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Abstract: Fractional differential equations can present the physical pathways with the storage and
inherited properties due to the memory factor of fractional order. The purpose of this work is to
interpret the collocation approach for tackling the fractional partial integro-differential equation
(FPIDE) by employing the extended cubic B-spline (ECBS). To determine the time approximation, we
utilize the Caputo approach. The stability and convergence analysis have also been analyzed. The
efficiency and reliability of the suggested technique are demonstrated by two numerical applications,
which support the theoretical results and the effectiveness of the implemented algorithm.

Keywords: collocation method; fractional partial integro-differential equation; B-spline

1. Introduction

Fractional calculus (FC) has explored the concept of differentiation and integration to
non-integer order. FC is a more generalized version of classical calculus. FC is as old as
classical calculus, but it is gaining popularity these days because of the implementations
in many domains like science and engineering. Fractional partial differential equations
(FPDEs) have gained much popularity because of their exceptional simulation properties in
various scientific areas. It has been used to represent physical and technical phenomena that
are described tremendously by fractional differential equations. The fractional derivative
models are used to recognize better those systems, which required accurate modeling of
damping, non-Fourier heat conduction, acoustic dissipation, geophysics, relaxation, creep,
viscoelasticity, rheology, and fluid dynamics, Malaria and COVID-19 [1–4].

Integro-differential equations of fractional order are the type of models that include
both integro-differential equations and fractional derivatives. The analysis of partial
integro-differential equations with fractional specifications is an important element of the
theory and implementations of FC, which have considered crucial mathematical meth-
ods for describing and analysing a broad variety of actual challenges in natural science,
technology, and engineering [5–8]. The mathematical models of physical phenomena and
their implementations in heat conduction [9], reactor dynamics [10], flow in fractured
bio-materials [11], electricity swaption [12], visco-elasticity [13], population dynamics,
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convection diffusion [14] and grain growth [15]. In this study, we will look at the nonlin-
ear FPIDE [16]:

C
0 Dγ

t V(y, t) + VVy =
∫ t

0
(t− s)α−1Vyy(y, s)ds + G(y, t), 0 < y < L, 0 < t < T, (1)

with initial condition
V(y, 0) = f (y), 0 ≤ y ≤ L, (2)

and boundary conditions

V(0, t) = V(L, T) = 0, 0 ≤ t ≤ T, (3)

where γ, α ∈ (0, 1), T, L are positive constants, and G(y, t), f (y) are given functions. C
0 Dγ

t
denotes the Caputo fractional derivative (CFD) and is interpreted as

C
0 Dγ

t F(y) =

{
1

Γ(n−γ)

∫ y
0 (y− ξ)n−1−γF(n)(ξ)dξ, n− 1 < γ ≤ n, n ∈ N,

F(n)(y), γ = n.
(4)

where Γ is the Euler’s Gamma function.
At various stages of real systems, fractional derivatives and integral operators are

more suitable than standard derivatives and integration, which provide a more precise
explanation of structural and genetic features of several dynamical and physical procedures.
As a result, accurate computational methods are used to approximately cope with the
complexities of fractional derivatives contained in such equations. These complexities
are due to the possibility of the singularities of the kernels causing drastic fluctuations
in the solution. Consequently, it isn’t easy to acquire a closed-form solution in several
implementations, particularly in nonlinear scenarios, so an approximation of physical
description is needed. Alternatively, many studies have been conducted to investigate the
presence of a unique solution to fractional order integro-differential equations, such as
Hu et al. [17], Li et al. [18], Karthikeyan and Trujillo [19], Chuong et al. [20].

The majority of FPIDE cannot be addressed exact analytically, finding more effective
approximate approaches using computational methods would be extremely beneficial.
Several authors have focused their attention on searching and exploring solutions of
the Fractional partial intego-differential equations (FPIDEs) using various analytical and
numerical strategies. Awawdeh et al. [21] utilized the homotopy analysis approximation
to solve the linear FPIDE analytically. Hussain et al. [22] solved the FPIDE analytically
by the variation iteration method. Mittal and Nigam [23] implemented the Adomian
decomposition method to handle the FPIDE. Rawashdeh [24] suggested a collocation
approach for solving the FPIDE numerically by the polynomial spline. Eslahchi et al. [25]
developed the jacobi technique to solve nonlinear FPIDE, also analyzed stability and
convergence. Zhao et al. [26] employed piecewise polynomial collocation approaches
to tackle FPIDEs containing weakly singular kernels. Arshed [27] demonstrated the B-
spline technique for solving linear FPIDE. Unhale and Kendre [28] presented collocation
technique to solve the nonlinear FPIDE utilizing the Chebyshev polynomials and the shifted
Legendre polynomials. Avazzadeh et al. [29] established a hybrid technique by blending
the Legendre wavelets, and operational matrix of fractional integration. A numerical
technique based on Legendre-Laguerre and the collocation method has been considered by
Dehestani et al. [30].

The B-spline was proposed by many authors to solve fractional partial differential
models [31–38]. These functions can adjust every point in the domain and approximate the
solution with maximum frequency accuracy. For solving FPDEs, a variety of numerical
approaches have already been developed. However, so far as we know, no such research
on the utilization of B-splines exists in solving the nonlinear FPIDE. Therefore, we intend to
fill this gap. We aim to extend the ECBS technique for the solution of the nonlinear FPIDE
model with a weakly singular kernel. The article is partitioned as follows: In Section 2,
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the basis functions and the time approximation are presented. In Section 3, a derivation
of the method is described. The stability and convergence of recommended technique are
analyzed in Section 4. Two applications and discussions are shown in Section 5. Finally,
the results of the recommended technique are displayed in Section 6.

2. Preliminaries

Definition 1. Let {yi} be an evenly distributed splitting of a finite domain for i ∈ Z. As a
result, the proposed interval is segregated into M equivalent subparts at the connections as
yi = y0 + ih, where h is the moving scale. The ECBS functions at the yi over the proposed interval
are shown below [39]:

Bi(y, ρ) =
1

24h4



4h(1− ρ)(y− yi−2)
3 + 3ρ(y− yi−2)

4, y ∈ [yi−2, yi−1),
(4− ρ)h4 + 12h3(y− yi−1) + 6h2(2 + ρ)(y− yi−1)

2

−12h(y− yi−1)
3 − 3ρ(y− yi−1)

4, y ∈ [yi−1, yi),
(4− ρ)h4 + 12h3(yi+1 − y) + 6h2(2 + ρ)(yi+1 − y)2

−12h(yi+1 − y)3 − 3ρ(yi+1 − y)4, y ∈ [yi, yi+1),
4h(1− ρ)(yi+2 − y)3 + 3ρ(yi+2 − y)4, y ∈ [yi+1, yi+2),
0, otherwise,

(5)

where i = −1(1)M + 1, ρ ∈ R is a free parameter in the interval [−8, 1] and y ∈ R is a
variable. The cubic B-spline and ECBS basis have identical characteristics for ρ ∈ [−8, 1].
For ρ = 0, the ECBS converts to cubic B-spline. There is a unique V̂(y, t), that preserves the
specified conditions, so that

v(y, t) =
M+1

∑
i=−1

ηi(t)Ei(y, ρ). (6)

The following are the V̂(y, t), V̂′(y, t) and V̂′′(y, t) at the edges:
V̂(yi, t) = σ1ηi−1(t) + σ2ηi(t) + σ1ηi+1(t),
V̂′(yi, t) = −σ3ηi−1(t) + σ3ηi+1(t),
V̂′′(yi, t) = σ4ηi−1(t) + σ5ηi(t) + σ4ηi+1(t),

(7)

where σ1 = 4−ρ
24 , σ2 = 8+ρ

12 , σ3 = 1
2h , σ4 = 2+ρ

2h2 , σ5 = − 2+ρ

h2 .

Temporal Approximation

Let tq = qτ, q = 0, 1, . . . , Q, while τ = T
Q is a time moving scale. The CFD approxima-

tion in the form of difference technique can be interpreted as

C
0 Dγ

t V(y, tp+1) =
1

Γ(2− γ)

q

∑
p=0

bγ
p

V(y, tq−p+1)−V(y, tq−p)

τγ
+ Dq+1, (8)

|Dq+1| ≤ D1τ2−γ, (9)

where D1 is a constant and bp = (p + 1)1−γ − p1−γ. The integral expression of Equation (1)
can be explained as:
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∫ t

0
(tq+1, s)α−1Vyy(y, s)ds =

∫ tq+1

0
sα−1Vyy(y, tq+1 − s)ds,

=
q

∑
p=0

∫ tp+1

tp
sα−1Vyy(y, tq+1 − s)ds,

=
q

∑
p=0

Vyy(y, tq−p+1)
∫ tp+1

tp
sα−1ds,

∫ t

0
(tq+1, s)α−1Vyy(y, s)ds =

τα

α

q

∑
p=0

Vyy(y, tq−p+1)[(p + 1)α − pα] =
τα

α

q

∑
p=0

Vyy(y, tq−p+1)bα
p. (10)

Lemma 1. The b′ps assure the following constrains [40]:

• bγ
0 = 1, bα

0 = 1.
• bγ

0 > bγ
1 > bγ

2 > · · · > bγ
p , and bα

0 > bα
1 > bα

2 > · · · > bα
p, bα

p, bγ
p → 0 as p→ ∞.

• bγ
p , bα

p > 0 for p = 0, 1, . . . , q.

• ∑
q
p=0(b

γ
p − bγ

p+1) + bγ
q+1 = (1− bγ

1 ) + ∑
q−1
p=1(b

γ
p − bγ

p+1) + bγ
q = 1.

• ∑
q
p=0 bα

p > 1.

Proof. All parts can be easily verified.

q

∑
p=0

bα
p =

q

∑
p=0

[(p + 1)α − pα]

= (1α − 0) + (2α − 1α) + (3α − 2α) + · · ·+ ((q + 1)α − qα)

= (q + 1)α > 1, f or q ≥ 1.

3. Derivation of the Procedure

We employ the ECBS and the CFD to address the proposed model. By plugging
Equations (8) and (10) in (1), we obtain

τ−γ

Γ(2− γ)

q

∑
p=0

bγ
p [Vq−p+1 −Vq−p] + (VVy)

q+1 =
τα

α

q

∑
p=0

Vq−p+1
yy bα

p + Gq+1. (11)

Linearize the non-linear term as [41]:

(VVy)
q+1 = Vq+1Vq

y + VqVq+1
y − (VVy)

q. (12)

By plugging Equation (12) into (11), we have

−τ−γ

Γ(2− γ)

q

∑
p=0

bγ
p [Vq−p+1 −Vq−p] + Vq+1Vq

y + VqVq+1
y − (VVy)

q =
τα

α

q

∑
p=0

Vq−p+1
yy bα

p + Gq+1.
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Using expression (6) in the above equation, we obtain

τ−γ

Γ(2− γ)

q

∑
p=0

bγ
p

[ M+1

∑
i=−1

η
q−p+1
i Ei −

M+1

∑
i=−1

η
q−p
i Ei

]
+

M+1

∑
i=−1

η
q+1
i Ei

M+1

∑
i=−1

η
q
i E′i +

M+1

∑
i=−1

η
q
i Ei

M+1

∑
i=−1

η
q+1
i E′i

−
M+1

∑
i=−1

η
q
i Ei

M+1

∑
i=−1

η
q
i E′i =

τα

α

q

∑
p=0

bα
p

[ M+1

∑
i=−1

η
q−p+1
i E′′i

]
+ Gq+1.

After some computation in the above expression, we get

V̂q+1 + rV̂qV̂q+1
y + rV̂q+1V̂q

y − rr1V̂q+1
yy = bγ

q V̂0 + rV̂qV̂q
y +

q−1

∑
p=0

(bγ
q − bγ

q+1)V̂
q−p + rr1

q

∑
p=1

bα
q V̂q−p+1

yy + rGq+1,

where r = τγΓ(2− γ), r1 = τα

α . The above equation can be rewritten as:(
σ1η

q+1
i−1 + σ2η

q+1
i + σ1η

q+1
i+1

)
+ r
(

σ1η
q+1
i−1 + σ2η

q+1
i + σ1η

q+1
i+1

)(
− σ3η

q
i−1 + σ3η

q
i+1

)
+ r
(

σ1η
q
i−1 + σ2η

q
i + σ1η

q
i+1

)(
− σ3η

q+1
i−1 + σ3η

q+1
i+1

)
− rr1

(
σ4η

q+1
i−1 + σ5η

q+1
i + σ4η

q+1
i+1

)
= bγ

q

(
σ1η0

i−1 + σ2η0
i + σ1η0

i+1

)
r
(

σ1η
q
i−1 + σ2η

q
i + σ1η

q
i+1

)(
− σ3η

q
i−1 + σ3η

q
i+1

)
+ rGq+1

+
q−1

∑
p=0

(bγ
q − bγ

q+1)

(
σ1η

q−p
i−1 + σ2η

q−p
i + σ1η

q−p
i+1

)
+ rr1

q−1

∑
p=0

bα
q+1

(
σ4η

q−p
i−1 + σ5η

q−p
i + σ4η

q−p
i+1

)
. (13)

The Equation (13) can be converted into matrix form as:

Aηq+1 = B
(

bγ
q η0 +

q−1

∑
p=0

(bγ
q − bγ

q+1)η
q−p
)
+ C

q−1

∑
p=0

bα
q+1ηq−p + G. (14)

The order of the system (14) is (M + 1)× (M + 3). Two linear equations from the
boundary conditions are required for a unique solution. To initiate the iteration on (13),
the corresponding initial conditions are applied:

V̂′0 = V′(y0),
V̂0

i = V(yi), i = 0, 1, 2, . . . , M
V̂′M = V′(yM).

(15)

As a result, (15) transforms to a matrix system:

G1η0 = G2, (16)

where

G1 =



−σ3 0 σ3 0 . . . . . . 0
σ1 σ2 σ1 0 . . . . . . 0
0 σ1 σ2 σ1 . . . . . . 0
... . . .

. . . . . . . . . . . .
...

... . . . . . . . . . σ1 σ2 σ1
0 . . . . . . . . . −σ3 0 σ3


(17)

and G2 = [V′0(y0), V0(y0), . . . , V0(yM), V′0(yM)]T .
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4. Stability and Convergence Analysis

This section is devoted to analyzes the stability and convergence of the
recommended technique.

Theorem 1. The recommended technique of the problem FPIDE ((1)–(3)), is unconditionally stable.

Proof. The Neumann approach is employed to evaluate the stability of existing algorithm.
Assume the difference expression in the form of Fourier series is

Φq
k = V(yk, tq)− V̂q

k = ψqeikφh, (18)

where i =
√
−1. φ and h are the mode number and moving scale in space direction

respectively. The nonlinear expression VVy is linearized in this way by making V a
constant r2 in Equation (11), then we get the following equation by applying (18):

ψ
q+1
k + rr2(ψy)

q+1
k − rr1(ψyy)

q+1
k = bγ

q ψ0
k + ∑

q−1
p=0[b

γ
p − bγ

p+1]ψ
q−p
k + rr1 ∑

q−1
p=0 bα

p+1(ψyy)
q−p
k . (19)

So, Equation (24) is explained as:

ψq+1
(

σ1ei(k−1)φh + σ2eikφh + σ1ei(k+1)φh
)
+ rr2ψq+1

(
− σ3ei(k−1)φh + σ3ei(k+1)φh

)
− rr1ψq+1

(
σ4ei(k−1)φh +σ5eikφh +σ4ei(k+1)φh

)
= bγ

q ψ0
(

σ1ei(k−1)φh +σ2eikφh +σ1ei(k+1)φh
)

+
q−1

∑
p=0

[bγ
p − bγ

p+1]

(
σ1ei(k−1)φh + σ2eikφh + σ1ei(k+1)φh

)
ψq−p

+ rr1

q−1

∑
p=0

bα
p+1ψq+1

(
σ4ei(k−1)φh + σ5eikφh + σ4ei(k+1)φh

)
.

Rearranging the above equation, we obtain[
(σ2 + 2σ1 cos(φh))− 2irr2σ3 sin(φh) + rr1(σ5 + 2σ4 cos(φh))

]
ψq+1 = bγ

q (σ2 + 2σ1 cos(φh))ψ0

+
q−1

∑
p=0

[bγ
p − bγ

p+1](σ2 + 2σ1 cos(φh))ψq−p + rr1

q−1

∑
p=0

bα
p+1(σ5 + 2σ4 cos(φh)).

By applying the values of σ′ks, we achieve[(
1 +

ρ− 4
6

sin2(φh)
)
+

2rr1

h2 (2 + ρ) sin2(φh)− rr2i
h

sin(φh)
]

ψq+1 = bγ
q

(
1 +

ρ− 4
6

sin2(φh)
)

ψ0

+
q−1

∑
p=0

[bγ
p − bγ

p+1]

(
1 +

ρ− 4
6

sin2(φh)
)

ψq−p −
q−1

∑
p=0

bα
p+1

(
2rr1

h2 (2 + ρ) sin2(φh)
)

,

implies that

[β1 + β2 − iβ3
]
ψq+1 = β1bγ

q ψ0 + β1

q−1

∑
p=0

[bγ
p − bγ

p+1]ψ
q−p − β2

q−1

∑
p=0

bα
p+1ψq−p, (20)

where β1 = σ2 + 2σ1 cos(φh), β2 = 2rr1
h2 (2 + ρ) sin2(φh), and β3 = rr2

h sin(φh).
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From Equation (20), we acquire

|ψq+1|2 =

[
|β1

(
bγ

q ψ0 + ∑
q−1
p=0[b

γ
p − bγ

p+1]ψ
q−p
)
− β2 ∑

q−1
p=0 bα

p+1ψq−p|
]2

|(β1 + β2)2 + (β3)2| . (21)

For q = 0, Equation (20) becomes

|ψ1|2 =
|β1bγ

0 ψ0|2

|(β1 + β2)2 + (β3)2| ≤ |ψ
0|2,

|ψ1| ≤ |ψ0|.

Suppose that it is true for |ψq| ≤ |ψ0|, it must be satisfied for |ψq+1|. From (20),
we have

[β1 + β2 − iβ3
]
ψq+1 = β1bγ

q ψ0 + β1

q−1

∑
p=0

[bγ
p − bγ

p+1]ψ
q−p − β2

q−1

∑
p=0

bα
p+1ψq−p,

≤
β1bγ

q ψ0 + β1 ∑
q−1
p=0[b

γ
p − bγ

p+1]ψ
q−p

[β1 + β2 − iβ3
] ,

|ψq+1| ≤
|β1|bγ

q |ψ0|+ |β1|∑
q−1
p=0[b

γ
p − bγ

p+1]|ψq−p|√
(β1 + β2)2 + (β3)2

,

≤ 1√
(β1 + β2)2 + (β3)2

[
(bγ

0 − bγ
1 ) + (bγ

1 − bγ
2 ) + · · ·+ (bγ

q−1 − bγ
q ) + bγ

q

]
|ψ0|

= |ψ0|.

Therefore, for every q ≥ 0, we achieve

|ψq+1| ≤ |ψ0|. (22)

From Equations (18) and (22), we have

Φq+1 ≤ Φ0, ∀ q ≥ 0. (23)

Hence, the FPIDE with the suggested approximation is unconditionally stable.

Theorem 2. Let V(yi, tq) be the exact solution of the Equations ((1)–(3)) and V̂q be the time
discrete solution of the assumed problem, then

‖Ψk+1‖ ≤ D1τ2−γ, (24)

where γq+1 = V(yi, tq+1)− V̂q+1.

Proof. Take V be a r2 constant in Equation (11) by linearizing the nonlinear expression, we
obtain the difference of exact and time discrete solution as shown below:

Ψq+1 + rr2(Ψy)
q+1 − rr1(Ψyy)

q+1 = bγ
q Ψ0 +

q−1

∑
p=0

[bγ
p − bγ

p+1]Ψ
q−p + rr1

q−1

∑
p=0

bα
p+1(Ψyy)

q−p + Dq+1.

For q = 0, we have

Ψ1 + rr2(Ψy)
1 − rr1(Ψyy)

1 = bγ
0 Ψ0 + D1.
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As Ψ0 = 0, we get

< Ψ1, Ψ1 > +rr2 < Ψ1
y, Ψ1 > −rr1 < Ψ1

yy, Ψ1 >= bγ
0 < Ψ0, Ψ1 > + < D1, Ψ1 > .

Using < zxx, z >= − < zx, zx >, < z, z >= ‖z‖2, < zx, z >= − < z, zy >, and <
z, z1 >≤ ‖z‖ ‖z1‖, we get

< Ψ1, Ψ1 >= −rr2 < Ψ1
y, Ψ1 > −rr1 < Ψ1

y, Ψ1
y > + < D1, Ψ1 > .

‖Ψ1‖2 ≤ ‖D1‖‖Ψ1‖, (25)

‖Ψ1‖ ≤ ‖D1‖ ≤ D1τ2−γ. (26)

Suppose that (25), is true for q = 0, 1, . . . , Q. Take inner product of Equation (25) with
Ψq+1, we have

< Ψq+1, Ψq+1 > +rr2 < Ψq+1
y , Ψq+1 > −rr1 < Ψq+1

yy , Ψq+1 >= bγ
q < Ψ0, Ψq+1 >

+
q−1

∑
p=0

[bγ
p − bγ

p+1] < Ψq−p, Ψq+1 > +rr1

q−1

∑
p=0

bα
p+1 < Ψq−p

yy , Ψq+1 > + < Dq+1, Ψq+1 > .

Using < zxx, z >= − < zx, zx >, < zx, z >= − < z, zx >, we have

< Ψq+1, Ψq+1 >= −rr2 < Ψq+1
y , Ψq+1 > −rr1 < Ψq+1

y , Ψq+1
y > +bγ

q < Ψ0, Ψq+1 >

+
q−1

∑
p=0

[bγ
p − bγ

p+1] < Ψq−p, Ψq+1 > −rr1

q−1

∑
p=0

bα
p+1 < Ψq−p

y , Ψq+1
y > + < Dq+1, Ψq+1 >,

Implies that

< Ψq+1, Ψq+1 >= −rr2 < Ψq+1
y , Ψq+1 > −rr1 < Ψq+1

y , Ψq+1
y > +bγ

q < Ψ0, Ψq+1 >

+
q−1

∑
p=0

[bγ
p − bγ

p+1] < Ψq−p, Ψq+1 > −rr1

q−1

∑
p=0

bα
p+1 < Ψq−p

y , Ψq+1
y > + < Dq+1, Ψq+1 >,

By applying < z, z >= ‖z‖2, < z, z1 >≤ ‖z‖ ‖z1‖, we obtain

‖Ψq+1‖2 ≤
q−1

∑
p=0

[bγ
p − bγ

p+1]‖Ψ
q−p‖ ‖Ψq+1‖+ ‖Dq+1‖ ‖Ψq+1‖,

‖Ψq+1‖ ≤
q−1

∑
p=0

[bγ
p − bγ

p+1]‖Ψ
q−p‖+ ‖Dq+1‖.

Utilizing the Gronwall’s inequality we get

‖Ψq+1‖ ≤ (‖Dq+1‖+ (1− b1)Ψq) exp(
q−1

∑
p=0

[bp − bp+1]) ≤ D1τ2−γ.

5. Numerical Implementation

Here, we include the simulation results of the problem (1)–(3) by employing the
suggested algorithm. Maximum errors, L2 errors and order of convergence between
exact and computed solutions are employed to demonstrate the reliability of the ap-
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plied model. The following formula can be utilized in order to calculate the convergence
order numerically.

Order =
log(L∞(Qi))− log(L∞(Qi+1))

log(2)
, (27)

where L∞(Qi) and L∞(Qi+1) are the maximum errors at Qi and Qi+1 respectively.

Example 1. Consider the modeled problem (1)–(3) with the initial condition and source term are
shown below:

C
0 Dγ

t V(y, t) + VVy =
∫ t

0
(t− s)α−1Vyy(y, s)ds + G(y, t),

with
V(y, 0) = y2(1− y)2,

where

G(y, t) =
Γ( 7

2 )

Γ( 7
2 − γ)

t
5
2−γy2(1− y)2 − 2

(
1
α

tα +
Γ( 7

2 )Γ(α)

Γ( 7
2 ) + α

t
5
2+α

)
(1− 6y + 6y2) + 2(1 + t

5
2 )2(1− 2y)y3(1− y)3,

and analytical solution is V(y, t) = (1 + t
5
2 )y2(1− y)2.

Table 1 shows the L∞, L2 errors and order of the recommended technique for γ = 0.25, 0.5,
α = 0.15, h = 1

1024 at various τ. Table 2 presents the comparison of the L2 errors with the
results given by [16] and the order of convergence at different h. In Table 3, the absolute errors
are demonstrated for the α = 0.15 and different γ at T = 1. Figure 1 illustrates the 3D error
plot of (1) for γ = 0.5, α = 0.05, when M = 16 and Q = 16 at T = 1. Figure 2 shows the
compatibility of exact and computed values for γ = 0.5, α = 0.05. In Figure 3, we present the
approximated and exact graph of Example 1, for M = 50, Q = 100, γ = 0.5, and α = 0.01 at
T = 1. Graphs show that the close relationship between the exact and calculated values.

Table 1. The L∞, L2 errors of Example 1 for α = 0.15, h = 1
1024 , at T = 1.

γ τ ECBS
L2 [16] L2 L∞ Order

0.25 1/4 0.000338928 0.000102331 0.005061940 . . .
0.25 1/8 0.000095387 0.000031934 0.001507530 1.74750
0.25 1/16 0.000026007 0.000008542 0.000445685 1.75809
0.25 1/32 0.000006788 0.000001882 0.000133631 1.73777

0.5 1/4 0.000336809 0.000102183 0.00505510 . . .
0.5 1/8 0.000050628 0.000031976 0.00151014 1.74750
0.5 1/16 0.000025630 0.000008178 0.00045565 1.72618
0.5 1/32 0.000006784 0.000001955 0.00013491 1.75595

Table 2. The L∞, L2 errors of Example 1 for α = 0.15, τ = 1
1000 , at T = 1.

γ h ECBS
L2 [16] L2 L∞ Order

0.5 1/4 0.0223389 0.01822370 0.0549348 . . .
0.5 1/8 0.0055991 0.00345180 0.0136426 2.00960
0.5 1/16 0.0014002 0.00078340 0.0033125 2.04213
0.5 1/32 0.0003501 0.00002505 0.00080164 2.04690
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Table 3. Absolute errors Example 1 for α = 0.15, at various knots.

y γ = 0.25 γ = 0.50 γ = 0.75 γ = 0.95

0.1 0.0002278 0.0002393 0.0002611 0.0000426
0.2 0.0018783 0.0019005 0.0019430 0.0011812
0.3 0.0035717 0.0036034 0.0036639 0.0023206
0.4 0.0042866 0.0043257 0.0043997 0.0026410
0.5 0.0034757 0.0035196 0.0036008 0.0017125
0.6 0.0011975 0.0012421 0.0013230 0.0003752
0.7 0.0017931 0.0017525 0.0016805 0.0029206
0.8 0.0040788 0.0040474 0.0039930 0.0046428
0.9 0.0038964 0.0038792 0.0038497 0.0039922

Figure 1. Error graph of Example 1 at γ = 0.5 and α = 0.05.

Figure 2. Comparison of the exact (dots) and the computed values (solid lines) of Example 1 at
γ = 0.5 and α = 0.05.
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Exact solution

Approximated solution

10 20 30 40 50
y

0.02

0.04

0.06

0.08

0.10

0.12

V

Figure 3. Comparison of the exact and the computed values at γ = 0.5 and α = 0.01.

Example 2. Take the FPIDE with

V(y, 0) = sin(πy),

and

G(y, t) = π

(
π

α
tα − 4t3 cos(2πy)

)
sin(πy) +

(
π

2
− 12

Γ(4− γ)
t3−γ − 2πt3 cos(πy)− 48π2γ(α)

Γ(α + 4)
t3+α

)
+ (8πt6 cos(2πy)) sin(2πy).

The analytic solution is

V(y, t) = sin(πy)− 2t3 sin(2πy).

Table 4 demonstrates the L2 and order in time side α = 0.15, γ = 0.5 and various τ
at T = 1. In Table 5, the comparison of L2 errors of 2 for α = 0.15, γ = 0.5, τ = 1

1000 at
different h. In Table 6, we present the absolute errors for α = 0.05 and several values of γ
at some knots, when h = 1

100 , τ = 1
100 , and T = 1. Therefore, we achieve the convergence

order in time direction is τ2−γ, and space direction is 2. A comparison plot of computed
and exact values has been displayed in Figure 4 for γ = 0.5, α = 0.15 at T = 1. Figure 5
depicts the errors of Example 2 for τ = 1

100 , α = 0.15, γ = 0.5 for M = 16 and Q = 100
at T = 1. The exact and calculated values are presented in Figure 6 for N = 70, Q = 100,
γ = 0.5, α = 0.01.

Table 4. The L2 errors of Example 2 for α = 0.15, h = 1
1024 , at T = 1.

γ τ L2 [16] L2 Order

0.5 1/4 0.0177409 0.0130166 . . .
0.5 1/8 0.0051229 0.0050567 1.489999
0.5 1/16 0.0014272 0.0011256 1.495493
0.5 1/32 0.0003866 0.0003048 1.497291
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Table 5. The L2 errors of Example 2 for α = 0.15, τ = 1
1000 , at T = 1.

γ h L2 [16] L2 Order

0.5 1/4 0.3295713 0.2219332 . . .
0.5 1/8 0.0750875 0.0456438 1.489999
0.5 1/16 0.0183464 0.0058752 1.495493
0.5 1/32 0.0045605 0.0006886 1.497291

Table 6. Absolute errors of Example 2 for α = 0.05, at various connections.

y γ = 0.25 γ = 0.50 γ = 0.75 γ = 0.95

0.1 0.0237447 0.0216525 0.0224432 0.0224217
0.2 0.0364358 0.0332549 0.0344475 0.0344188
0.3 0.0390615 0.0364304 0.0373676 0.0373676
0.4 0.0391821 0.0387213 0.0388031 0.0388078
0.5 0.0363214 0.0389181 0.0377829 0.0378141
0.6 0.0214206 0.0267798 0.0245592 0.0246163
0.7 0.0062788 0.0004300 0.0256691 0.0022242
0.8 0.0292914 0.0232263 0.0039930 0.0255941
0.9 0.0270044 0.0234284 0.0248600 0.0248123

Figure 4. A Comparison plot (dots show the exact solution while the solid lines illustrate approxi-
mated solution) of Example 2 at γ = 0.5 and α = 0.15.

Figure 5. Error graph of Example 2 for α = 0.15, N = 16 at T = 1.
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Approximated solution

Exact solution

10 20 30 40 50 60 70
y

-1

1

2

V

Figure 6. Comparison of the exact and the computed values of Example 2 at γ = 0.5 and α = 0.01.

6. Conclusions

In this manuscript, the ECBS collocation strategy is successfully described for the
computed solutions of the nonlinear FPIDE with a weakly singular kernel. The CFD is
approximated in terms of the finite difference technique. The discretized form of the
CFD is applied to the time direction while the ECBS is utilized in the space dimension.
In addition, the stability analysis and convergence analysis of the implemented algorithm
is also presented to check the method is stable and convergent. The convergence order is
demonstrated as (τ2−γ + h2), which is consistent with the theoretical results. Furthermore,
The computational outcomes have been compared with the results given by [16] and some
comparative findings demonstrate the effectiveness of the proposed collocation algorithm.
The proposed technique can be implemented on the linear FPIDE model and the other
linear and nonlinear second-order FPDEs. The suggested method can be extended for the
higher-order hybrid and memory differential equations.
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