbers β, γ belong to the set (0, 1/2] and p′ > 4/3, if at least one of the numbers
β, γ belongs to the set (1/2, 1). Then

f ϑ
m(σ, ς) =

∞

∑
n=0

f σ,ς
n Aϑ,σ,ς

mn , m ∈ N0,

where

Aϑ,σ,ς
mn = δm(σ, ς̃)δn(σ̃, ς)

n

∑
j=0

(−1)n+j

Γ(σ + j + 1)

∞

∑
i=m−j−1

(−1)iϑi(ν, ν)Ψi
m−j−1(j, m), (23)

Ψi
m−j−1(j, m) :=

i

∑
l=m−j−1

(−1)l
√

2(b− a)C2
i,lΓ(l + j + σ + 2)

Γ(l + 1/2)(l + j + 1−m)!Γ(l + j + σ + m + ς + 3)
, i > 0,

Ψ0
m−j−1(j, m) :=

(b− a)Γ(j + σ + 2)√
π(j + 1−m)!Γ(j + σ + m + ς + 3)

.
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Proof. Applying the Hölder inequality and then the generalized Minkovskii inequality,
we get

I :=
b∫

a

| f (t)|dt
b∫

t

|ϑ(x− t)|ω σ,ς(x)dx ≤ C‖ f ‖Lp′ (I,σ,ς)

 b∫
a

∣∣∣∣∣∣
b∫

t

ϑ(x− t)ω σ,ς(x)dx

∣∣∣∣∣∣
p

dt

1/p

≤

≤ C‖ f ‖Lp′ (I,σ,ς)

b∫
a

ω σ,ς(x)

 x∫
a

|ϑ(x− t)|pdt

1/p

dx =

= C‖ f ‖Lp′ (I,σ,ς)

b∫
a

ω σ,ς(x)

 x−a∫
0

|ϑ(t)|pdt

1/p

dx ≤ C‖ f ‖Lp′ (I,σ,ς).

Thus, using the Fubini theorem, we get∣∣∣∣∣∣
b∫

a

pσ,ς
m (x) (s Iϑ

a+ f )(x)ω σ,ς(x)dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣

b∫
a

f (t)dt
b∫

t

ϑ(x− t)pm(x)ω σ,ς(x)dx

∣∣∣∣∣∣ ≤ C · I.

Hence ∣∣∣∣∣∣
b∫

a

pσ,ς
m (x) (s Iϑ

a+ f )(x)ω σ,ς(x)dx

∣∣∣∣∣∣ ≤ C‖ f ‖Lp′ (I,σ,ς). (24)

Let us verify the fulfilment of the Muckenhoupt conditions (see Theorem 1 [17]). By
virtue of the lemma conditions, in the used terms, we have∣∣∣∣ β

p′
− β

2

∣∣∣∣ < min
{

1
4

,
β

2

}
,
∣∣∣∣ γ

p′
− γ

2

∣∣∣∣ < min
{

1
4

,
γ

2

}
,

here we assume without loss of generality, that p′ < 4. It is clear that it is possible due to
the inequality ‖ f ‖Lp1 (I,σ,ς) ≤ C‖ f ‖Lp2 (I,σ,ς), p1 < p2, 1 ≤ p1 < ∞, which can be obtained
by direct application of the Hölder inequality. Thus, using the basis property, we have

S σ,ς
k f

Lp′ (I,σ,ς)
−→ f , k→ ∞.

Therefore, by virtue of (24), we can easily get

k

∑
n=0

f σ,ς
n Aϑ,σ,ς

mn =

b∫
a

p σ,ς
m (x)

(
s Iϑ

a+S σ,ς
k f

)
(x)ω σ,ς(x)dx →

b∫
a

p σ,ς
m (x)

(
s Iϑ

a+ f
)
(x)ω σ,ς(x)dx,

k→ ∞, m ∈ N0.

Let us establish (23), note that due to such a choice of the power ν = −1/2, we have

1 + ε > M
(
−1

2
,−1

2

)
, ∀ε > 0.

Hence the Pollard conditions are fulfilled, thus by virtue of the basis property, we get∥∥ϑ− Sν,ν
k ϑ

∥∥
L1+ε(I0,ν,ν)→ 0, k→ ∞,

It is clear that∣∣∣∣∣∣
x−a∫
0

p σ,ς
n (x− t)

[
ϑ(t)− (Sν,ν

k ϑ)(t)
]
dt

∣∣∣∣∣∣ ≤ C
x−a∫
0

∣∣p σ,ς
n (x− t)

∣∣∣∣ϑ(t)− (Sν,ν
k ϑ)(t)

∣∣√
t(b− a− t)

dt ≤
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≤ C
∥∥ϑ− Sν,ν

k ϑ
∥∥

L1+ε(I0,ν,ν).

Taking into account these reasonings, we obtain

x−a∫
0

p σ,ς
n (x− t)(Sν,ν

k ϑ)(t)dt→
x∫

a

p σ,ς
n (t)ϑ(x− t)dt, k→ ∞.

Denote

fk(x) := p σ,ς
m (x)ω σ,ς(x)

x−a∫
0

p σ,ς
n (x− t)(Sν,ν

k ϑ)(t)dt, f (x) := p σ,ς
m (x)ω σ,ς(x)

x∫
a

p σ,ς
n (t)ϑ(x− t)dt.

Thus, it is clear that in the given terms fk → f pointwise. Let us show that there exists
a Lebesgue summable function ξ such that | fk| ≤ ξ, ∀k ∈ N. Using simple reasonings,
we get

| fk(x)| ≤ Cω σ,ς(x)
x−a∫
0

|p σ,ς
n (x− t)|

∣∣(Sν,ν
k ϑ)(t)

∣∣√
t(b− a− t)

dt ≤

≤ Cω σ,ς(x)
∥∥Sν,ν

k ϑ
∥∥

L1+ε(I0,ν,ν) ≤ Cω σ,ς(x)‖ϑ‖L1+ε(I0,ν,ν).

Thus, applying the majoring Lebesgue theorem (assuming that ξ := Cω σ,ς), we obtain

b∫
a

p σ,ς
m (x)ω σ,ς(x)dx

x∫
a

p σ,ς
n (x)(Sν,ν

k ϑ)(x− t)dt→ Aϑ,σ,ς
mn .

Using Formula (4), we obtain

Ik :=
b∫

a

p σ,ς
m (x)ω σ,ς(x)dx

x∫
a

p σ,ς
n (t)(Sν,ν

k ϑ)(x− t)dt =

=

b∫
a

(x− a)m+σ(b− x)m+ς

 x∫
a

p σ,ς
n (t)(Sν,ν

k ϑ)(x− t)dt

(m)

dx =

=
δ′m(σ, ς)δ′n(σ, ς)

(b− a)m+σ+ς+1

k

∑
i=0

ϑi(ν, ν)δ′i(ν, ν)
i

∑
l=0

C2
i,lΓ(i + 1/2)

Γ(l + 1/2)

n

∑
j=0

(−1)n+j+i+lΓ(n + σ + 1)
(b− a)j+l j!l!Γ(j + σ + 1)

×

×
b∫

a

(x− a)m+σ(b− x)m+ς

 x∫
a

(x− t)l(t− a)jdt

(m)

dx.

Calculating the fractional integral of a power function, we have

x∫
a

(x− t)l(t− a)jdt = l!Il+1
a+ (t− a)j =

l!j!
(l + j + 1)!

(x− a)l+j+1.

Hence  x∫
a

(x− t)l(t− a)jdt

(m)

=


l!j!(x− a)l+j+1−m

(l + j + 1−m)!
, m ≤ l + j + 1,

0 , m > l + j + 1
.
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Using this relation, we obtain

b∫
a

(x− a)m+σ(b− x)m+ς

 x∫
a

(x− t)l(t− a)jdt

(m)

dx =

=
l!j!

(l + j + 1−m)!

b∫
a

(x− a)l+j+1+σ(b− x)m+ςdx =

=
l!j!

(l + j + 1−m)!
(b− a)l+j+m+σ+ς+2B(l + j + σ + 2, m + ς + 1), m ≤ l + j + 1.

Combining the above formulas, we get

Ik = (b− a)δ′m(σ, ς)δ′n(σ, ς)
n

∑
j=0

(−1)n+j Γ(n + β + 1)
Γ(j + β + 1)

k

∑
i=m−j−1

ϑi(ν, ν)δ′i(ν, ν)×

×
i

∑
l=m−j−1

(−1)i+l C2
i,lΓ(i + 1/2)B(l + j + σ + 2, m + ς + 1)

Γ(l + 1/2)(l + j + 1−m)!
.

Taking into account the proved above fact Ik → Aϑ,σ,ς
mn , k→ ∞ we obtain the desired

result. To show the form of writing used in the claim of the theorem, we should note that
δ′0(ν, ν) = 1/

√
π, δ′n(ν, ν) =

√
2/Γ(n + 1/2), n ∈ N, and use the formula connecting the

beta and gamma functions. The proof is complete.

3.4. Application to Existence and Uniqueness Theorems

Consider Equation (17), assuming that $, ϑ are defined by (19), (20) respectively. The
central aim of this paragraph is to provide a technique that guarantees proofs of existence
and uniqueness theorems. It is preferable to formulate conditions in terms of the Jacobi se-
ries coefficients of the right-hand side of the Sonin–Abel equation instead of the coefficients
of the image of the corresponding convolution operator (it has been done in Theorem 1),
thus we are motivated to formulate mapping theorems in the matrix form for the convolu-
tion operator. The latter approach is rather reasonable if we take into account a tool that is
given by Theorem 1 in accordance with which we can claim the existence an uniqueness
of the quasi-solution of the Sonin–Abel equation just having a proper asymptotics of the
Jacobi series coefficients. Generally, if we have an estimate Aϑ,σ,ς

mn ≤ Cφnm−θ , φn ∈ R,
where θ > 0 is such that condition (i) of Theorem 1 is satisfied, then the conclusion part
of the theorem holds for Equation (17) with the corresponding right-hand side f . Thus, it
becomes possible to reformulate Corollary 1 in terms of the above estimate. Here we have
faced with difficulties—it does not seem to be easy to obtain the estimate in the general case;
however, the attempt was made in the paper [14]. Moreover, even in the case when the
required estimate has been found then the following problem appears. It is not clear how
we can obtain such an estimate where φn is a power type function. The latter assumption
(under the corresponding assumptions regarding the power) gives us an opportunity to
formulate conditions in terms of Lp classes by virtue of the Zygmund–Marcinkiewicz theo-
rem. Below, we present the adopted version of the reasonings (see Theorem 2), made in the
paper [14], that can be applicable to kernels close to the power type functions (19), (20). The
subsequent reasonings jointly with Lemmas 1, 2, Theorem 1 can be treated as a technique
creating prerequisite for more subtle proofs of existence and uniqueness theorems.
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Theorem 2. Assume that the right-hand side of Equation (17), where the kernel is the power type
function (19), is such that the following condition holds

∞

∑
n=0

φn| fn(σ, ς)| < ∞,

where φn = (n!)24−nnβ+γ−3/2. Then, there exists a unique solution of Equation (17). More-
over, the expansion on the series of the Jacobi polynomials holds for the solution, where conver-
gence is understood in the sense of Lp(β, γ) norm, where p < ∞, if 0 < α ≤ (β− γ)/2 and
p < 2(q + 1)/(2α− β + q), if (β− γ)/2 < α < (β + 1)/2.

Proof. In accordance with Theorem 7.1 in [23] consider a kernel (20) such that $ ∗ ϑ = 1,
and let us use the following denotation

ϑ(x) :=
x−α

Γ(1− α)

∞

∑
s=0

bsxs =
∞

∑
s=0

ϑs(x). (25)

Using Formula (5) consider the following relation for s = 0, 1, 2, . . .

C
b∫

a

p σ,ς
m (x)

x∫
a

(x− t)s−α p σ,ς
n (t) dt ω σ,ς(x)dx =

= δ′m(σ, ς̃)δ′n(σ̃, ς)
min{c,n}

∑
k=0

(−1)n+kC2
n,k(σ, ς)Γ−1(σ + k + 1)Γ(k + s− α + σ + 2)

Γ(k + s− α−m + 2)Γ(k + s− α + σ + ς + m + 3)
+

+δ′m(σ, ς̃)δ′n(σ̃, ς)
n

∑
k=c+1

(−1)n+kC2
n,k(σ, ς)Γ−1(σ + k + 1)Γ(k + s− α + σ + 2)

Γ(k + s− α−m + 2)Γ(k + s− α + σ + ς + m + 3)
= I1 + I2,

where c = m− s− 1. Consider I1, note that under assumption 0 ≤ k ≤ c, we have

1
Γ(k+s−α−m+2) =

(k+s−α−m+2)
Γ(k+s−α−m+3) = . . . =

(−1)m+k+s
m−k−s

∏
i=1

(m−k−s−1+α−i)

Γ(2−α)
=

= (−1)m+k+sΓ(m−k−s−1+α)
Γ(α−1)Γ(2−α)

.

(26)

Using the facts obtained in Lemma 3 [14], we have Aϑ0,σ,ς
mn ≤ Cφnm2α−β−5/2, m, n ∈ N

(we should just substitute the parameters). Moreover, we claim that the scheme of the proof
presented in the paper [14] remains true for ϑs, s ∈ N, more precisely using Formula (26)
and considering the order s + 1− α of the integral, we can reformulate Lemma 1 [14] (the
proof is the same) as follows

Imk ≤ Cm2α−β−5/2−2s, Imk ≤ Ce2km2ξ+2α−β−7/2−2s−2k, m > s, s ∈ N0,

k = 0, 1, . . . , m− s− 1,

where

Imk := δ′m(σ, ς̃)

m−k−s
∏
i=1

(m− k− s− 1 + α− i)

Γ(k + s + 1− α + σ + ς + m + 2)
,

ξ = 0.577215 . . . is the Mascheroni constant. Taking into account (26), we can write

I1 = (−1)n+m+sδ′n(σ, ς)
min{c,n}

∑
k=0

C̃k
n(σ, ς)Γ(k + s− α + σ + 2)Imk

Γ(2− α)
.
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Using the estimate for C̃k
n(σ, ς) obtained in Lemma 3 [14] and conducting its rea-

sonings step by step, we get |I1| ≤ Cφnm2α−β−5/2−2s, m, n ∈ N. The estimate |I2| ≤
Cφnmγ−1/22−m−s, m, n ∈ N can be verified without any difficulties either. Combining
these estimates, we obtain

Aϑs ,σ,ς
mn ≤ 2−sCφnm2α−β−5/2, m, n ∈ N, s ∈ N0. (27)

Let us prove that

Aϑ,σ,ς
mn =

∞

∑
s=0

Aϑs ,σ,ς
mn .

For this purpose it is sufficient to consider the following estimate and use the absolute
convergence of series (25), we have∣∣∣∣∣Aϑ,σ,ς

mn −
k

∑
s=0

Aϑs ,σ,ς
mn

∣∣∣∣∣ ≤ C
b∫

a

ωσ,ς(x)dx
x∫

a

∣∣S̃kϑ(x− t)− ϑ(x− t)
∣∣dt ≤

≤ C‖S̃kϑ− ϑ‖C( Ī0)
→ 0, k→ ∞,

here, we put S̃kϑ := ∑k
s=0 ϑs. Therefore using (27), we get

|Aϑ,σ,ς
mn | ≤

∞

∑
s=0
|Aϑs ,σ,ς

mn | ≤ C
∞

∑
s=0

2−sφnm2α−β−5/2 ≤ Cφnm2α−β−5/2, m, n ∈ N.

Let us show that

k

∑
n=0

fn Aϑ,σ,ς
mn → f ϑ

m(σ, ς), k→ ∞, m ∈ N.

For this purpose we should consider a representation ϑ̃ = ϑ0 + ϑ1, ϑ̂ = ∑∞
s=2 ϑs and

notice that conditions of Lemma 1 and Lemma 2 hold for ϑ̃, ϑ̂ respectively. Therefore, we
get

k

∑
n=0

fn Aϑ̃,σ,ς
mn → f ϑ̃

m(σ, ς),
k

∑
n=0

fn Aϑ̂,σ,ς
mn → f ϑ̂

m(σ, ς), k→ ∞, m ∈ N.

Having noticed the fact

k

∑
n=0

fn Aϑ,σ,ς
mn =

k

∑
n=0

fn Aϑ̃,σ,ς
mn +

k

∑
n=0

fn Aϑ̂,σ,ς
mn , f ϑ

m(σ, ς) = f ϑ̃
m(σ, ς) + f ϑ̂

m(σ, ς), m ∈ N,

we obtain the desired result. Using the above reasonings, we conclude

| f ϑ
m(σ, ς)| =

∣∣∣∣∣ ∞

∑
n=0

fn Aϑ,σ,ς
mn

∣∣∣∣∣ ≤ Cm2α−β−5/2, m ∈ N.

Consider the condition under which being imposed upon the parameters α, β it
guaranties that condition (i) of Theorem 1 is fulfilled. Using the above it is clear that to
prove the fact that the quasi-solution exists and lies in Lp(β, γ) we need to establish the
estimate (5/2 + q)(p− 2) + 2 + p(2α− β− 5/2) < −1. Note that the last relation holds,
if 2α− β + q ≤ 0. In the contrary case, we have p < 2(1 + q)/(2α− β + q). Taking into
account that p must be more or equals two, we come to the conclusion that the necessary
condition for existence such an index p is (1 + q)/(2α− β + q) > 1. The final implication
of the proof follows immediately from the latter relation. The proof is complete.

It is remarkable that analogous approach can be implemented in the general case if
we impose additional conditions on the kernel. In this case, by virtue of the peculiarity
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of the construction we can weaken conditions imposed on the right-hand side by means
of strengthening conditions imposed on the kernel. Below, we present a theorem which
reflects this idea.

Theorem 3. Assume that the kernel in the left-hand side and the function in the right-hand side of
Equation (17) are such that

|ϑn(ν, ν)| ≤ C(n!)−2n−3/2−ε, ε > 0, | fn(σ, ς)| ≤ Cn−υ, υ > 1/2 + β, n ∈ N.

Then there exists a unique solution of Equation (17). Moreover the expansion on the series
of the Jacobi polynomials holds for the solution, where convergence is understood in the sense of
Lp(β, γ) norm, where p < ∞.

Proof. Consider the estimate that can be obtained by direct calculations

Cn,k(ν, ν) =

√
(n + k− 1)!i!

(n− 1)!(n− k)!
≤ C

√
(2n− 1)!n

4n−k ≤ Cn!n−1/42k, k ≤ n, n ∈ N.

Using this estimate, we get

|Ψi
m−j−1(j, m)| ≤ C(i!)2i−1/2

i

∑
l=m−j−1

4lΓ(l + j + σ + 2)
Γ(l + 1/2)(l + j + 1−m)!Γ(l + j + σ + m + ς + 3)

.

By virtue of the monotonous property of the expression, for values m ≥ j + 2, i > 0,
we have

|Ψi
m−j−1(j, m)| ≤ C(i!)2i1/24m−j−1Γ(m + σ + 1)

Γ(m− j− 1/2)Γ(2m + σ + ς + 2)
≤ C

(i!)2i1/2m1/2−γ

4mm!
.

In the case m < j + 2, we obtain analogously

|Ψi
m−j−1(j, m)| ≤ C(i!)2i1/2Γ(j + σ + 2)

Γ(1/2)(j + 1−m)!Γ(j + σ + m + ς + 3)
≤ C(i!)2i1/2Γ(σ + 2)

Γ(1/2)Γ(σ + m + ς + 3)
.

Combining these estimates with Formula (23), we get Aϑ,σ,ς
mn ≤ Cnβ−1/2/mβ+γm!, m,

n ∈ N. In accordance with Lemma 2, we have

| f ϑ
m(σ, ς)| =

∣∣∣∣∣ ∞

∑
n=0

fn Aϑ,σ,ς
mn

∣∣∣∣∣ ≤ ∞

∑
n=0
| fn Aϑ,σ,ς

mn | ≤
C

mβ+γm!
≤ Cm−ζ , ζ < ∞, m ∈ N.

Applying Corollary 1 we complete the proof.

3.5. Prospective Results

Note that the reasonings of the previous subsection indicate that a crucial point of
existence and uniqueness questions is a problem how to obtain a relevant estimate for
Aϑ,σ,ς

mn . Below we present an approach under most general assumptions regarding the kernel
and the right-hand side. Assume that ϑ satisfies conditions of Lemma 2, where p = 2, then
we can easily establish the fact

∞

∑
i=m−j−1

|ϑi(ν, ν)Ψi
m−j−1(j, m)| < ∞. (28)
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For this purpose, note that

∞

∑
i=m−j−1

|ϑi(ν, ν)Ψi
m−j−1(j, m)| =

∞

∑
i=m−j−1

(−1)iϑ̃i(ν, ν)Ψi
m−j−1(j, m) < ∞,

where |ϑ̃i(ν, ν)| = |ϑi(ν, ν)|, sign ϑ̃i(ν, ν) = (−1)isign Ψi
m−j−1(j, m). It is clear that in con-

sequence of the Riesz–Fischer theorem there exists a function ϑ̃ ∈ L2(I0, ν, ν), this fact
provides convergence of series (28). Thus, we can claim that if ϑ ∈ L2(I0, ν, ν), then
series (23) is absolutely convergent. This fact can be treated as a prerequisite for the
following hypothesis.

∃λ ∈ (1/2, ∞) :
∞

∑
i=m−j−1

|Ψi
m−j−1(j, m)|i−λ ≤ C · Γ(j + σ)j−εm−θ , ε > 0, θ > γ + 1.

Suppose the hypothesis is true and assume that the kernel in the left hand-side and the
function in the right-hand side of equation (17) are such that |ϑn(ν, ν)| ≤ Cn−λ, | fn(σ, ς)| ≤
Cn−υ, υ > 1/2 + β, n ∈ N. Taking into account the made assumptions we can easily prove,
for this purpose we should use the reasonings of the previous subsection, that conditions
of Corollary 1 are satisfied.

4. Conclusions

In this paper we offer a method of studying the class of the convolution operators
named the Sonin operators, we assume that the Sonin conditions hold regarding the kernel.
The most well-known particular case of the Sonin kernel is a kernel of the fractional
integral Riemann–Liouville operator as well as others presented in the section “Kernels
close to power-type functions” the Bessel-type function, the power-exponential function,
the incomplete gamma function e.t.c. In our study, we pay a special attention to kernels
presented as a multiplication of the power function and analytic function, this case covers
lots of known Sonin kernels useful in various mathematical and physical applications.
The crucial point of the research is the study of the Sonin–Abel equation in the weighted
Lebesgue space, the used method allows us to formulate the criterion of existence and
uniqueness of the solution and classify the solution in accordance with belonging to a
weighted Lp space due to the asymptotic of the Jacobi series coefficients of the right-hand
side. Note that an opportunity to consider the whole problem in the matrix form is worth
noticing itself for it leads to an abstract problem, we can consider a wider class of operators
if we use the matrix form and a valuable fact is that the criterion of the solvability of the
Sonin–Abel equation is naturally formulated in the very matrix form.

Below, we present questions which may be considered as continuation of this paper
results. First of all, the lemmas of Section 3.3 are formulated with the minimal assumptions
regarding the kernels, it has a rather significant disadvantage for we should compen-
sate such lack of restrictions by necessity to consider the right-hand side from the class
Lp(I, σ, ς), where the powers of the weighted function are negative. However, we may
consider the matter from quite another point of view, i.e., we may impose conditions on
index p corresponding to the kernel class, and in this way to loosen conditions regarding
powers of the weighted function. Having taken this concept we can obtain results, similar
to the results of Section 3.3 corresponding to the positive powers (see in the context). The
second question is how to adapt the obtained results in the way to study an abstract class of
Sonin kernels considered in [16] (the concrete representatives of the class are the functions
with power-logarithmic singularities at the origin). The third, and most relevant question,
is devoted to constructing the theory of convolution operators in the matrix form. The
technique used in Section 3.4 allows us to define and consider a convolution operator in
terms of its coefficients in a basis formed by Jacobi polynomials. In this regard the most
interesting issue is to consider kernels represented by alternating series, we should stress
that not all of them can be represented by functions, at the same time the corresponding
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convolution operator may be defined in the matrix form, it undoubtedly creates relevance
of such an approach.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kukushkin, M.V. Abstract fractional calculus for m -accretive operators. Int. J. Appl. Math. 2021, 34, 1–41. [CrossRef]
2. Sonine, N. Sur la generalization d’une formulae d’Abel. Acta Math. 1884, 4, 171–176. [CrossRef]
3. Rubin, B.S. Fractional integrals in Hölder spaces with, and operators of potential type (in Russian). Izv. Akad. Nauk Armyan. SSR

Ser. Mat. 1974, 9, 308–324.
4. Rubin, B.S. The fractional integrals and Riesz potentials with radial density in the spaces with power weight (in Russian). Izv.

Akad. Nauk Armyan. SSR Ser. Mat. 1986, 21, 488–503.
5. Rubin, B.S. One-dimensional representation, inversion and certain properties of the Riesz potentials of radial functions. Math.

Notes 1983, 34, 521–533. [CrossRef]
6. Vaculov, B.G.; Samko, N. Spherical fractional and hypersingular integrals of variable order in generalized Hölder spaces with

variable characteristic. Math. Nachr. 2011, 284, 355–369.
7. Samko, S.G.; Murdaev, K.M. Weighted Zigmund estimates for fractional differentiation and integration, and their applications.

Proc. Steklov Inst. Math. 1989, 180, 233–235.
8. Samko, S.G.; Vakulov, B.G. On equivalent norms in fractional order function spaces of continuous functions on the unit sphere.

Fract. Calc. Appl. Anal. 2000, 4, 401–433.
9. Karapetyants, N.K.; Rubin, B.S. Operators of fractional integration in spaces with a weight (in Russian). Izv. Akad. Nauk Armyan.

SSR Ser. Mat. 1984, 19, 31–43.
10. Karapetyants, N.K.; Rubin, B.S. Radial Riesz potential on the disk and the fractional integration operators. Rep. Acad. Sci. USSR

1982, 25, 522–525.
11. Hardy, G.H.; Littlewood, J.E. Some properties of fractional integrals I. Math. Z. 1928, 27, 565–606. [CrossRef]
12. Kukushkin, M.V. On one application of the Zigmund-Marczinkevich theorem. Math. Notes Nefu 2020, 27, 39–51. [CrossRef]
13. Kukushkin, M.V. Riemann-Liouville operator in weighted Lp spaces via the Jacobi series expansion. Axioms 2019, 8, 75. [CrossRef]
14. Kukushkin, M.V. On Smoothness of the Solution to the Abel Equation in Terms of the Jacobi Series Coefficients. Axioms 2020,

9, 81. [CrossRef]
15. Samko, S.G. Integral equations of the first kind of Sonine type. Int. J. Math. Math. Sci. 2003, 2003. [CrossRef]
16. Rubin, B.S. An imbedding theorem for images of convolution operators on a finite segment, and operators of potential type I. Izv.

Vyssh. Uchebn. Zaved. Mat. 1982, 34, 53–63. (In Russian)
17. Muckenhoupt, B. Mean Convergence of Jacobi Series. Proc. Am. Math. Soc. 1969, 23, 306–310. [CrossRef]
18. Pollard, H. The mean convergence of orthogonal series III. Duke Math. J. 1949, 16, 189–191. [CrossRef]
19. Gorenflo, R.; Vessella, S. Abel Integral Equations; Springer: Berlin/Heidelberg, Germany, 1991.
20. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science

Publishers: Philadelphia, PA, USA, 1993.
21. Suetin, P.K. Classical Orthogonal Polynomials; Nauka Fizmatlit: Moscow, Russia, 1979.
22. Marcinkiewicz, J.; Zygmund, A. Some theorems on orthogonal systems. Fundam. Math. 1937, 28, 309–335. [CrossRef]
23. Wick, J. Über eine Integralgleichung vom Abelschen Typ. Z. Angew. Math. Mech. 1968, 48, 39–41. .

http://doi.org/10.12732/ijam.v34i1.1
http://dx.doi.org/10.1007/BF02418416
http://dx.doi.org/10.1007/BF01157392
http://dx.doi.org/10.1007/BF01171116
http://dx.doi.org/10.25587/SVFU.2020.31.27.004
http://dx.doi.org/10.3390/axioms8020075
http://dx.doi.org/10.3390/axioms9030081
http://dx.doi.org/10.1155/S0161171203211455
http://dx.doi.org/10.1090/S0002-9939-1969-0247360-5
http://dx.doi.org/10.1215/S0012-7094-49-01619-1
http://dx.doi.org/10.4064/fm-28-1-309-335

	Introduction
	Preliminaries
	Jacobi Polynomials
	Simple Properties of Convolution Operators with the Sonin Type Kernel

	Main Results
	Criterion of Solvability of the Sonin–Abel Equation
	Kernels Close to Power-Type Functions
	Convolutions Operators in the Matrix Form
	Application to Existence and Uniqueness Theorems
	Prospective Results

	Conclusions
	References

