Some New Extensions on Fractional Differential and Integral Properties for Mittag-Leffler Confluent Hypergeometric Function
Abstract
:1. Introduction
2. Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: San Diego, CA, USA, 1974. [Google Scholar]
- Samko, S.G.; Kilbasamd, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Original edited in Russian, Nauka i Tekhnika, Minsk, 1987; Taylor and Francis: London, UK, 2002. [Google Scholar]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Srivastava, H.M.; Fernandez, A.; Baleanu, D. Some New Fractional-Calculus Connections between Mittag-Leffler Functions. Mathematics 2019, 7, 485. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel, Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M.; Fabrizio, M. A new Definition of Fractional Derivative without Singular Kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Çetinkaya, A.; Kiymaz, I.O.; Agarwal, P.; Agarwal, R. A comparative study on generating function relations for generalized hypergeometric functions via generalized fractional operators. Adv. Differ. Equ. 2018, 2018, 156. [Google Scholar] [CrossRef] [Green Version]
- Özarslan, M.A.; Ustaoǧlu, C. Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators. Mathematics 2019, 7, 483. [Google Scholar] [CrossRef] [Green Version]
- Özarslan, M.A.; Ustaoǧlu, C. Incomplete Caputo fractional derivative operators. Adv. Differ. Equ. 2018, 2018, 209. [Google Scholar] [CrossRef] [Green Version]
- Ghanim, F.; Al-Janaby, H.F. Inclusion and Convolution Features of Univalent Meromorphic Functions Correlating with Mittag-Leffler Function. Filomat 2020, 34, 2141–2150. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F. Some Analytical Merits of Kummer-Type Function Associated with Mittag-Leffler Parameters. Arab. J. Basic Appl. Sci. 2021, 28, 255–263. [Google Scholar] [CrossRef]
- Ghanim, F.; Bendak, S.; Hawarneh, A.A. Fractional Calculus Operator Involving Mittag- Leffler- Confluent Hypergeometric Functions. 2021; preprint. [Google Scholar]
- Oros, G.I. Applications of Inequalities in the Complex Plane Associated with Confluent Hypergeometric Function. Symmetry 2021, 13, 259. [Google Scholar] [CrossRef]
- Oros, G.I. Study on New Integral Operators Defined Using Confluent Hypergeometric Function. Adv. Differ. Equ. 2021, 1, 1–11. [Google Scholar]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 2011, 298628. [Google Scholar] [CrossRef] [Green Version]
- Paneva-Konovska, J. Differential and integral relations in the class of multi-index Mittag-Leffler functions. Fract. Calc. Appl. Anal. 2018, 21, 254–265. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F.; Gorenflo, R. On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 2000, 118, 283–299. [Google Scholar] [CrossRef] [Green Version]
- Mathai, A.M.; Haubold, H.J. Mittag-Leffler functions and fractional calculus. In Special Functions for Applied Scientists; Springer: New York, NY, USA, 2008; pp. 79–134. [Google Scholar]
- Srivastava, H.M. On an extension of the Mittag-Leffler function. Yokohama Math. J. 1968, 16, 77–88. [Google Scholar]
- Srivastava, H.M. Some families of Mittag-Leffler type functions and associated operators of fractional calculus (survey). TWMS J. Pure Appl. Math. 2016, 7, 123–145. [Google Scholar]
- Bazighifan, O.; Dassios, I. Riccati Technique and Asymptotic Behavior of Fourth-Order Advanced Differential Equations. Mathematics 2020, 8, 590. [Google Scholar] [CrossRef] [Green Version]
- Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). C. R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Mittag-Leffler, G.M. Sur la repr’esentation analytique d;une branche uniforme d’une fonction monogene: Cinquieme note. Acta Math. 1905, 29, 101–181. [Google Scholar] [CrossRef]
- Wiman, A. ÜBer den fundamentalsatz in der theorie der funcktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Wiman, A. ÜBer die nullstellen der funktionen Eα(x). Acta Math. 1905, 29, 217–234. [Google Scholar] [CrossRef]
- Baleanu, D.; Guvenc, Z.B.; Machado, J.A.T. New Trends in Nanotechnology and Fractional Calculus Applications; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; London, UK; New York, NY, USA, 2010. [Google Scholar]
- Baleanu, D.; Wu, G.C.; Zeng, S.D. Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations. Chaos Solit. Fractals 2017, 102, 99–105. [Google Scholar] [CrossRef]
- Esen, A.; Sulaiman, T.A.; Bulut, H.; Baskonus, H.M. Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation. Optik 2018, 167, 150–156. [Google Scholar] [CrossRef]
- Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method. Math. Sci. 2019, 13, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Prakasha, D.G.; Veeresha, P.; Baskonus, H.M. Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative. Eur. Phys. J. Plus 2019, 134, 241. [Google Scholar] [CrossRef]
- Taneco-Hernández, M.A.; Morales-Delgado, V.F.; Gómez-Aguilar, J.F. Fractional Kuramoto—Sivashinsky equation with power law and stretched Mittag-Leffler kernel. Phys. A 2019, 527, 1210858. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 10, 286–293. [Google Scholar] [CrossRef]
- Pillai, R.N. On Mittag-Leffler functions and related distributions. Ann. Inst. Statist. Math. 1990, 42, 157–161. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Srivastava, H.M.; Tomovski, Ž. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. J. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Macdonald, A.D. Properties of the confluent Hyper geometric function. J. Math. Phys. 1949, 28, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Davis, H.T. Tables of the Higher Mathematical Functions; The Principia Press: Bloomington, Indiana, 1933; Volume I. [Google Scholar]
- Archibald, W.J. The complete solution of the differential equation for the confluent hypergeometric function. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1938, 26, 415–419. [Google Scholar] [CrossRef]
- Bateman, H.; Erdélyi, A. Higher Transcendental Functions; McGraw Hill: New York, NY, USA; Toronto, ON, Canada; London, UK, 1955; Volume 3. [Google Scholar]
- Buschman, R.G. Convolution equations with generalized Laguerre polynomial kernels. SIAM Rev. 1964, 6, 166–167. [Google Scholar] [CrossRef]
- Khalendekar, P.R. On a convolution trans form involving generalized Laguerre polynomial as its kernel. J. Math. Pures Appl. 1965, 44, 195–197. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Rusia, K.C. An integral equation involving generalized Laguerre polynomial. Math. Jpn. 1966, 11, 15–18. [Google Scholar]
- Bazighifan, O. On the oscillation of certain fourth-order differential equations with p-Laplacian like operator. Appl. Math. Comput. 2020, 386, 125475. [Google Scholar] [CrossRef]
- Bazighifan, O.; Postolache, M. Improved Conditions for Oscillation of Functional Nonlinear Differential Equations. Mathematics 2020, 8, 552. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, T.R. Two singular integral equations involving con fluent hypergeometric functions. Proc. Camb. Phil. Soc. 1969, 66, 71–89. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F. An analytical study on Mittag-Leffler-confluent hypergeometric functions with fractional integral operator. Math. Methods Appl. Sci. 2021, 44, 3605–3614. [Google Scholar] [CrossRef]
- Srivastava, K.N. A class of integral equations involving Laguerre polynomials as Sur la representation analytique dune branche uniforme dune function kernel. Proc. Edinb. Math. Soc. 1966, 15, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, K.N. On integral equations involving Whittaker’s function. Proc. Glasg. Math. Assoc. 1966, 7, 125–127. [Google Scholar] [CrossRef] [Green Version]
- Keiper, J.B. Fractional Calculus and Its Relationship to Riemann’s Zeta Function. Master’s Thesis, Ohio State University, Columbus, OH, USA, 1975; 37p. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Some New Extensions on Fractional Differential and Integral Properties for Mittag-Leffler Confluent Hypergeometric Function. Fractal Fract. 2021, 5, 143. https://doi.org/10.3390/fractalfract5040143
Ghanim F, Al-Janaby HF, Bazighifan O. Some New Extensions on Fractional Differential and Integral Properties for Mittag-Leffler Confluent Hypergeometric Function. Fractal and Fractional. 2021; 5(4):143. https://doi.org/10.3390/fractalfract5040143
Chicago/Turabian StyleGhanim, F., Hiba F. Al-Janaby, and Omar Bazighifan. 2021. "Some New Extensions on Fractional Differential and Integral Properties for Mittag-Leffler Confluent Hypergeometric Function" Fractal and Fractional 5, no. 4: 143. https://doi.org/10.3390/fractalfract5040143
APA StyleGhanim, F., Al-Janaby, H. F., & Bazighifan, O. (2021). Some New Extensions on Fractional Differential and Integral Properties for Mittag-Leffler Confluent Hypergeometric Function. Fractal and Fractional, 5(4), 143. https://doi.org/10.3390/fractalfract5040143