Influence of Different Alkali Sulfates on the Shrinkage, Hydration, Pore Structure, Fractal Dimension and Microstructure of Low-Heat Portland Cement, Medium-Heat Portland Cement and Ordinary Portland Cement
Abstract
:1. Introduction
2. Materials and Analytical Methods
2.1. Raw Materials
2.2. Mix Proportion Design
2.3. Analytical Methods
2.3.1. Shrinkage Behavior Measurements
2.3.2. Hydration Properties Measurements
2.3.3. Pore Structure Measurements
2.3.4. Pore Surface Fractal Dimension
2.3.5. Microstructure Measurements
3. Results and Discussion
3.1. The Shrinkage Properties of Cement-Based Materials with Different Types of Alkali Sulfates
3.2. The Hydration Process of Cement-Based Materials with Different Types of Alkali Sulfates
3.3. The Pore Structure of Cement-Based Materials with Different Types of Alkali Sulfates
3.4. Fractal Analysis of Pore Structure and Shrinkage Behavior of Cement-Based Materials with Different Types of Alkali Sulfates
3.4.1. Relationship between the Pore Structure and Ds
3.4.2. Relationship between Shrinkage Behavior and Ds
3.5. The Hydration Products of Al Phase of Cement-Based Materials with Different Types of Alkali Sulfates
3.6. The Hydration Products of Si Phase of Cement-Based Materials with Different Types of Alkali Sulfates
3.7. The SEM Spectrum Pictures of Cement Hydration Products with Different Types of Alkali Sulfates
4. Conclusions
- (1)
- Alkali sulfates could promote the autogenous shrinkage and dry shrinkage of LHPC mortars, MHPC mortars and OPC mortars to a large extent. The promotion effect of alkali sulfates on self-autogenous was greater than that on dry shrinkage, and the promotion effect of K alkali was greater than that of Na alkali. Based on the ratio of autogenous shrinkage and dry shrinkage, the drying shrinkage of LHPC caused by alkali sulfates could be greatly reduced by early curing.
- (2)
- Alkali sulfates mainly promoted the hydration degree of cement-based materials by shortening the induction period and increasing the maximum rate of hydration, in which the promotion effect of K alkali was greater than that of Na alkali, but the promotion effect weakened with the increment of alkali sulfates content. The promotion effect of alkali sulfates on the hydration of LHPC was greater than that of MHPC and OPC, which may be related to different C3A content.
- (3)
- Based on the results of pore structure and Ds of cement-based material, the mechanism of alkali sulfates promoting the shrinkage of cement-based materials was that alkali sulfates could refine the pore structure and increase the number of pores whose diameters are smaller than 50 nm that had a great influence on the shrinkage. K alkali more profoundly promoted the shrinkage of cement pastes than Na alkali. Ds could better characterize the shrinkage characteristics of cement-based materials than traditional pore structure parameters.
- (4)
- The results of NMR showed that K alkali can promote the transfer of Al atoms into the C-S-H chain to a great extent, which may weaken the mechanical properties of C-S-H and reduce the content of AFt as an expansive skeleton.
- (5)
- The morphology of C-S-H in LHPC and MHPC mortars was curly leafed, but it was fibrous in OPC mortars. Alkali sulfates could refine the structure of C-S-H and CH. Compared with Na alkali, the refining effect of K alkali was obvious due to the profound promotion of K alkali on the hydration degree of cement-based materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joshi, S.; Goyal, S.; Mukherjee, A.; Reddy, M.S. Protection of concrete structures under sulfate environments by using calcifying bacteria. Constr. Build. Mater. 2019, 209, 156–166. [Google Scholar] [CrossRef]
- Gopalakrishnan, R.; Chinnaraju, K. Durability of ambient cured alumina silicate concrete based on slag/fly ash blends against sulfate environment. Constr. Build. Mater. 2019, 204, 70–83. [Google Scholar] [CrossRef]
- Mehta, P.K. Concrete Technology at the Crossroads—Problems and Opportunities. ACI Symp. Publ. 1994, 144, 1–30. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, H.; Li, H.; Yang, Y. Experimental study of deformation of early age concrete suffering from frost damage. Constr. Build. Mater. 2019, 215, 410–421. [Google Scholar] [CrossRef]
- Gilbert, R.I. Cracking Caused by Early-age Deformation of Concrete—Prediction and Control. Procedia Eng. 2017, 172, 13–22. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Chen, H.; Wan, C. Microstructure-based modelling of drying shrinkage and microcracking of cement paste at high relative humidity. Constr. Build. Mater. 2016, 126, 410–425. [Google Scholar] [CrossRef]
- Wang, L.; He, T.; Zhou, Y.; Tang, S.; Tan, J.; Liu, Z.; Su, J. The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete. Constr. Build. Mater. 2021, 282, 122706. [Google Scholar] [CrossRef]
- Burrows, R.W.; Huizhen, L.; Weizhu, Q.; Wenwei, L. The Visible and Invisible Cracking of Concrete; China Water & Power Press: Beijing, China, 2013. [Google Scholar]
- Yang, K.; Zhong, M.; Magee, B.; Yang, C.; Wang, C.; Zhu, X.; Zhang, Z. Investigation of effects of Portland cement fineness and alkali content on concrete plastic shrinkage cracking. Constr. Build. Mater. 2017, 144, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Lam, E.S.S.; Li, B.; Wu, B. Effect of alkali contents, moduli and curing time on engineering properties of alkali activated slag. Constr. Build. Mater. 2020, 249, 118799. [Google Scholar] [CrossRef]
- Xin, J.; Zhang, G.; Liu, Y.; Wang, Z.; Yang, N.; Wang, Y.; Mou, R.; Qiao, Y.; Wang, J.; Wu, Z. Environmental impact and thermal cracking resistance of low heat cement (LHC) and moderate heat cement (MHC) concrete at early ages. J. Build. Eng. 2020, 32, 101668. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.Q.; Zhou, S.H.; Chen, E.; Tang, S.W. Mechanical properties, long-term hydration heat, shinkage behavior and crack resistance of dam concrete designed with low heat Portland (LHP) cement and fly ash. Constr. Build. Mater. 2018, 187, 1073–1091. [Google Scholar] [CrossRef]
- Wang, L.; Dong, Y.; Zhou, S.H.; Chen, E.; Tang, S.W. Energy saving benefit, mechanical performance, volume stabilities, hydration properties and products of low heat cement-based materials. Energy Build. 2018, 170, 157–169. [Google Scholar] [CrossRef]
- Mobili, A.; Telesca, A.; Marroccoli, M.; Tittarelli, F. Calcium sulfoaluminate and alkali-activated fly ash cements as alternative to Portland cement: Study on chemical, physical-mechanical, and durability properties of mortars with the same strength class. Constr. Build. Mater. 2020, 246, 118436. [Google Scholar] [CrossRef]
- He, Z.; Li, Z. Influence of alkali on restrained shrinkage behavior of cement-based materials. Cem. Concr. Res. 2005, 35, 457–463. [Google Scholar] [CrossRef]
- Ma, Y.; Qian, J. Influence of alkali sulfates in clinker on the hydration and hardening of Portland cement. Constr. Build. Mater. 2018, 180, 351–363. [Google Scholar] [CrossRef]
- He, Z.; Li, Y.; Cai, X.; Chen, X. Influence of Na+ and K+ on the early-age shrinkage properties of cement-based materials. J. Hydraul. Eng. 2016, 47, 1345–1351. [Google Scholar] [CrossRef]
- Sant, G.; Kumar, A.; Patapy, C.; Le Saout, G.; Scrivener, K. The influence of sodium and potassium hydroxide on volume changes in cementitious materials. Cem. Concr. Res. 2012, 42, 1447–1455. [Google Scholar] [CrossRef]
- Mastali, M.; Kinnunen, P.; Dalvand, A.; Mohammadi Firouz, R.; Illikainen, M. Drying shrinkage in alkali-activated binders—A critical review. Constr. Build. Mater. 2018, 190, 533–550. [Google Scholar] [CrossRef]
- Wu, T.; Li, C.; Wang, Y.; Li, Y.; Tang, S.; Borg, R. Improved Non-contact Variable-frequency AC Impedance Instrument for Cement Hydration and pore structure based on SVM calibration method. Measurement 2021, 179, 109402. [Google Scholar] [CrossRef]
- Li, D.; Niu, D.; Fu, Q.; Luo, D. Fractal characteristics of pore structure of hybrid Basalt–Polypropylene fibre-reinforced concrete. Cem. Concr. Compos. 2020, 109, 103555. [Google Scholar] [CrossRef]
- Mahamud, M.; López, Ó.; Pis, J.J.; Pajares, J.A. Textural characterization of coals using fractal analysis. Fuel Process. Technol. 2003, 81, 127–142. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, J.; De Schutter, G.; Ye, G.; Sun, W. Fractal and multifractal analysis on pore structure in cement paste. Constr. Build. Mater. 2014, 69, 253–261. [Google Scholar] [CrossRef]
- Tang, S.; Huang, J.; Duan, L.; Yu, P.; Chen, E. A review on fractal footprint of cement-based materials. Powder Technol. 2020, 370, 237–250. [Google Scholar] [CrossRef]
- Wang, L.; Jin, M.; Wu, Y.; Zhou, Y.; Tang, S. Hydration, shrinkage, pore structure and fractal dimension of silica fume modified low heat Portland cement-based materials. Constr. Build. Mater. 2021, 272, 121952. [Google Scholar] [CrossRef]
- Tang, S.W.; Cai, R.J.; He, Z.; Cai, X.H.; Shao, H.Y.; Li, Z.J.; Yang, H.M.; Chen, E. Continuous microstructural correlation of slag/superplasticizer cement pastes by heat and impedance methods via fractal analysis. Fractals 2017, 25, 1740003. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Luo, M.; Pang, X.; Li, L.; Li, K. Surface fractal dimension: An indicator to characterize the microstructure of cement-based porous materials. Appl. Surf. Sci. 2013, 282, 302–307. [Google Scholar] [CrossRef]
- Kim, J.; Choi, S. A fractal-based approach for reconstructing pore structures of GGBFS-blended cement pastes. Constr. Build. Mater. 2020, 265, 120350. [Google Scholar] [CrossRef]
- Jin, S.; Zheng, G.; Yu, J. A micro freeze-thaw damage model of concrete with fractal dimension. Constr. Build. Mater. 2020, 257, 119434. [Google Scholar] [CrossRef]
- Szeląg, M. Fractal characterization of thermal cracking patterns and fracture zone in low-alkali cement matrix modified with microsilica. Cem. Concr. Compos. 2020, 114, 103732. [Google Scholar] [CrossRef]
- Wang, L.; Guo, F.; Yang, H.; Wang, Y.; Tang, S. Comparison of FLY ASH, PVA Fiber, Mgo and Shrinkage-Reducing Admixture on the Frost Resistance of Face Slab Concrete via Pore Structural and Fractal Analysis. Fractals 2020, 29, 2140002. [Google Scholar] [CrossRef]
- Wang, L.; Jin, M.; Guo, F.; Wang, Y.; Tang, S. Pore Structural and Fractal Analysis of the Influence Of FLY ASH and Silica Fume on the Mechanical Property and Abrasion Resistance of Concrete. Fractals 2020, 29, 2140003. [Google Scholar] [CrossRef]
- Wang, L.; Luo, R.; Zhang, W.; Jin, M.; Tang, S. Effects of Fineness and Content of Phosphorus Slag on Cement Hydration, Permeability, Pore Structure and Fractal Dimension of Concrete. Fractals 2020, 29, 2140004. [Google Scholar] [CrossRef]
- Han, J.; Wang, K.; Shi, J.; Wang, Y. Influence of sodium aluminate on cement hydration and concrete properties. Constr. Build. Mater. 2014, 64, 342–349. [Google Scholar] [CrossRef]
- Mota, B.; Matschei, T.; Scrivener, K. The influence of sodium salts and gypsum on alite hydration. Cem. Concr. Res. 2015, 75, 53–65. [Google Scholar] [CrossRef]
- Qian, J.; Wei, Y.; Deng, L.; Shen, Y.; Hou, P. Sulfates type and effects in Portland cement. J. Chin. Ceram. Soc. 2014, 42, 169–177. [Google Scholar] [CrossRef]
- Yuanzhang, C.; Liping, G.; Xiaoli, X. Effects of sodium chloride and sodium sulfate on hydration process. J. Southeast Univ. (Nat. Sci. Ed.) 2019, 049, 712–719. [Google Scholar]
- Haghtalab, A.; Badizad, M.H. Solubility of gypsum in aqueous NaCl+K2SO4 solution using calcium ion selective electrode-investigation of ionic interactions. Fluid Phase Equilibria 2016, 409, 341–353. [Google Scholar] [CrossRef]
- Chappex, T.; Scrivener, K.L. The influence of aluminium on the dissolution of amorphous silica and its relation to alkali silica reaction. Cem. Concr. Res. 2012, 42, 1645–1649. [Google Scholar] [CrossRef]
- Quennoz, A.; Scrivener, K.L. Interactions between alite and C3A-gypsum hydrations in model cements. Cem. Concr. Res. 2013, 44, 46–54. [Google Scholar] [CrossRef]
- Pourchet, S.; Regnaud, L.; Perez, J.P.; Nonat, A. Early C3A hydration in the presence of different kinds of calcium sulfate. Cem. Concr. Res. 2009, 39, 989–996. [Google Scholar] [CrossRef] [Green Version]
- Al-Amoudi, O.S.B.; Maslehuddin, M.; Shameem, M.; Ibrahim, M. Shrinkage of plain and silica fume cement concrete under hot weather. Cem. Concr. Compos. 2007, 29, 690–699. [Google Scholar] [CrossRef]
- Richardson, I.G.; Groves, G.W. The incorporation of minor and trace elements into calcium silicate hydrate (CSH) gel in hardened cement pastes. Cem. Concr. Res. 1993, 23, 131–138. [Google Scholar] [CrossRef]
- Tang, S.; Wang, Y.; Geng, Z.; Xu, X.; Yu, W.; A, H.; Chen, J. Structure, Fractality, Mechanics and Durability of Calcium Silicate Hydrates. Fractal Fract. 2021, 5, 47. [Google Scholar] [CrossRef]
- Li, Y.; Nie, L.; Wang, B. A numerical simulation of the temperature cracking propagation process when pouring mass concrete. Autom. Constr. 2014, 37, 203–210. [Google Scholar] [CrossRef]
- Klemczak, B.; Batog, M.; Pilch, M.; Żmij, A. Analysis of Cracking Risk in Early Age Mass Concrete with Different Aggregate Types. Procedia Eng. 2017, 193, 234–241. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Chen, S.-Y.; Yang, C.-J.; Chen, H.-T. Effects of insulation materials on mass concrete with pozzolans. Constr. Build. Mater. 2017, 137, 261–271. [Google Scholar] [CrossRef]
- Batog, M.; Giergiczny, Z. Influence of mass concrete constituents on its properties. Constr. Build. Mater. 2017, 146, 221–230. [Google Scholar] [CrossRef]
- Jung, S.H.; Choi, Y.C.; Choi, S. Use of ternary blended concrete to mitigate thermal cracking in massive concrete structures—A field feasibility and monitoring case study. Constr. Build. Mater. 2017, 137, 208–215. [Google Scholar] [CrossRef]
- Lü, Q.; Qiu, Q.; Zheng, J.; Wang, J.; Zeng, Q. Fractal dimension of concrete incorporating silica fume and its correlations to pore structure, strength and permeability. Constr. Build. Mater. 2019, 228, 116986. [Google Scholar] [CrossRef]
- Tang, S.W.; He, Z.; Cai, X.H.; Cai, R.J.; Zhou, W.; Li, Z.J.; Shao, H.Y.; Wu, T.; Chen, E. Volume and surface fractal dimensions of pore structure by NAD and LT-DSC in calcium sulfoaluminate cement pastes. Constr. Build. Mater. 2017, 143, 395–418. [Google Scholar] [CrossRef]
- Shen, Y.; Jia, X.; Ma, Y.; Qian, J. Adsorption behaviour of sulfate in early cement hydration. Adv. Cem. Res. 2014, 27, 1–8. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, S.H.; Shi, Y.; Tang, S.W.; Chen, E. Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete. Compos. Part B Eng. 2017, 130, 28–37. [Google Scholar] [CrossRef]
- Zhang, M.H.; Tam, C.T.; Leow, M.P. Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete. Cem. Concr. Res. 2003, 33, 1687–1694. [Google Scholar] [CrossRef]
- Beltrame, N.A.M.; Angulski da Luz, C.; Perardt, M.; Hooton, R.D. Alkali activated cement made from blast furnace slag generated by charcoal: Resistance to attack by sodium and magnesium sulfates. Constr. Build. Mater. 2020, 238, 117710. [Google Scholar] [CrossRef]
- Paulini, P. A Weighing Method for Cement Hydration. In Proceedings of the 9th International Congress on the Chemistry of Cement, New Delhi, India, 23–28 November 1992; pp. 248–254. Available online: https://www.researchgate.net/publication/284055126_A_weighing_method_for_cement_hydration/link/5874e8ff0aebf17d3b3be4b/download (accessed on 25 July 2021).
- Tazawa, E.-I.; Miyazawa, S.; Kasai, T. Chemical shrinkage and autogenous shrinkage of hydrating cement paste. Cem. Concr. Res. 1995, 25, 288–292. [Google Scholar] [CrossRef]
- Flores, Y.C.; Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M. Performance of Portland cement pastes containing nano-silica and different types of silica. Constr. Build. Mater. 2017, 146, 524–530. [Google Scholar] [CrossRef]
- Singh, L.P.; Bhattacharyya, S.K.; Shah, S.P.; Mishra, G.; Sharma, U. Studies on early stage hydration of tricalcium silicate incorporating silica nanoparticles: Part II. Constr. Build. Mater. 2016, 102, 943–949. [Google Scholar] [CrossRef]
- Tang, S.W.; Li, Z.J.; Shao, H.Y.; Chen, E. Characterization of early-age hydration process of cement pastes based on impedance measurement. Constr. Build. Mater. 2014, 68, 491–500. [Google Scholar] [CrossRef]
- Tang, S.W.; Cai, X.H.; He, Z.; Zhou, W.; Shao, H.Y.; Li, Z.J.; Wu, T.; Chen, E. The review of early hydration of cement-based materials by electrical methods. Constr. Build. Mater. 2017, 146, 15–29. [Google Scholar] [CrossRef]
- Jansen, D.; Goetz-Neunhoeffer, F.; Lothenbach, B.; Neubauer, J. The early hydration of Ordinary Portland Cement (OPC): An approach comparing measured heat flow with calculated heat flow from QXRD. Cem. Concr. Res. 2012, 42, 134–138. [Google Scholar] [CrossRef]
- Jansen, D.; Neubauer, J.; Goetz-Neunhoeffer, F.; Haerzschel, R.; Hergeth, W.D. Change in reaction kinetics of a Portland cement caused by a superplasticizer—Calculation of heat flow curves from XRD data. Cem. Concr. Res. 2012, 42, 327–332. [Google Scholar] [CrossRef]
- Zhen, H.; Gengxin, C.; Yang, L.; Lingling, H. Influence of potassium-sodium ratio on the early age cracking sensitivity of cementitious materials with high alkalinity. J. Hydraul. Eng. 2016, 47, 1484–1492. [Google Scholar]
- Hamami, A.A.; Turcry, P.; Aït-Mokhtar, A. Influence of mix proportions on microstructure and gas permeability of cement pastes and mortars. Cem. Concr. Res. 2012, 42, 490–498. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Juilland, P.; Monteiro, P.J.M. Advances in understanding hydration of Portland cement. Cem. Concr. Res. 2015, 78, 38–56. [Google Scholar] [CrossRef]
- Minard, H.; Garrault, S.; Regnaud, L.; Nonat, A. Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum. Cem. Concr. Res. 2007, 37, 1418–1426. [Google Scholar] [CrossRef]
- Pustovgar, E.; Mishra, R.K.; Palacios, M.; d’Espinose de Lacaillerie, J.-B.; Matschei, T.; Andreev, A.S.; Heinz, H.; Verel, R.; Flatt, R.J. Influence of aluminates on the hydration kinetics of tricalcium silicate. Cem. Concr. Res. 2017, 100, 245–262. [Google Scholar] [CrossRef]
- Thomas, J.J.; Allen, A.J.; Jennings, H.M. Structural Changes to the Calcium–Silicate–Hydrate Gel Phase of Hydrated Cement with Age, Drying, and Resaturation. J. Am. Ceram. Soc. 2008, 91, 3362–3369. [Google Scholar] [CrossRef]
- Snyder, K.A.; Bentz, D.P. Suspended hydration and loss of freezable water in cement pastes exposed to 90% relative humidity. Cem. Concr. Res. 2004, 34, 2045–2056. [Google Scholar] [CrossRef]
- Meizhu, C. Study on the Influence of Components of Cement-Based Materials on Early Hydration and Shrinkage Cracking; Wuhan University: Wuhan, China, 2004. [Google Scholar]
- Taylor, H. A Method for Predicting Alkali Ion Concentration in Cement Pore Solutions. Adv. Cem. Res. 1987, 1. [Google Scholar] [CrossRef]
- Chen, J.J.; Thomas, J.J.; Jennings, H.M. Decalcification shrinkage of cement paste. Cem. Concr. Res. 2006, 36, 801–809. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties and Materials; Prentice-Hall: Upper Saddle River, NJ, USA, 2013. [Google Scholar]
- Ghafari, E.; Ghahari, S.A.; Costa, H.; Júlio, E.; Portugal, A.; Durães, L. Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete. Constr. Build. Mater. 2016, 127, 43–48. [Google Scholar] [CrossRef]
- Ma, Y.; Ye, G. The shrinkage of alkali activated fly ash. Cem. Concr. Res. 2015, 68, 75–82. [Google Scholar] [CrossRef]
- Liu, P.; Cui, S.; Li, Z.; Xu, X.; Guo, C. Influence of surrounding rock temperature on mechanical property and pore structure of concrete for shotcrete use in a hot-dry environment of high-temperature geothermal tunnel. Constr. Build. Mater. 2019, 207, 329–337. [Google Scholar] [CrossRef]
- Hongchao, X.; Guanhua, N.; Shang, L.; Qian, S.; Kai, D.; Jingna, X.; Gang, W.; Yixin, L. The influence of surfactant on pore fractal characteristics of composite acidized coal. Fuel 2019, 253, 741–753. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, K.; Fen-Chong, T.; Dangla, P. Surface fractal analysis of pore structure of high-volume fly-ash cement pastes. Appl. Surf. Sci. 2010, 257, 762–768. [Google Scholar] [CrossRef]
- León y León, C.A. New perspectives in mercury porosimetry. Adv. Colloid Interface Sci. 1998, 76–77, 341–372. [Google Scholar] [CrossRef]
- Rahman, M.S. Physical meaning and interpretation of fractal dimensions of fine particles measured by different methods. J. Food Eng. 1997, 32, 447–456. [Google Scholar] [CrossRef]
- Andersen, M.D.; Jakobsen, H.J.; Skibsted, J. A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy. Cem. Concr. Res. 2006, 36, 3–17. [Google Scholar] [CrossRef]
- Paul, G.; Boccaleri, E.; Buzzi, L.; Canonico, F.; Gastaldi, D. Friedel’s salt formation in sulfoaluminate cements: A combined XRD and 27Al MAS NMR study. Cem. Concr. Res. 2015, 67, 93–102. [Google Scholar] [CrossRef]
- Sun, G.K.; Young, J.F.; Kirkpatrick, R.J. The role of Al in C–S–H: NMR, XRD, and compositional results for precipitated samples. Cem. Concr. Res. 2006, 36, 18–29. [Google Scholar] [CrossRef]
- Barnes, P.; Bensted, J. Structure and Performance of Cements; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Odler, I.; Wonnemann, R. Effect of alkalies on portland cement hydration II. Alkalies present in form of sulphates. Cem. Concr. Res. 1983, 13, 771–777. [Google Scholar] [CrossRef]
- Yang, L.; Zhen, H.; Wenkang, G.; Haibo, Y.; Shuyin, W. Influence of Alkali on Early-Age Hydration Process and Microstructure of Low-Heat Cement. J. Build. Mater. 2018, 21, 549–555. [Google Scholar]
- Sasaki, K.; Masuda, T.; Ishida, H.; Mitsuda, T. Structural Degradation of Tobermorite during Vibratory Milling. J. Am. Ceram. Soc. 1996, 79, 1569–1574. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, S.; Tang, S.; Lu, X. Investigation of microstructure of C-S-H and micro-mechanics of cement pastes under NH4NO3 dissolution by 29Si MAS NMR and microhardness. Measurement 2021, in press. [Google Scholar] [CrossRef]
- Wang, L.; Guo, F.; Lin, Y.; Yang, H.; Tang, S.W. Comparison between the effects of phosphorous slag and fly ash on the C-S-H structure, long-term hydration heat and volume deformation of cement-based materials. Constr. Build. Mater. 2020, 250, 118807. [Google Scholar] [CrossRef]
- Paglia, C.; Wombacher, F.; Böhni, H. The influence of alkali-free and alkaline shotcrete accelerators within cement systems: Influence of the temperature on the sulfate attack mechanisms and damage. Cem. Concr. Res. 2003, 33, 387–395. [Google Scholar] [CrossRef]
- Richardson, I.G. Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem. Concr. Res. 2004, 34, 1733–1777. [Google Scholar] [CrossRef]
- García Lodeiro, I.; Fernández-Jimenez, A.; Palomo, A.; Macphee, D.E. Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cem. Concr. Res. 2010, 40, 27–32. [Google Scholar] [CrossRef]
- Johansson, K.; Larsson, C.; Antzutkin, O.N.; Forsling, W.; Kota, H.R.; Ronin, V. Kinetics of the hydration reactions in the cement paste with mechanochemically modified cement 29Si magic-angle-spinning NMR study. Cem. Concr. Res. 1999, 29, 1575–1581. [Google Scholar] [CrossRef]
- Bu, Y.; Weiss, J. The influence of alkali content on the electrical resistivity and transport properties of cementitious materials. Cem. Concr. Compos. 2014, 51, 49–58. [Google Scholar] [CrossRef]
- Bentz, D.P. Influence of alkalis on porosity percolation in hydrating cement pastes. Cem. Concr. Compos. 2006, 28, 427–431. [Google Scholar] [CrossRef]
Parameters | Raw Materials | ||
---|---|---|---|
LHPC | MHPC | OPC | |
Chemicals (wt.%) | |||
CaO | 59.47 | 61.91 | 61.25 |
SiO2 | 22.59 | 21.7 | 19.84 |
Al2O3 | 3.82 | 4.21 | 4.6 |
Fe2O3 | 5.03 | 4.79 | 2.88 |
SO3 | 1.87 | 1.91 | 2.23 |
K2O | 0.38 | 0.35 | 0.79 |
Na2O | 0.16 | 0.12 | 0.16 |
R2O a | 0.40 | 0.35 | 0.68 |
Physical properties | |||
Specific gravity (g/cm3) | 3.23 | 3.11 | 3.11 |
Specific surface area by BET method (cm2/g) | 336 | 325 | 356 |
Loss on ignition (wt.%) | 0.91 | 1.28 | 3.09 |
Fineness (% retain in 45 μm) | 8.22 | 3.27 | 5.25 |
Mineral composition (wt.%) | |||
C3S b | 32.21 | 46.53 | 57.19 |
C2S b | 40.47 | 27.11 | 13.74 |
C3A b | 1.62 | 3.06 | 7.32 |
C4AF b | 15.30 | 14.58 | 8.77 |
Notation | W/B | Cement Type | Cement:Sand | Added with Na2SO4 (R2O), wt.% a | Added with K2SO4 (R2O), wt.% a | Alkali Sulfates Content (R2O), wt.% a |
---|---|---|---|---|---|---|
L0 | 0.4 | LHPC | 1:2 | - | - | 0.40 |
L8N | 0.4 | 1:2 | 0.92 (0.4) | - | 0.80 | |
L12N | 0.4 | 1:2 | 1.83 (0.8) | - | 1.20 | |
L8K | 0.4 | 1:2 | - | 1.13 (0.4) | 0.80 | |
L12K | 0.4 | 1:2 | - | 2.25 (0.8) | 1.20 | |
M0 | 0.4 | MHPC | 1:2 | - | - | 0.35 |
M8N | 0.4 | 1:2 | 1.03 (0.45) | - | 0.80 | |
M12N | 0.4 | 1:2 | 1.95 (0.85) | - | 1.20 | |
M8K | 0.4 | 1:2 | - | 1.27 (0.45) | 0.80 | |
M12K | 0.4 | 1:2 | - | 2.39 (0.85) | 1.20 | |
P0 | 0.4 | OPC | 1:2 | - | - | 0.68 |
P8N | 0.4 | 1:2 | 0.27 (0.12) | - | 0.80 | |
P12N | 0.4 | 1:2 | 1.19 (0.52) | - | 1.20 | |
P8K | 0.4 | 1:2 | - | 0.34 (0.12) | 0.80 | |
P12K | 0.4 | 1:2 | - | 1.46 (0.52) | 1.20 |
Notation | Maximum Heat Flow/W/g | The Age of Maximum Heat Flow/h | The Age of Minimum Heat Flow/h | Accumulated Hydration Heat in 3 Days/J/g |
---|---|---|---|---|
L0 | 0.00207 | 15.61 | 3.58 | 188.84 |
L8N | 0.00223 | 15.97 | 3.50 | 217.00 |
L12N | 0.00215 | 16.25 | 4.17 | 218.29 |
L8K | 0.00250 | 13.91 | 2.57 | 222.09 |
L12K | 0.00238 | 12.80 | 2.74 | 226.76 |
M0 | 0.00254 | 17.02 | 3.70 | 228.03 |
M8N | 0.00280 | 16.00 | 3.32 | 249.57 |
M12N | 0.00288 | 12.57 | 3.16 | 254.29 |
M8K | 0.00279 | 14.16 | 2.43 | 252.38 |
M12K | 0.00290 | 13.29 | 2.67 | 258.53 |
P0 | 0.00313 | 11.37 | 2.68 | 258.35 |
P8N | 0.00320 | 11.21 | 2.46 | 263.00 |
P12N | 0.00334 | 10.09 | 2.36 | 256.52 |
P12K | 0.00313 | 8.82 | 1.54 | 260.36 |
Notation | The Most Probable Aperture/nm | Porosity/% | Pore Size Distribution/% | Ds | ||||
---|---|---|---|---|---|---|---|---|
5 nm~20 nm | 20 nm~50 nm | 50 nm~100 nm | 100 nm~200 nm | >200 nm | ||||
L0-3d | 238 | 23.59 | 16.15 | 11.42 | 14.80 | 21.54 | 36.09 | 2.3426 |
L12N-3d | 98 | 23.02 | 15.51 | 19.26 | 30.26 | 19.25 | 15.72 | 2.3547 |
L12K-3d | 88 | 22.70 | 15.54 | 22.6 | 29.66 | 22.60 | 9.60 | 2.4585 |
M0-3d | 109 | 21.99 | 14.92 | 10.6 | 18.83 | 27.89 | 27.76 | 2.2841 |
M12N-3d | 83 | 20.76 | 15.34 | 17.57 | 34.87 | 18.57 | 13.65 | 2.3360 |
M12K-3d | 66 | 20.52 | 23.57 | 20.50 | 40.03 | 8.79 | 7.11 | 2.3909 |
P0-3d | 101 | 18.89 | 17.19 | 17.02 | 20.00 | 22.32 | 23.47 | 2.2793 |
P12N-3d | 84 | 17.80 | 16.31 | 19.78 | 36.65 | 20.72 | 6.54 | 2.3017 |
P12K-3d | 83 | 17.70 | 21.30 | 17.17 | 24.17 | 18.28 | 19.08 | 2.3170 |
Notation | Al Phase Composition/% | ||||||
---|---|---|---|---|---|---|---|
I[Al (C2S and C3S)] | Al (C3A)] | I[Al (4)] | I[Al (5)] | I[Al (6)] | |||
I(AFt) | I(AFm) | I(TAH) | |||||
L0-3d | 3.61 | 2.92 | 31.16 | 12.80 | 31.22 | 7.60 | 10.70 |
L8N-3d | 1.74 | 1.84 | 32.28 | 13.48 | 35.85 | 8.47 | 6.34 |
L12N-3d | 3.11 | 2.33 | 31.48 | 13.38 | 37.24 | 7.55 | 4.92 |
L12K-3d | 5.88 | 3.45 | 34.84 | 3.71 | 34.18 | 4.94 | 13.00 |
Sample | Composition of Si Phase/% | ACL | α/% | Al [4]/Si | ||||
---|---|---|---|---|---|---|---|---|
I (Q0)C2S | I (Q0)C3S | I (Q1) | I [Q2 (Al)] | I (Q2) | ||||
L0-3d | 64.63 | 9.01 | 17.65 | 2.78 | 5.92 | 3.14 | 26.35 | 5.28 |
L8N-3d | 54.71 | 13.06 | 18.80 | 6.20 | 7.24 | 3.76 | 32.24 | 9.61 |
L12N-3d | 57.01 | 10.28 | 18.55 | 4.71 | 9.45 | 3.78 | 32.71 | 7.20 |
L12K-3d | 57.73 | 9.77 | 16.20 | 5.04 | 11.26 | 4.32 | 32.50 | 7.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, H.; Huang, M.; Yin, H.; Jiang, K.; Xiao, K.; Tang, S. Influence of Different Alkali Sulfates on the Shrinkage, Hydration, Pore Structure, Fractal Dimension and Microstructure of Low-Heat Portland Cement, Medium-Heat Portland Cement and Ordinary Portland Cement. Fractal Fract. 2021, 5, 79. https://doi.org/10.3390/fractalfract5030079
Li Y, Zhang H, Huang M, Yin H, Jiang K, Xiao K, Tang S. Influence of Different Alkali Sulfates on the Shrinkage, Hydration, Pore Structure, Fractal Dimension and Microstructure of Low-Heat Portland Cement, Medium-Heat Portland Cement and Ordinary Portland Cement. Fractal and Fractional. 2021; 5(3):79. https://doi.org/10.3390/fractalfract5030079
Chicago/Turabian StyleLi, Yang, Hui Zhang, Minghui Huang, Haibo Yin, Ke Jiang, Kaitao Xiao, and Shengwen Tang. 2021. "Influence of Different Alkali Sulfates on the Shrinkage, Hydration, Pore Structure, Fractal Dimension and Microstructure of Low-Heat Portland Cement, Medium-Heat Portland Cement and Ordinary Portland Cement" Fractal and Fractional 5, no. 3: 79. https://doi.org/10.3390/fractalfract5030079
APA StyleLi, Y., Zhang, H., Huang, M., Yin, H., Jiang, K., Xiao, K., & Tang, S. (2021). Influence of Different Alkali Sulfates on the Shrinkage, Hydration, Pore Structure, Fractal Dimension and Microstructure of Low-Heat Portland Cement, Medium-Heat Portland Cement and Ordinary Portland Cement. Fractal and Fractional, 5(3), 79. https://doi.org/10.3390/fractalfract5030079