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Abstract: The Hölderian regularity is an important mathematical feature of a signal, connected with
the physical nature of the measured parameter. Many algorithms have been proposed in literature
for estimating the local Hölder exponent value, but all of them lead to biased estimates. This paper
attempts to apply the grey system theory (GST) on the raw signal for improving the accuracy of
Hölderian regularity estimation. First, synthetic logs data are generated by the successive random
additions (SRA) method with different types of Hölder functions. The application on these simulated
signals shows that the Hölder functions estimated by the GST are more precise than those derived
from the raw data. Additionally, noisy signals are considered for the same experiment, and more
accurate regularity is obtained using signals processed using GST. Second, the proposed technique
is implemented on well log data measured at an Algerian exploration borehole. It is demonstrated
that the regularity determined from the well logs analyzed by the GST is more reliable than that
inferred from the raw data. In addition, the obtained Hölder functions almost reflect the lithological
discontinuities encountered by the well. To conclude, the GST is a powerful tool for enhancing the
estimation of the Hölderian regularity of signals.

Keywords: well logs; Hölder exponent; fractal; grey system theory

1. Introduction

The Hölderian regularity is a robust property of physical signals. The understanding
of its time/space variations allows to extract meaningful information related to the physical
nature of the analyzed signal.

To describe physical signals exhibiting spatial (or time)-dependent regularity, many
stochastic fractal models have been suggested. The most generalized model is the multifrac-
tional Brownian motion (mBm), introduced by Peltier and Lévy-Véhel [1]. Its applications
have gained several field research areas: image processing [2], traffic phenomena [3,4], and
geophysics [5–13].

However, the precise estimation of local regularity function of the mBm process is
still difficult. This study aims to propose a technique based on grey system theory (GST)
to enhance the accuracy of quantifying the local regularity of mBm paths. The suggested
technique will be first tested on synthetic mBm paths, and next it will be applied on P- and
S-wave velocity logs data measured at the KTB main borehole.

The GST is a concept first introduced by Deng [14]. Since then, it has gained an
increasing interest in many research fields thanks to its suitability for analyzing systems
whose parameters are partially known. In contrast with the conventional statistical tech-
niques, the grey model needs limited data to predict the behavior of unknown systems.
The GST is widely used to establish a forecasting model, to minimize randomness in time
series and to increase the regularity of data [15–17]. Recently, the grey system theory has
been combined with fractal estimation methods for improving results in the prediction or
classification issues. In this context, Wu et al. [18] proposed an improved fractal model
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to forecast mine slope deformation by using the GST. They showed that the proposed
method can make a more accurate prediction than the fractal model, additionally with
high computational efficiency. Huang et al. [19] proposed a new method, grey detrended
fluctuation analysis (GDFA), for calculating the fractal scaling exponent by combining
grey system theory with grey detrended fluctuation analysis (DFA). They show that the
fractal scaling exponent calculated using the proposed method has good antinoise ability.
Chen et al. [20] proposed a different approach based on dual improved generalized fractal
box-counting for improving traditional fractal box-counting dimension algorithm in subtle
feature extraction of radiation source signals. Zhang et al. [21] considered the problem of
signal feature extraction and classifier design under low SNR environment by proposing a
method that first evaluates the multifractal dimension of nine modulated communication
signals, and then an improved grey relation algorithm is used to recognize the extracted
subtle characteristics. However, there are not works in literature combining GST and
multifractal models.

In geophysics, the GST has been already applied on seismic datasets in order to
minimize data randomness and increase data regularity, and thus to compute a meaningful
fractal scaling exponent-based attribute that provides valuable information related to the
distribution of sedimentary facies [19]. In this research, the GST technique is implemented
for the first time on well log data (P-wave seismic velocity, bulk density, gamma ray, and
photoelectric absorption factor). Well log data are complex to interpret since they are
normally affected by noise (see, for example, [22]).

Hölderian regularity analysis has been performed on well logs for studying local
subsurface heterogeneities [8–13,23–29]. It has been used for performing a lithological
segmentation by identifying layer boundaries and fault contacts [8–13,23], detecting the
reservoir fluids [24], characterizing the reservoir [25], accelerating the well-to-well cor-
relation procedure by providing an automated technique [26], studying the distribution
of lithological facies and fluid presence in reservoirs [27], delineating stratigraphic pat-
terns [28], and for the identification of the reservoir fluid nature [29].

The major drawback of this analysis is that the suggested algorithms fail to accurately
estimate the regularity functions. In this view, the GST is introduced to achieve best Hölder
exponent estimates.

2. Background
2.1. Local Hölderian Regularity

The Hölder exponent is defined for a stochastic process X, whose trajectories are
continuous but nowhere differentiable, by Peltier and Lévy-Véhel [1]:

αX(z0) = sup

{
α, limsup

h→0

|X(z0 + h)− X(z0)|
|h|α

= 0

}
. (1)

This coefficient describes the local regularity strength of a signal. From a geometrical
point of view, that means that the increments X(z) − X(z0) in the neighborhood of z0 are
included by a Hölderian envelope defined by |X(z)− X(z0)|αX(z0). The higher αX(z0)
value corresponds to a smoother signal at z0, and conversely.

2.2. Multifractional Brownian Motion

The mBm is defined as [1]:

WH(t)(t) = G(H(t))

{ ∫ 0
−∞

[
(t− s)H(t)− 1

2 − (−s)H(t)− 1
2

]
dB(s)

+
∫ t

0 [( t− s)H(t)−1/2]dB(s)

}
, (2)
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where H : [0, ∞[→]0, 1[ is required to be a Hölder function of order 0 < η ≤ 1 to guarantee
the continuity of the motion. In the case of the Hurst function, H(t) is constant, and
WH(t)(t) is reduced to a simple fractional Brownian motion (fBm).

In contrast with fBm, the pointwise Hölder exponent of WH(t)(t), αW = {αW(t), t ∈ R}
is expressed as a function of the location. For each t, this exponent equals with probability
one to H(t) [1,30–32]:

αWH(t)
(t) = H(t)

2.3. Local Estimation of the Hölderian Regularity

Peltier and Lévy-Véhel [33] suggested an algorithm to estimate the local Hölder
function H(z) at the point z = i/(n− 1), given by

Ĥ(i) = −
log
[√

π/2Sk,n(i)
]

log(n− 1)
, (3)

with Sk,n(i), the local growth of the increment process, defined by 002C

Sk,n(i) =
m

n− 1 ∑j∈[i− k
2 , i+ k

2 ]
| X(j + 1)− X(j) |, 1 < k < n, (4)

where n is the total number of signal samples, k is a fixed window size, and m is the largest
integer not exceeding n/k.

2.4. Grey System Theory (GST)

In GST, GM (n,m) designates a grey model where n and m correspond to the or-
der of the difference equation and the number of variables, respectively. Among the
existing models, the most popular is GM (1,m) corresponding to first-order differential
equation model of the m-type variable. Therefore, the GM (1,1) indicates the first-order
differential equation model of a variable that is widely used in predictions because of its
computational efficiency.

The calculation procedure of the GM (1,1) model are as follows [14–17]:

(1) Data standardization

The first required step of calculation is to standardize the signal values since all the
amplitude data should be positive.

X(0)
(i) =

(
x(0)
(i) −min(x(0))

)
/
(

max(x(0))−min(x(0))
)

/
(

max(x(0))−min(x(0))
)

where min
(

x(0)
)

and max
(

x(0)
)

are the minimum and maximum of sequence x(0), respectively.

(2) Modeling of the GM (1,1) is as follows:

(a) Selecting a subsequence denoted by

X(0)
(i) =

(
X(0)
(1) , X(0)

(2) , . . . , X(0)
(N)

)
, i = 1, 2, . . . , N − 3.

The GM (1,1) requires a sequence with a length N ≥ 4.

(b) Constructing an accumulation generation for the subsequence

X(1) =
(

X(1)
(1) , X(1)

(2) , . . . , X(1)
(N)

)
, (5)

where X(1)
(1) ,= X(1)

(0) and X(1)
(i) = ∑i

k=1 X(0)
(k) , i = 2, . . . , N Then, the GM (1,1) is built

using Sequence (5):
dX(1)

dt
+ aX(1) = u (6)
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where a and u are fitting parameters. The column â = [a, u]T is determined by the
least squares method:

â =
(

BT B
)−1

BTYN (7)

where

B =


− 1

2

{
X(1)
(1) + X(1)

(2)

}
1

− 1
2

{
X(1)
(2) + X(1)

(3)

}
1

. . . .
− 1

2

{
X(1)
(N−1) + X(1)

(N)

}
1

,

and YN =
(

X(0)
(2) , X(0)

(3) , . . . , X(0)
(N)

)T
, BT is the transposed matrix of B.

(c) Replacing â in Equation (6), the grey model can be expressed by

X̂(1)
(t) =

(
X(1)
(1) −

u
a

)
e−at +

u
a

, t = 2, 3, . . . , N, (8)

where the function X̂(1) is fitted to the signal accumulated series X(1).

(d) Differentiating X̂(1)
(t) to reduce X̂(0)

(t)

X̂(0)
(t+1) = −a

(
X(0)
(1) −

u
a

)
e−at (9)

or simply computing X̂(0)
(t) by the subtraction

X̂(0)
(t+1) = X̂(1)

(t+1) − X̂(1)
(t) . (10)

(e) Calculating the deviation (grey model error) between the accumulated se-
quence and the fitting function

e(t) = X(0)
(t) − X̂(0)

(t) . (11)

3. Application to Simulated Data

First, the grey system technique is implemented on simulated sonic logs data. These
logs are considered as multifractional Brownian motions (mBms) simulated using the
procedure proposed by Peltier and Lévy-Véhel [1]. The idea consists of generating N
fractional Brownian motions (fBms) BH(i) with the Hurst parameters H(i), i = 1, . . . , N,
and then constructing the mBm path WH(i) by setting

WH(i)(i) = BH(i)(i), i = 1, . . . , N. (12)

In our applications, the fBms are simulated using the successive random additions
(SRA) algorithm [34].

Five types of Hölder functions, linear H1, periodic H2, logistic H3, synthetic H4, and
stairs H5, are used to create mBm paths. They are defined as follows:

H1(t) = 0.2 + 0.6t,
H2(t) = 0.5 + 0.3sin(4πt),
H3(t) = 0.3 + 0.3

1+e−100(t−7) ,

H4(t) = 0.25 + 0.25t2(1− cos
(

5π
1+e−20(t−0.6)

)
),

H5(t) =


0.2, i = 1, . . . , N

4
0.4, i = N

4 + 1, . . . , N
2

0.6, i = N
2 + 1, . . . , 3N

2
0.8, i = 3N

2 + 1, . . . , N

, t =
i− 1

N
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In the following, for each type of regularity, a local Hölder function is computed, using
the algorithm detailed in Section 2.3, from the raw mBm path and the mBm path processed
by the GST theory. The obtained results are presented in Figure 1. As it can be noted, the
mean square error (MSE) corresponding to the raw standardized mBm is larger than that
related to the mBm path processed by GST.

Then, the convergence of the suggested algorithm is evaluated on the basis of 1000 re-
alizations of the mBm paths created using the Hölder function H5. Histograms of Hölder
exponent values derived from the standardized raw mBm path (first line) and the mBm
path processed by GST (second line) are illustrated in Figure 2. The first, second, third,
and fourth columns are related to fixed positions whose indexes are i = N/8, 3N/8, 5N/8,
and 7N/8 (N = 2048) which correspond to the theoretical Hölder exponent values: 0.2,
0.4, 0.6, and 0.8, respectively. It can be seen that the resulted histograms approximately
follow a Gaussian distribution with small values of standard deviations. Note also that, for
a given position, the mean of the Hölder exponent values derived from the mBm paths
processed with the GST are closer to the theoretical H values than those which resulted
in the standardized raw mBm paths. That confirms, again, the accuracy of the suggested
method for the estimation of the local regularity functions.
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simulated mBm paths: standardized (in red) and processed by GST (in blue), the second panel shows the local Hölder
exponent function estimated from the standardized mBm path (blue line) and the theoretical Hölder function (red line), and
the third panel illustrates the local Hölder exponent function estimated from the mBm path processed by GST (blue line)
and the theoretical Hölder function (red line).
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Figure 2. Histograms of Hölder exponent values obtained from the standardized raw mBm path (1st line) and the mBm
path processed by GST (2nd line). The histograms are resulted from 1000 realizations of mBm paths simulated with a
stair-type Hölder function. The 1st, 2nd, 3rd, and 4th lines correspond to fixed positions i = N/8, 3N/8, 5N/8, and7N/8,
whose theoretical Hölder exponent values are 0.2, 0.4, 0.6, and 0.8, respectively.

The sensitivity of the proposed technique to noise level is demonstrated on simulated
mBm paths. Here, the theoretical Hölder function considered in simulating mBm paths is
a staircase (piecewise) function with nine pieces (stairs) presenting H values from 0.1 to
0.9 with an increment of 0.1. In each piece (stair), a fixed position is chosen on the simulated
mBm path.

One thousand realizations of random noise are performed. For each realization,
amounts of random noise are added to the noise-free mBm path to give signal-to-noise
ratios (SNRs) of different values. In the following, SNR is defined as the ratio of signal
power to the noise power (expressed in decibels).

For a given realization, the noisy mBm path is processed using GST. Then, the local
H(t) is computed for both noisy and GST-processed mBm paths.

For a fixed SNR value, the H mean values of the noisy and GST-processed mBm
paths at the nine fixed positions on mBm paths are obtained by averaging, over the total
realizations number, the H values of regularity functions obtained from these mBm paths,
respectively, at these positions.

From Figure 3, it can be noted that, for all of the fixed positions associated with
different theoretical H values (varying from 0.1 to 0.9), the GST-based method enhances
the accuracy of the estimated regularity of the noisy mBm paths for all the considered
noise levels. As expected, for all of the considered positions, the Hmean values of the
GST-processed mBm paths are increasingly closer to the corresponding theoretical H value
as SNR reaches high values.
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and GST-processed mBm paths (in blue). The Hmean values are obtained by averaging H values at the fixed positions
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For illustration, an application of the proposed method to a realization of an mBm
path, simulated with a periodic function, is presented in Figure 4. As can be noted, the
function H(t) estimated using GST is more accurate than that obtained from the noisy mBm
path, and presents the least error estimation value.
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Figure 4. Results obtained from a realization of mBm path simulated with a periodic Hölder function H(t) (SNR = 40).
This figure consists of three panels, described as follows. The first panel presents the noisy mBm paths (in red) and the
standardized and processed by GST (in blue), the second panel shows the local Hölder exponent function estimated from
the noisy mBm path (blue line) and the theoretical Hölder function (red line), and the third panel illustrates the local Hölder
exponent function estimated from the mBm path processed by GST (blue line) and the theoretical Hölder function (red line).
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4. Application to Algerian Well Log Data

In this section, the aforementioned technique is implemented on well log data recorded
in an Algerian exploration well located in southwestern Algeria. The analyzed logs are
P-wave seismic velocity (Vp, m/s), bulk density (rhob, g/cm3), gamma ray (GR, API),
and photoelectric absorption factor (PEF). The sampling depth of all the measurements is
0.1524 m.

From a lithological point of view, the investigated depth interval (905.256–1340 m)
covers the lower Devonian reservoir is described as follows [35]:

• Layer L1 (905–981 m): shale.
• Layer L2 (981–1133 m): alternation of sandstone and shale, with limestone layers.
• Layer L3 (1133–1340 m): sandstone.

Figure 5 presents the raw and the GST-processed log data. The local Hölder exponent
logs from well logs are calculated using the algorithms detailed in Section 2, from the
raw data (in red) and data processed by the GST (in blue) (Figure 6). As can be observed,
the lithological discontinuities, which are either layer boundaries or thin rock beds occur-
ring within the studied depth intervals, are marked on the regularity profiles by sudden
variations of H value.

Note, also, that the regularity logs computed using GST are more precise than those
obtained from the raw logs, and lead to a more accurate lithological segmentation.

In addition, the correlation coefficients between the computed regularity logs are
increased after application of GST on the investigated well logs (Table 1).
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Figure 5. Physical properties measured within the depth interval (905–1340 m) in borehole W1: the raw data (in red) and
the data processed by the GST (in blue) [35].

Table 1. Correlation coefficients between the regularity profiles derived from the analyzed well logs
(without GST | with GST).

HVp HGR Hrhob HPEF

HVp 1.00|1.00 0.84|0.88 0.61|0.65 0.80|0.84

HGR 1.00|1.00 0.57|0.62 0.73|0.76

Hrhob 1.00|1.00 0.83|0.84

HPEF 1.00|1.00
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Figure 6. Regularity profiles obtained from the physical measurements of Figure 5. Dashed lines: layer boundaries (in
green), limestone beds (in black), and shale beds (in magenta) (the layer boundaries in dashed lines are taken from [35]).
The H logs are computed using the algorithm detailed in Section 2.3, from the raw data (in red) and data processed by the
GST (in blue). Note that the local extrema of the H logs correspond to the lithological discontinuities.

It can be noted that on the regularity profiles derived from the “porosity-dependent”
logs, almost all the lithological discontinuities, which are either layer boundaries or thin
rock beds occurring within the studied depth intervals, are marked by jumps in H value.

It is worthy to underline that for Vs log, the H logs obtained by both regularity
estimation techniques (without and with GST) are matching across the studied depth
intervals except for 700–900 m, 1650–1750 m, 2100–2200 m, 2650–2750 m, and 3050–3200 m.
However, for Vp log, the regularity log obtained by the velocity log processed by GST
presents relatively similar H values to those derived from the raw velocity data across
almost all the investigated depth range, except within the depth interval of 2100–2200 m.
The obtained results show that the GST allows to highlight local heterogeneities that cannot
be seen from the regularity logs estimated from the raw velocity logs. Therefore, the
regularity estimation obtained from the velocity well logs processed by the GST is more
reliable than that yielded from the raw log data.

5. Conclusions

This study presents a new approach for accurately estimating Hölderian regularity
using grey system theory (GST). The application on synthetic logs with different Hölder
functions, simulated by the SRA method, shows that the regularity estimated from logs
processed by the GST is more precise than that derived from the raw logs, even in the
presence of noise. In addition, the suggested technique was implemented on Algerian
exploration well log data. The estimated Hölder exponent logs allowed us to perform a
lithological segmentation.
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