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Abstract: In this research work, we study a new class of ψ-Hilfer hybrid fractional integro-differential
boundary value problems with three-point boundary conditions. An existence result is established
by using a generalization of Krasnosel’skiĭ’s fixed point theorem. An example illustrating the main
result is also constructed.

Keywords: boundary value problem; ψ-Hilfer fractional derivative; hybrid fractional integro-
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1. Introduction

Differential equations of fractional order have recently received a lot of attention
and now constitute a significant branch of nonlinear analysis, because some real world
problems in physics, mechanics and other fields can be described better with the help
of fractional differential equations. Numerous monographs have appeared devoted to
fractional differential equations, for example, see [1–8]. Recently, differential equations and
inclusions equipped with various boundary conditions have been widely investigated by
many researchers (see [9–18] and the references cited therein).

Hybrid fractional differential equations have also been studied by several researchers.
Hybrid fractional differential equations involve the fractional derivative of an unknown
function hybrid with the nonlinearity depending on it. Hybrid systems play a key role in
embedded control systems that interact with the physical situation. Time- and event-based
behaviors are more accurately described by hybrid models as such models help to deal
with challenging design requirements in the design of control systems. Examples include
automotive control [19], mobile robotics [20], the process industry [21], real-time software
verification [22], transportation systems [23], and manufacturing [24].

Some recent results on hybrid differential equations can be found in a series of pa-
pers [25–29].

In 2010, Dhage and Lakshmikantham [30] initiated the study of initial value problems
for first order hybrid differential equation of the form:

d
dt

(
x(t)

f (t, x(t))

)
= g(t, x(t)), t ∈ [0, T],

x(0) = x0 ∈ R,
(1)

where f ∈ C([0, T]×R,R \ {0}) and g ∈ C([0, T]×R,R). They gave the existence, unique-
ness results, and some theorems on differential inequalities.
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In 2011, Zhao et al. [26] investigated the hybrid fractional initial value problem and
Sun et al. [27] discussed fractional boundary value problems containing hybrid equations.

In [31], the authors proved the existence of solutions for a nonlocal boundary value
problem of hybrid fractional integro-differential equations given by

Dα

 x(t)−
n
∑

i=1
Iβi hi(t, x(t))

g(t, x(t))

 = f (t, x(t)), t ∈ [0, 1],

x(0) = µ(x), x(1) = A ∈ R,

(2)

where Dα is the Caputo fractional derivative of order α with 1 < α ≤ 2, Iβi is the Riemann–
Liouville fractional integral of order βi > 0 and functions hi ∈ C([0, 1]× R,R), for i =
1, 2, . . . , n, g ∈ C([0, 1]×R,R \ {0}), f ∈ C([0, 1]×R,R), the functional µ : C([0, 1],R)→
R. The main result was proved by using of a hybrid fixed point theorem for three operators
in a Banach algebra from Dhage [32].

The existence of solutions of hybrid fractional integro-differential equations with
initial conditions, given by

Dα

Dωx(t)−
n
∑

i=1
Iβi hi(t, x(t))

g(t, x(t))

 = f (t, x(t)), t ∈ [0, 1],

x(0) = 0, Dωx(0) = 0,

(3)

was studied in [33]. Here, Dχ is the Caputo fractional derivative of order χ ∈ {α, ω}
with 0 < α, ω ≤ 1, Iβi is the Riemann–Liouville fractional integral of order βi > 0,
hi ∈ C([0, 1]×R,R), for i = 1, 2, . . . , n, g ∈ C([0, 1]×R,R \ {0}), f ∈ C([0, 1]×R,R). A
generalization of Krasnosel’skiĭ’s fixed point theorem ([32,34]) was applied to prove the
existence result.

The problem (3) was extended to higher order fractional derivatives in [35] as a
boundary value problem

Dα

Dωx(t)−
n
∑

i=1
Iβi hi(t, x(t))

g(t, x(t))

 = f (t, x(t)), t ∈ [0, 1],

x(0) = 0, Dωx(0) = 0, x(1) = δx(η), 0 < δ < 1, 0 < η < 1,

(4)

where Dχ is the Caputo fractional derivative of order χ ∈ {α, ω}with 0 < α ≤ 1, 1 < ω ≤ 2,
Iβi is the Riemann–Liouville fractional integral of order βi > 0, hi ∈ C([0, 1] × R,R),
for i = 1, 2, . . . , n, g ∈ C([0, 1] × R,R \ {0}), f ∈ C([0, 1] × R,R). Dhage’s fixed point
theorem [32] was used to obtain an existence result.

For recent papers on hybrid boundary value problems of fractional differential equa-
tions and inclusions, we refer to [36–38] and references cited therein.

In [39], an initial value problem was studied for hybrid fractional differential equations
containing a ψ-Hilfer fractional derivative of the form

HDα,β;ψ
(

x(t)
f (t, x(t))

)
= g(t, x(t)), t ∈ [a, b],

I1−γ,ψ
(

x(0)
f (0, x(0))

)
= x0 ∈ R,

(5)
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where HDα,β;ψ is the ψ-Hilfer fractional derivative with 0 < α < 1, 0 ≤ β ≤ 1, α ≤
γ = α + (1− α)β < 1, f ∈ C1−γ;ψ([a, b] × R,R \ {0}), g ∈ C1−γ;ψ([a, b] × R,R), I1−γ,ψ

is the ψ-Hilfer fractional integral of order 1− γ. Here, C1−γ;ψ[a, b] = {h : (a, b] → R :
(ψ(t)− ψ(a))1−γh(t) ∈ C[a, b]}, 0 < γ ≤ 1. For some recent research papers on ψ-Hilfer
fractional initial value problems, see [40–42] and references cited therein.

In the present work, we study a three-point ψ-Hilfer hybrid fractional integro-differential
nonlocal boundary value problem of the form

HD
α,ρ;ψ
a

[
HD

p,ρ;ψ
a x(t)

g(t, x(t))
−

n

∑
i=1
Iβi ;ψ

a hi(t, x(t))

]
= f (t, x(t)), t ∈ [a, b],

x(a) = 0, HD
p,ρ;ψ
a x(a) = 0, x(b) = θx(ξ),

(6)

where HD
ω,ρ;ψ
a is the ψ-Hilfer fractional derivative operator of order ω ∈ {α, p}, with

0 < α ≤ 1, 1 < p ≤ 2, 0 ≤ ρ < 1, Iβi ;ψ
a is ψ-Riemann–Liouville fractional integral of

order βi > 0, for i = 1, 2, . . . , n, g ∈ C([a, b] × R,R \ {0}), f ∈ C([a, b] × R,R), hi ∈
C([a, b]×R,R) for i = 1, 2, . . . , n, ξ ∈ [a, b] and θ ∈ R. An existence result is established
via a generalization of the Krasnosel’skiĭ fixed point theorem ([32,34]).

The rest of the paper is organized as follows: In Section 2, we recall some notations,
definitions, and lemmas from fractional calculus needed in our study. We also prove an
auxiliary lemma helping us to transform the hybrid boundary value problem (6) into an
equivalent integral equation. The main existence result for the ψ-Hilfer hybrid bound-
ary value problem (6) is contained in Section 3. The obtained result is illustrated by a
numerical example.

2. Preliminaries

This section defines some notation in relation to fractional calculus.

Definition 1 ([2]). Let (a, b), a ≥ 0, (−∞ ≤ a < b ≤ ∞), be a finite or infinite interval of
the half-axis R+ and α > 0. Let ψ(x) be an increasing and positive monotone function on (a, b],
having a continuous derivative ψ′(x) on (a, b). The ψ-Riemann–Liouville fractional integral of a
function f with respect to another function ψ on [a, b] is defined by

Iα;ψ
a+ f (t) =

1
Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1 f (s)ds, t > a > 0, (7)

where Γ(·) is the Euler gamma function.

Definition 2 ([2]). Let ψ ∈ Cn([a, b],R) with ψ′(t) 6= 0 and α > 0, n ∈ N. The Rie-
mann–Liouville derivative of a function f with respect to another function ψ of order α is defined by

D
α;ψ
a+ f (t) =

(
1

ψ′(t)
d
dt

)n
In−α;ψ

a+ f (t) (8)

=
1

Γ(n− α)

(
1

ψ′(t)
d
dt

)n ∫ t

a
ψ′(s)(ψ(t)− ψ(s))n−α−1 f (s)ds, (9)

where n = [α] + 1, [α] represents the integer part of the real number α.

Definition 3 ([40]). Let n− 1 < α < n with n ∈ N, [a, b] is the interval such that −∞ ≤ a <
b ≤ ∞ and f , ψ ∈ Cn([a, b],R) two functions such that ψ is increasing and ψ′(t) 6= 0, for all
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t ∈ [a, b]. The ψ-Hilfer fractional derivative of a function f of order α and type 0 ≤ ρ ≤ 1 is
defined by

HD
α,ρ;ψ
a+ f (t) = Iρ(n−α);ψ

a+

(
1

ψ′(t)
d
dt

)n
I (1−ρ)(n−α);ψ

a+ f (t) = Iγ−α;ψ
a+ D

γ;ψ
a+ f (t), (10)

where n = [α] + 1, [α] represents the integer part of the real number α with γ = α + ρ(n− α).

Lemma 1 ([2]). Let α, β > 0. Then, we have the following semigroup property given by

Iα;ψ
a+ I

β;ψ
a+ f (t) = Iα+β;ψ

a+ f (t), t > a. (11)

Next, we present the ψ-fractional integral and derivatives of a power function.

Proposition 1 ([2,40]). Let α > 0, υ > 0 and t > a. Then, we have

(i) Iα;ψ
a+ (ψ(s)− ψ(a))υ−1(t) =

Γ(υ)
Γ(υ + α)

(ψ(t)− ψ(a))υ+α−1.

(ii) HD
α,ρ;ψ
a+ (ψ(s)− ψ(a))υ−1(t) =

Γ(υ)
Γ(υ− α)

(ψ(t)− ψ(a))υ−α−1, n− 1 < α < n, υ > n.

Lemma 2 ([41]). Let m − 1 < α < m, n − 1 < β < n, n, m ∈ N, n ≤ m, 0 ≤ ρ ≤ 1
and α ≥ β + ρ(n− β). If f ∈ Cn([a, b],R), then

HD
β,ρ;ψ
a+ Iα;ψ

a+ f (t) = Iα−β;ψ
a+ f (t). (12)

Lemma 3 ([40]). If f ∈ Cn([a, b],R), n− 1 < α < n, 0 ≤ ρ ≤ 1 and γ = α + ρ(n− α), then

Iα;ψ
a+

HD
α,ρ;ψ
a+ f (t) = f (t)−

n

∑
k=1

(ψ(t)− ψ(a))γ−k

Γ(γ− k + 1)
∇[n−k]

ψ I (1−ρ)(n−α);ψ
a+ f (a), (13)

for all t ∈ J, where ∇[n]
ψ f (t) :=

(
1

ψ′(t)
d
dt

)n
f (t).

Definition 4. A function x ∈ C([a, b],R) is said to be a solution of the hybrid boundary value

problem (6) if x →
HD

p,ρ;ψ
a x

g(t, x)
−

n

∑
i=1
Iβi ;ψ

a hi(t, x) is continuous for each x ∈ R and x satisfies the

fractional differential equation and the boundary conditions in (6).

Lemma 4. Let 0 < α < 1, 1 < p ≤ 2, 0 ≤ ρ < 1, γ = p + ρ(2− p), γ1 = α + ρ(1− α) < 1,
Λ 6= 0, g, hi, i = 1, 2, . . . , n satisfy boundary value problem (6) and z ∈ C([a, b],R). Then, x is a
solution of the ψ-Hilfer hybrid fractional integro-differential boundary value problem of the form:

HD
α,ρ;ψ
a

[
HD

p,ρ;ψ
a x(t)

g(t, x(t))
−

n

∑
i=1
Iβi ;ψ

a hi(t, x(t))

]
= z(t), t ∈ [a, b],

x(a) = 0, HD
p,ρ;ψ
a x(a) = 0, x(b) = θx(ξ),

(14)

if and only if x satisfies the equation

x(t) =
∫ t

a

ψ′(s)(ψ(t)− ψ(s))p−1

Γ(p)
g(s, x(s))

{
n

∑
i=1
Iβi ;ψ

a hi(s, x(s)) + Iα;ψ
a z(s)

}
ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
θ
∫ ξ

a

ψ′(s)(ψ(ξ)− ψ(s))p−1

Γ(p)
g(s, x(s))
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×
{

n

∑
i=1
Iβi ;ψ

a hi(s, x(s)) + Iα;ψ
a z(s)

}
ds (15)

−
∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)
g(s, x(s))

{
n

∑
i=1
Iβi ;ψ

a hi(s, x(s)) + Iα;ψ
a z(s)

}
ds

]
,

where
Λ := (ψ(b)− ψ(a))γ−1 − θ(ψ(ξ)− ψ(a))γ−1.

Proof. Let x ∈ C([a, b],R) be a solution of the problem (14). Applying the ψ-Riemann–
Liouville fractional integral operator Iα;ψ

a to both sides of (14) and using Lemma 3,
we obtain

HD
p,ρ;ψ
a x(t)

g(t, x(t))
−

n

∑
i=1
Iβi ;ψ

a hi(t, x(t)) = Iα;ψ
a z(t) +

(ψ(t)− ψ(a))γ1−1

Γ(γ1)
c0, (16)

where c0 ∈ R. By using the boundary condition, HD
p,ρ;ψ
a x(a) = 0, we obtain the constant

c0 = 0. Thus, we have

HD
p,ρ;ψ
a+ x(t) = g(t, x(t))

{
n

∑
i=1
Iβi ;ψ

a hi(t, x(t)) + Iα;ψ
a z(t)

}
. (17)

Inserting the ψ-Riemann–Liouville fractional integral operator I p;ψ
a into both sides of

(17) and using Lemma 3, we obtain

x(t) =
∫ t

a

ψ′(s)(ψ(t)− ψ(s))p−1

Γ(p)
g(s, x(s))

{
n

∑
i=1
Iβi ;ψ

a hi(s, x(s)) + Iα;ψ
a z(s)

}
ds

+
(ψ(t)− ψ(a))γ−1

Γ(γ)
c1 +

(ψ(t)− ψ(a))γ−2

Γ(γ− 1)
c2, (18)

where c1, c2 ∈ R. From the boundary condition x(a) = 0, we obtain c2 = 0, while from the
boundary condition x(b) = θx(ξ), we find that

c1 =
Γ(γ)

Λ

[
θ
∫ ξ

a

ψ′(s)(ψ(ξ)− ψ(s))p−1

Γ(p)
g(s, x(s))

{
n

∑
i=1
Iβi ;ψ

a hi(s, x(s)) + Iα;ψ
a z(s)

}
ds

−
∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)
g(s, x(s))

{
n

∑
i=1
Iβi ;ψ

a hi(s, x(s)) + Iα;ψ
a z(s)

}
ds

]
.

Substituting the constants c1 and c2 into (18), we obtain the integral equation in (15)
as desired.

Conversely, by a direct computation, it is easy to show that the solution x given by
(15) satisfies the problem (14). The proof of Lemma 4 is completed.

Let X = C([a, b],R) be the Banach space of continuous real-valued functions defined
on [a, b], equipped with the norm ‖x‖ = supt∈[a,b] |x(t)| and a multiplication (xy)(t) =

x(t)y(t), ∀t ∈ [a, b]. Then, clearly, X is a Banach algebra with the above-defined supremum
norm and multiplication in it.

Lemma 5 ([32,34]). Let S be a nonempty, convex, closed, and bounded set such that S ⊂ X, and
let A : X→ X and B : S→ X be two operators which satisfy the following:

(i) A is contraction,
(ii) B is completely continuous, and
(iii) x = Ax + By, ∀y ∈ S⇒ x ∈ S.
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Then, there exists a solution of the operator equation x = Ax + Bx.

3. Existence Result

In view of Lemma 4, we define an operator Q : X→ X by

(Qx)(t) =
∫ t

a

ψ′(s)(ψ(t)− ψ(s))p−1

Γ(p)
g(s, x(s))

{
n

∑
i=1
Iβi ;ψ

a hi(s, x(s)) + Iα;ψ
a f (s, x(s))

}
ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
θ
∫ ξ

a

ψ′(s)(ψ(ξ)− ψ(s))p−1

Γ(p)
g(s, x(s))

×
{

n

∑
i=1
Iβi ;ψ

a hi(s, x(s)) + Iα;ψ
a f (s, x(s))

}
ds (19)

−
∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)
g(s, x(s))

{
n

∑
i=1
Iβi ;ψ

a hi(s, x(s)) + Iα;ψ
a f (s, x(s))

}
ds

]
.

Notice that the problem (6) has solutions if and only if the operatorQ has fixed points.

Theorem 1. Assume that:

(A1)The functions g : [a, b]×R → R \ {0}, f : [a, b]×R → R, and hi : [a, b]×R → R for
i = 1, 2, . . . , n, are continuous and there exist positive functions φ, ω, χi, i = 1, 2, . . . , n,
with bounds ‖φ‖, ‖ω‖, and ‖χi‖, i = 1, 2, . . . , n, respectively, such that

|g(t, x)− g(t, y)| ≤ φ(t)|x− y|, (20)

| f (t, x)− f (t, y)| ≤ ω(t)|x− y|, (21)

and
|hi(t, x)− hi(t, y)| ≤ χi(t)|x− y|, i = 1, 2, . . . , n, (22)

for t ∈ [a, b] and x, y ∈ R;
(A2) |hi(t, x)| ≤ λi(t), λi ∈ C([a, b],R), ∀(t, x) ∈ [a, b]×R, i = 1, 2, . . . , m, | f (t, x)| ≤ µ(t),

|g(t, x)| ≤ ν(t), ∀(t, x) ∈ [a, b]×R, µ, ν ∈ C([a, b],R);
(A3)Assume that

K : =

[
1 + (|θ|+ 1)

(ψ(b)− ψ(a))γ−1

|Λ|

]
(ψ(b)− ψ(a))p

Γ(p + 1)

(
‖ν‖

n

∑
i=1

(ψ(b)− ψ(a))βi

Γ(βi + 1)
‖χi‖

+‖φ‖
n

∑
i=1

(ψ(b)− ψ(a))βi

Γ(βi + 1)
‖λi‖

)
< 1. (23)

Then, the ψ-Hilfer hybrid fractional integro-differential three-point boundary value problem (6) has
at least one solution on [a, b].

Proof. Firstly, we consider a subset S of X defined by S = {x ∈ X : ‖x‖ ≤ r}, where r is
given by

r =

[
1 + (|θ|+ 1)

(ψ(b)− ψ(a))γ−1

|Λ|

]
(ψ(b)− ψ(a))p

Γ(p + 1)
‖ν‖

×
[

n

∑
i=1

(ψ(b)− ψ(a))βi

Γ(βi + 1)
‖λi‖+

(ψ(b)− ψ(a))α

Γ(α + 1)
‖µ‖

]
. (24)
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Observe that S is a closed, convex, and bounded subset of the Banach space X. Now, we
set supt∈[a,b] |λi(t)| = ‖λi‖, i = 1, 2, . . . , n, supt∈[a,b] |µ(t)| = ‖µ‖, supt∈[a,b] |ν(t)| = ‖ν‖.

Let us define three operatorsH,F ,G : X→ X such that

Hx(t) =
n

∑
i=1
Iβi ;ψ

a hi(t, x(t)), t ∈ [a, b],

Fx(t) = Iα;ψ
a f (t, x(t)), t ∈ [a, b],

and
Gx(t) = g(t, x(t)), t ∈ [a, b].

Then, we have

|Hx(t)−Hy(t)| ≤
n

∑
i=1

∫ t

a

ψ′(s)(ψ(t)− ψ(s))βi−1

Γ(βi)
|hi(s, x(s))− hi(s, y(s))|ds

≤
n

∑
i=1

(ψ(b)− ψ(a))βi

Γ(βi + 1)
‖χi‖‖x− y‖,

and

|Hx(t)| ≤
n

∑
i=1

(ψ(b)− ψ(a))βi

Γ(βi + 1)
‖λi‖.

In addition, we obtain

|Fx(t)−Fy(t)| ≤
∫ t

a

ψ′(s)(ψ(t)− ψ(s))α−1

Γ(α)
| f (s, x(s))− f (s, y(s))|ds

≤ (ψ(b)− ψ(a))α

Γ(α + 1)
‖ω‖‖x− y‖,

and

|Fx(t)| ≤ (ψ(b)− ψ(a))α

Γ(α + 1)
‖µ‖.

Moreover, we obtain

|Gx(t)− Gy(t)| = |g(t, x(t))− g(t, y(t))| ≤ ‖φ‖‖x− y‖,

and
|Gx(t)| ≤ ‖ν‖.

Now we define two operators A : X→ X and B : S→ X as follows:

Ax(t) =
∫ t

a

ψ′(s)(ψ(t)− ψ(s))p−1

Γ(p)
Gx(s)Hx(s)ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
θ
∫ ξ

a

ψ′(s)(ψ(ξ)− ψ(s))p−1

Γ(p)
Gx(s)Hx(s)ds

−
∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)
Gx(s)Hx(s)ds

]
,

and

Bx(t) =
∫ t

a

ψ′(s)(ψ(t)− ψ(s))p−1

Γ(p)
Gx(s)Fx(s)ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
θ
∫ ξ

a

ψ′(s)(ψ(ξ)− ψ(s))p−1

Γ(p)
Gx(s)Fx(s)ds
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−
∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)
Gx(s)Fx(s)ds

]
.

Clearly, Qx = Ax + Bx. In the next steps, we show that the operators A and B fulfill
all the assumptions of Lemma 5. The proof is divided into three steps:

Step 1. The operator A is a contraction mapping. For any x, y ∈ S, we have

|Ax(t)−Ay(t)|

≤
∫ t

a

ψ′(s)(ψ(t)− ψ(s))p−1

Γ(p)
|Gx(s)Hx(s)− Gy(s)Hy(s)|ds

+
(ψ(t)− ψ(a))γ−1

|Λ|

[
|θ|
∫ ξ

a

ψ′(s)(ψ(ξ)− ψ(s))p−1

Γ(p)
|Gx(s)Hx(s)− Gy(s)Hy(s)|ds

+
∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)
|Gx(s)Hx(s)− Gy(s)Hy(s)|ds

]

≤
∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)
|Gx(s)Hx(s)− Gy(s)Hy(s)|ds

+
(ψ(b)− ψ(a))γ−1

|Λ|

[
|θ|
∫ ξ

a

ψ′(s)(ψ(ξ)− ψ(s))p−1

Γ(p)
|Gx(s)Hx(s)− Gy(s)Hy(s)|ds

+
∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)
|Gx(s)Hx(s)− Gy(s)Hy(s)|ds

]

≤
[

1 + (|θ|+ 1)
(ψ(b)− ψ(a))γ−1

|Λ|

] ∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)

×|Gx(s)Hx(s)− Gy(s)Hy(s)|ds

≤
[

1 + (|θ|+ 1)
(ψ(b)− ψ(a))γ−1

|Λ|

] ∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)

(
|Gx(s)||Hx(s)−Hy(s)|

+|Gx(s)− Gy(s)||Hy(s)|
)

ds

≤
[

1 + (|θ|+ 1)
(ψ(b)− ψ(a))γ−1

|Λ|

]
(ψ(b)− ψ(a))p

Γ(p + 1)

(
‖ν‖

n

∑
i=1

(ψ(b)− ψ(a))βi

Γ(βi + 1)
‖χi‖‖x− y‖

+‖φ‖‖x− y‖
n

∑
i=1

(ψ(b)− ψ(a))βi

Γ(βi + 1)
‖λi‖

)
.

=

[
1 + (|θ|+ 1)

(ψ(b)− ψ(a))γ−1

|Λ|

]
(ψ(b)− ψ(a))p

Γ(p + 1)

(
‖ν‖

n

∑
i=1

(ψ(b)− ψ(a))βi

Γ(βi + 1)
‖χi‖

+‖φ‖
n

∑
i=1

(ψ(b)− ψ(a))βi

Γ(βi + 1)
‖λi‖

)
‖x− y‖.

Consequently
‖Ax−Ay‖ ≤ K‖x− y‖,

which, by (23), the operator A is a contraction mapping. Thus, condition (a) of Lemma 5
is satisfied.

Step 2. The operator B is completely continuous on S. First, we will prove that B is
continuous. Let {xn} be a sequence of functions in S converging to a function x ∈ S. By
Lebesgue domination theorem, for each t ∈ [a, b],, we have
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lim
n→∞

Bxn(t) = lim
n→∞

∫ t

a

ψ′(s)(ψ(t)− ψ(s))p−1

Γ(p)
Gxn(s)Fxn(s)ds

+ lim
n→∞

(ψ(t)− ψ(a))γ−1

Λ

[
θ
∫ ξ

a

ψ′(s)(ψ(ξ)− ψ(s))p−1

Γ(p)
Gxn(s)Fxn(s)ds

−
∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)
Gxn(s)Fxn(s)ds

]

=
∫ t

a

ψ′(s)(ψ(t)− ψ(s))p−1

Γ(p)
lim

n→∞
Gxn(s)Fxn(s)ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
θ
∫ ξ

a

ψ′(s)(ψ(ξ)− ψ(s))p−1

Γ(p)
lim

n→∞
Gxn(s)Fxn(s)ds

−
∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)
lim

n→∞
Gxn(s)Fxn(s)ds

]

=
∫ t

a

ψ′(s)(ψ(t)− ψ(s))p−1

Γ(p)
Gx(s)Fx(s)ds

+
(ψ(t)− ψ(a))γ−1

Λ

[
θ
∫ ξ

a

ψ′(s)(ψ(ξ)− ψ(s))p−1

Γ(p)
Gx(s)Fx(s)ds

−
∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)
Gx(s)Fx(s)ds

]
= Bx(t).

Therefore, the operator B is a continuous operator on S. Next, we show that the
operator B is uniformly bounded on S. For any x ∈ S, we have

|Bx(t)| ≤
∫ t

a

ψ′(s)(ψ(t)− ψ(s))p−1

Γ(p)
|Gx(s)||Fx(s)|ds

+
(ψ(b)− ψ(a))γ−1

|Λ|

[
|θ|
∫ ξ

a

ψ′(s)(ψ(ξ)− ψ(s))p−1

Γ(p)
|Gx(s)||Fx(s)|ds

+
∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)
|Gx(s)||Fx(s)|ds

]

≤
[

1 + (|θ|+ 1)
(ψ(b)− ψ(a))γ−1

|Λ|

]
(ψ(b)− ψ(a))p

Γ(p + 1)
‖ν‖ (ψ(b)− ψ(a))α

Γ(α + 1)
‖µ‖ := M.

Hence, ‖Bx‖ ≤ M, x ∈ S, which shows that the operator B is uniformly bounded on
S. Finally, we show that the operator B is equicontinuous. Let t1 < t2 and x ∈ S. Then,
we have

|Bx(t2)−Bx(t1)|

≤
∣∣∣∣∣ 1
Γ(p)

∫ t1

a
ψ′(s)

[
(ψ(t2)− ψ(s))p−1 − (ψ(t1)− ψ(s))p−1

]
|Gx(s)||Fx(s)|ds

+
1

Γ(p)

∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))p−1|Gx(s)||Fx(s)|ds

∣∣∣∣∣
+

∣∣∣(ψ(t2)− ψ(a))γ−1 − (ψ(t1)− ψ(a))γ−1
∣∣∣

|Λ|

[
|θ|
∫ ξ

a

ψ′(s)(ψ(ξ)− ψ(s))p−1

Γ(p)
|Gx(s)||Fx(s)|ds
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+
∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)
|Gx(s)||Fx(s)|ds

]

≤ ‖ν‖‖µ‖
Γ(p + 1)

(ψ(b)− ψ(a))α

Γ(α + 1)

∣∣(ψ(t2)− ψ(a))p − (ψ(t1)− ψ(a))p∣∣
+

∣∣∣(ψ(t2)− ψ(a))γ1−1 − (ψ(t1)− ψ(a))γ1−1
∣∣∣

|Λ|

[
(|θ|+ 1)

(ψ(b)− ψ(a))p

Γ(p + 1)

]

×‖ν‖‖µ‖ (ψ(b)− ψ(a))α

Γ(α + 1)
.

As t2 − t1 → 0, the right-hand side of the above inequality tends to zero, independently of
x. Thus, B is equicontinuous. Therefore, it follows by Aezelà–Ascoli theorem that B is a
completely continuous operator on S.

Step 3. We show that the third condition (iii) of Lemma 5 is fulfilled. For any y ∈ S,
we have

|x(t)| = |Ax(t) + By(t)| ≤ |Ax(t)|+ |By(t)|

≤
∫ t

a

ψ′(s)(ψ(t)− ψ(s))p−1

Γ(p)
|Gx(s)||Hx(s)|ds

+
(ψ(t)− ψ(a))γ−1

|Λ|

[
|θ|
∫ ξ

a

ψ′(s)(ψ(ξ)− ψ(s))p−1

Γ(p)
|Gx(s)||Hx(s)|ds

+
∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)
|Gx(s)||Hx(s)|ds

]

+
∫ t

a

ψ′(s)(ψ(t)− ψ(s))p−1

Γ(p)
|Gy(s)||Fy(s)|ds

+
(ψ(b)− ψ(a))γ−1

|Λ|

[
|θ|
∫ ξ

a

ψ′(s)(ψ(ξ)− ψ(s))p−1

Γ(p)
|Gy(s)||Fy(s)|ds

+
∫ b

a

ψ′(s)(ψ(b)− ψ(s))p−1

Γ(p)
|Gy(s)||Fy(s)|ds

]

≤
[

1 + (|θ|+ 1)
(ψ(b)− ψ(a))γ−1

|Λ|

]
(ψ(b)− ψ(a))p

Γ(p + 1)
‖ν‖

n

∑
i=1

(ψ(b)− ψ(a))βi

Γ(βi + 1)
‖λi‖

+

[
1 + (|θ|+ 1)

(ψ(b)− ψ(a))γ−1

|Λ|

]
(ψ(b)− ψ(a))p

Γ(p + 1)
‖ν‖ (ψ(b)− ψ(a))α

Γ(α + 1)
‖µ‖ = r,

which implies ‖x‖ ≤ r, and so x ∈ S.
Hence, all the conditions of Lemma 5 are satisfied, and consequently the operator

equation x(t) = Ax(t) + Bx(t) has at least one solution in S. Therefore, there exists a
solution of the ψ-Hilfer hybrid fractional integro-differential boundary value problem (6)
in [a, b]. The proof is finished.

4. An Example

Now, we are in the position to present an example of a ψ-Hilfer hybrid fractional
integro-differential boundary value problem to illustrate our main result.

Example 1. Consider the boundary value problem of the form
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

HD
1
2 , 3

4 ;loge(t
2+1)

1
4

[HD
3
2 , 3

4 ;loge(t
2+1)

1
4

x(t)

g(t, x(t))
− I

3
4 ;loge(t

2+1)
1
4

h1(t, x(t))− I
5
4 ;loge(t

2+1))
1
4

h2(t, x(t))

−I
7
4 ;loge(t

2+1))
1
4

h3(t, x(t))

]
=

(
2
7

t + 1
)[

|x(t)|
1 + |x(t)| + sin x(t)

]
, t ∈

[
1
4

,
7
4

]
,

x
(

1
4

)
= 0, HD

3
2 , 3

4 ;loge(t
2+1)

1
4

x
(

1
4

)
= 0 x

(
7
4

)
=

2
11

x
(

5
4

)
,

(25)

where

g(t, x) =
1

8t + 5

(
|x|

1 + |x|

)
+

2
40t + 25

, h1(t, x) =
sin |x|
4t + 2

+
1

4t + 5
,

h2(t, x) =
|x|

(8t + 3)(1 + |x|) +
1
20

, h3(t, x) =
|x|

(12t + 4)(1 + |x|) +
1
42

. (26)

In the above problem, α = 1/2, ρ = 3/4, p = 3/2, β1 = 3/4, β2 = 5/4, β3 = 7/4,
ψ(t) = loge(t

2 + 1), a = 1/4, b = 7/4, θ = 2/11, ξ = 5/4. Then, we find that γ = 15/8,
γ1 = 7/8, Λ ≈ 1.130218751. In addition, we compute that

|g(t, x)− g(t, y)| ≤ 1
8t + 5

|x− y|,

and

| f (t, x)− f (t, y)| ≤
(

4
7

t + 2
)
|x− y|,

and |h1(t, x)− h1(t, y)| ≤ (1/(4t + 2))|x − y|, |h2(t, x)− h2(t, y)| ≤ (1/(8t + 3))|x − y|,
|h3(t, x)− h3(t, y)| ≤ (1/(12t + 4))|x− y|, where φ(t) = 1/(8t + 5), ‖φ‖ = 1/7, ω(t) =
((4t/7) + 2), ‖ω‖ = 3, χ1(t) = 1/(4t + 2), ‖χ1‖ = 1/3, χ2(t) = 1/(8t + 3), ‖χ2‖ =
1/5, χ3(t) = 1/(12t + 4), ‖χ3‖ = 1/7. The bounds can be computed as | f (t, x)| ≤
µ(t) = (4t/7) + 2, ‖µ‖ = 3, |g(t, x)| ≤ ν(t) = (1/(8t + 5)) + (2/(40t + 25)), ‖ν‖ = 1/5,
|h1(t, x)| ≤ (1/(4t + 2)) + (1/(4t + 5)) = λ1(t), ‖λ1‖ = 1/2, |h2(t, x)| ≤ (1/(8t + 3)) +
(1/20) = λ2(t), ‖λ2‖ = 1/4, |h3(t, x)| ≤ (1/(12t + 4)) + (1/42) = λ3(t), ‖λ3‖ = 1/6.
Then, from all information, the condition (A3) is satisfied with[

1 + (|θ|+ 1)
(ψ(b)− ψ(a))γ−1

|Λ|

]
(ψ(b)− ψ(a))p

Γ(p + 1)

(
‖ν‖

n

∑
i=1

(ψ(b)− ψ(a))βi

Γ(βi + 1)
‖χi‖

+‖φ‖
n

∑
i=1

(ψ(b)− ψ(a))βi

Γ(βi + 1)
‖λi‖

)
≈ 0.9292073979 < 1.

Therefore, all assumptions of Theorem 1 are satisfied and we can use the conclusion
that the problem (25)–(26) has at least one solution x(t) on [1/4, 7/4].

5. Special Cases

The problem (6) considered in the present work is general in the sense that it includes
the following classes of new boundary value problems of ψ-Hilfer fractional differen-
tial equations.

(I) Let g(t, x) = 1 and hi(t, x) = 0, i = 1, 2, . . . , n for all t ∈ [a, b] and x ∈ R. Then, the
problem (6) reduces to the following ψ-Hilfer fractional boundary value problem:{

HD
α,ρ;ψ
a

(
HD

p,ρ;ψ
a x(t)

)
= f (t, x(t)), t ∈ [a, b],

x(a) = 0, HD
p,ρ;ψ
a x(a) = 0, x(b) = θx(ξ).
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(II) Let hi(t, x) = 0, i = 1, 2, . . . , n for all t ∈ [a, b] and x ∈ R. Then, the problem (6)
reduces to the following ψ-Hilfer fractional boundary value problem:

HD
α,ρ;ψ
a

[
HD

p,ρ;ψ
a x(t)

g(t, x(t))

]
= f (t, x(t)), t ∈ [a, b],

x(a) = 0, HD
p,ρ;ψ
a x(a) = 0, x(b) = θx(ξ).

(III) Let g(t, x) = 1 for all t ∈ [a, b] and x ∈ R. Then, the problem (6) reduces to the
following ψ-Hilfer fractional boundary value problem:

HD
α,ρ;ψ
a

[
HD

p,ρ;ψ
a x(t)−

m

∑
i=1
Iβi ;ψ

a hi(t, x(t))
]
= f (t, x(t)), t ∈ [a, b],

x(a) = 0, HD
p,ρ;ψ
a x(a) = 0, x(b) = θx(ξ).

Therefore, the main result of this paper also includes the existence results for the solutions of
the abovementioned ψ-Hilfer boundary value problems of fractional differential equations
as special cases.

6. Conclusions

In this paper, we studied a new class of ψ-Hilfer hybrid fractional integro-differential
boundary value problems with three-point boundary conditions. By using a generalization
of Krasnosel’skiĭ’s fixed point theorem, we proved an existence result. An example is
presented to illustrate our main result. Some special cases are also discussed.
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