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Abstract: This article uses fractional calculus to create novel links between the well-known Mittag-
Leffler functions of one, two, three, and four parameters. Hence, this paper studies several new
analytical properties using fractional integration and differentiation for the Mittag-Leffler function
formulated by confluent hypergeometric functions. We construct a four-parameter integral expression
in terms of one-parameter. The paper explains the significance and applications of each of the four
Mittag-Leffler functions, with the goal of using our findings to make analyzing specific kinds of
experimental results considerably simpler.

Keywords: mittag-leffler function; laplace transform; confluent hypergeometric function; fractional
calculus; integral operator

1. Introduction

The regular integration and differentiation in calculus operations are extended to
instructions beyond the integers in fractional calculus: to determine the order of differenti-
ation, real and complex numbers may be used [1–3]. This topic is more than 400 years old,
although it has been greatly developed over the previous century, uncovering applications
in a wide range of scientific and engineering areas [4–6].

Riemann-Liouville is the most important concept of fractional derivatives and inte-
grals, where the meanings are provided by the following definitions:

RL
a Dα

x f (x) =
1

Γ(−α)

∫ x

a
(x− t)−α−1 f (t)dt, <(α) < 0, (1)

and

RL
a Dα

x f (x) =
dm

dxm

(
RL
a Dα−m

x f (x)
)

, <(α) ≥ 0, m := [<(α)] + 1, (2)

where Dα f refers to the derivative of order α for the function f , and a is the diffintegra-
tion constant.

It is essential to keep in mind that derivatives and integrals in fractional calculus
are detected by the use of an arbitrary constant a. The value of a is usually set to one of
two values: a = 0 or a = −∞. We establish the following lemma’s validity as a source of
two “natural” differintegration formulae, a = 0 and a = −∞; both are viable choices to
understand the advantages of both choices. Neither option may be excluded from the set
of potential values for a.
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Lemma 1 ([7]). With differintegration constants a = 0 and a = −∞, the Riemann-Liouville (RL)
differintegrals of exponential and power functions are as follows:

RL
0 Dα

x f (xγ) = RLDα
x f (xγ) =

Γ(γ + 1)
Γ(γ− α + 1)

xγ−α, α, γ ∈ C, <(γ) > −1; (3)

RL
−∞Dα

x(e
γx) = γαeγx, α, γ ∈ C, γ /∈ R−0 . (4)

To describe complex power functions, we utilize the main branch with values ranging from
−pi to pi in both equations; also see Reference [1–3].

Many recent definitions and investigations of fractional differintegrals have been
considered recently. Part of them was aided by a number of well recognized systems that
can be formed by various structures based on fractional calculus. As an example to better
demonstrate certain processes in dynamical systems, in Equation (1), another function is
used in lieu of the power function [8,9]. Other processes were created by integrating more
generalization levels and parameters into formulas and functions [10–12].

The Mittag-Leffler function is a precise function that appears often in the study of
fractional integrals and derivatives; see, for example, Ghanim and Al-Janaby [13,14],
Ghanim et al. [15], Oros [16,17], Haubold et al. [18], Paneva-Konovska [19], Mainardi and
Gorenflo [20], Mathai and Haubold [21], Srivastava [22,23], and Srivastava et al. [24].

In 1903, Magnus Gustaf (Gösta) Mittag-Leffler (1846–1927) [25] (also see Mittag-
Leffler [26]), a Swedish mathematician, invented and studied the well-known Mittag-Leffler
function Eα(z) given by

Eα(z) =
∞

∑
n=0

zn

Γ(αn + 1)
(z ∈ C; <(α) > 0). (5)

Wiman [27] and Reference [28] then proposed a generalization Eα(z) of Eα,γ(z) pro-
vided by

Eα,γ(z) =
∞

∑
n=0

zn

Γ(αn + γ)
(<(α) > 0; γ, α ∈ C). (6)

As a result, the functions of Mittag-Leffler Eα(z) and Eα,γ(z) in (5) and (6), respec-
tively, have been studied and expanded in a variety of different ways and applications.
The implementation in the physical model has succeeded in recent decades, the general-
ized Mittag-Leffler functions were also used in mathematical and physical issues, as the
solutions of the fractional integral and differential equations were naturally presented.
Fractional order calculus is associated with practical endeavors, and it is widely used
in nanotechnology [29], chaos theory [30], optics [31], human diseases [32], and other
fields [33,34]. In fact, the authors are collaborating with a group of college of engineering re-
searchers on several recent engineering applications involving generalized multi-parameter
Mittag-Leffler functions and their extended types, such as noise measurement and heat
transfer in asphalt concrete. Wright [35] investigated these functions and their associated
disseminations. Pillai [36] also established links between generalized Mittag-Leffler type
functions and route models. Ref. [37,38] are two studies which have utilized the function (5)
with parameters α and γ in more general functions linked to one or more parameters.

Eλ
α,γ(z) =

∞

∑
n=0

Γ(n + λ)zn

Γ(λ)Γ(αn + γ)n!
, (<(α) > 0; λ, γ, α ∈ C). (7)
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Eβ,λ
α,γ (z) =

∞

∑
n=0

Γ(βn + λ)zn

Γ(λ)Γ(αn + γ)n!
, (<(α) > 0; λ, γ, α ∈ C). (8)

A variety of physical disciplines have shown the application for the functions of
confluent hypergeometric. It has been employed in cases where both sedileritition and
diffusion are related; in ultracentrifuges, for example, isotope separation and protein
molecular weight measurements are applications. Such functions are often used to express
the formula for the velocity distribution of electrons in high-frequency gas discharges.

The solution of the second-order linear homogeneous differential equation for the
confluent hypergeometric function M(λ; γ; z) is as follows:

z
d2M
dz2 + (γ− z)

dM
dz
− λM = 0, (λ, γ, z ∈ C). (9)

Equation (9) contains a sporadic singularity at infinity, as well as a normal initial
singularity [39].

A second solution of Equation (9) may be found if γ is not integral.

W(λ; γ; z) = z1−γ M(λ− γ + 1; 2− γ; z). (10)

If γ is integral, then

W(α; γ; z) = M(α; γ; z){ln z + Ω(1− α)−Ω(γ) + C}+
∞

∑
n=1

Γ(n + λ)Γ(γ)Bnzn

Γ(λ)Γ(n + γ)n!

+ (−1)γ
∞

∑
n=0

Γ(γ)Γ(n + λ− γ + 1)Γ(γ− n− 1)(−1)n

Γ(λ)n! z

(11)

may be used to provide a second solution, where

Ω(λ) =
Γ′(λ)
T(λ)

,

where the Euler’s constant C is equal to 0.577216..., and

Bn =
(

1
λ + 1

λ+1 + ... + 1
λ+n−1

)
−
(

1
γ + 1

γ+1 + ... + 1
γ+n−1

)
−
(

1 + 1
2 + ... + 1

n

)
.

The Ω function’s elaboration tables are given in Reference [40].
Furthermore, M(λ; γ; z) has a series of representation in

M(α; γ; z) = 1 +
λ

γ
z +

λ(λ + 1)
γ(γ + 1)

z2

2
+ ... =

∞

∑
n=0

Γ(γ)Γ(n + λ)zn

Γ(λ)Γ(n + γ)n!
. (12)

For all values of z, it is obvious that the previous series absolutely converges.
The following are guaranteed by both M and W:

d
dz

M(λ; γ; z) =
λ

γ
M(λ + 1; γ + 1; z), (13)

λM(λ + 1; γ + 1; z) = (λ− γ)M(λ; γ + 1; z) + γM(λ; γ; z), (14)

λM(λ + 1; γ; z) = (z + 2λ− γ)M(λ; γ; z) + (γ− λ)M(λ− 1; γ; z). (15)
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Equation (13) follows directly, since the differentiation of Equations (12), (14) and (15)
may be obtained subsequently from the differential equation. Using the Wronskian of
Equation (9), the functional connection between a Wronskian’s value at any point in a plane
and its value at a specific place may be utilized to demonstrate a relationship between
M(λ; γ; z) and W(α; γ; z). For additional information, see References [39–41].

The confluent hypergeometric Mittag-Leffler function Mβ,λ
α,γ(z) is now presented

as follows:

Mβ,λ
α,γ(z) =

∞

∑
n=0

Γ(γ)Γ(βn + λ)zn

Γ(λ)Γ(αn + γ)n!
, (α, γ, β, λ ∈ C; <(α) > 0). (16)

The following are some special instances of the confluent hypergeometric Mittag-
Leffler function Mβ,λ

α,γ(z):

M0,λ
0,γ(z) = ez, M1,1

0,1(z) =
1

1− z
, M1,1

1,2(z) =
ez − 1

z
,

M1,1
2,1

(
z2
)
= cosh z, M1,1

2,1

(
−z2

)
= cos z

M1,λ
1,γ(z) = M(α; γ; z),

M1,1
α,1(z) = Eα(z) =

∞

∑
n=0

zn

Γ(αn + 1)
.

When α is a positive integer, such as n, then:

M1,λ
α,γ(z) = 1Fn

(
λ;

γ

n
,

γ + 1
n

, ...,
γ + n− 1

n
;

z
nn

)
;

in addition,

Hi(x, n) = xi−1M1,1
n,i (xn),

Ti(x, n) = xi−1M1,1
n,i (−xn).

Hi and Ti are generalized hyperbolic and trigonometrical functions, respectively [42].
Furthermore, (

d
dz

)m
Mβ,λ

α,γ(z) = (λ)m Mβ,λ+m
α,γ+m(z), (17)

(
d
dz

)m
zγ−1Mβ,λ

α,γ(zα) = zγ−m−1Mβ,λ
α,γ(zα), (18)

(
z

d
dz

+ λ

)
Mβ,λ

α,γ(zα) = λMβ,λ+1
α,γ (z), (19)

(γ− αλ− 1)Mβ,λ
α,γ(z) = Mβ,λ

α,γ−1(z)− αλMβ,λ+1
α,γ (z), (20)
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and

L
{

tγ−1Mβ,λ
α,γ(µtα)

}
= ρ−γ

(
1− µρ−α

)−λ |ρ| > |µ|
1
<(α) , <(ρ) > 0, <(γ) > 0. (21)

In this case, the Laplace transform of f (t) is represented by L{ f (t)}.
Several scholars (see, for example, References [43–48]) have utilized the Laplace

transform to solve convolution equations, which are special instances of

∫ x

0

(x− t)b−1

Γ(b) 1F1(a; b; c(x− t)) f (t)dt = g(x) <(b) > 0, (22)

described in fractional integration [49]. The target of this research is to look into an integral
equation ∫ x

a
(t− x)γ−1Mβ,λ

α,γ µ(t− x)α f (t)dt = g(x) <(γ) > 0, (23)

for any real number a > 0, where the function Mβ,λ
α,γ(z) in (16) is an analytic function of

order α that includes many well-known unique functions.
Ghanim and Al-Janaby [50] introduced (23) by using an integral operator Σβ,λ

α,γ(µ) on
a space Ψ of functions and a fractional integration operator ∆δ : Ψ→ Ψ to prove results on
Σβ,λ

α,γ(µ). Theorems on the solutions of (23) were then discussed using these results. This
technique may be used to obtain comparable results on the integral equation

E
β,λ
α,γ(µ) f (x) ≡

∫ x

a
(t− x)γ−1Mβ,λ

α,γ δ(t− x)α f (t)dt = g(x) <(γ) > 0, (24)

which consists of the equations given in References [51,52] as special cases. The linear
space of complex-valued functions f that are Ψ-integrable on a finite [a, b], a ≥ 0 with
‖ f ‖ =

∫ b
a | f (t)|dt is denoted by Ψ. ∆δ : Ψ → Ψ is a fractional operator defined by the

fractional integral for complex δ with <(δ) > 0

∆δ f (x) =
∫ x

a

(x− t)δ−1

Γ(δ)
f (t)dt. (25)

The fact that ∆δ is bounded and that ∆δ f = 0 → f = 0 is a standard result means
that the inverse operator exists on the Ψδ subspace of Ψ. If 0 < <(δ) < <(ξ), it is easily
demonstrated that Ψξ ⊂ Ψδ ⊂ Ψ , and the inclusion is appropriate. For <(δ) < 0, ∆δ,
the inverse of ∆−δ is defined. If<(δ) 6= 0 and<(ξ) 6= 0, then ∆δ∆ξ f = ∆δ+ξ for appropriate
functions f . ∆δ is defined on Ψµ with <(µ) > 0 as ∆−1∆1+δ for <(δ) = 0. For complex

α, γ, λ, µ with f ∈ Ψ and <(γ) > 0, the fractional operator Σβ,λ
α,γ on Ψ into itself is

defined by

Σβ,λ
α,γ(µ) f (x) =

∫ x

a
(t− x)γ−1Mβ,λ

α,γ µ(t− x)α f (t)dt a < x < b.

Lemma 2 ([53]). Assume f is a function defined by

f (x) =
∞

∑
n=1

fn(x)

that uniformly converges on |x− a| 6 L, where L > 0 and a ∈ C are fixed constants. For a fixed
order of differintegration α ∈ C, if 1. <(α) < 0 (fractional integration), then

RL
a Dα

x f (x) =
∞

∑
n=1

RL
a Dα

x fn(x), |x− a| 6 L,
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and the right side of the series is uniformly convergent on |x− a| 6 L.

2. <(α) > 0 (fractional differentiation) and
∞
∑

n=1

RL
a Dα

x fn(x) is uniformly convergent series

on the given region, then

RL
a Dα

x f (x) =
∞

∑
n=1

RL
a Dα

x fn(x), |x− a| 6 L.

2. Results

Theorem 1. Let α, β, λ, γ ∈ C with <(α), <(γ) > 0; then:

Mβ,λ
α,γ(z) =

Γ(γ)
Γ(λ)

RL
0 Dnβ+λ−n−1

z

[
zλ−1Eα,γ

(
zβ
)]

, z ∈ C. (26)

Proof. It is clear from Lemma 1 that most often a quotient of gamma functions can be
defined as originating from a fractional power function differintegral. The expression
Γ(βn+λ)

n! in the coefficients of the series Equation (16) yields the following:

Mβ,λ
α,γ(z) =

∞

∑
n=0

Γ(γ)Γ(βn + λ)zn

Γ(λ)Γ(αn + γ)n!
=

∞

∑
n=0

Γ(γ)
Γ(λ)Γ(αn + γ)

Γ(βn + λ)

Γ(n + 1)
zn

=
∞

∑
n=0

Γ(γ)
Γ(λ)Γ(αn + γ)

RL
0 Dnβ+λ−n−1

z

[
znβ+λ−1

]

=
∞

∑
n=0

Γ(γ)
Γ(λ)

RL
0 Dnβ+λ−n−1

z

[
znβ+λ−1

Γ(αn + γ)

]
.

We may utilize the Lemma 2 result to replace the summation with fractional differential
integration since the series is uniformly convergent. Then, we obtain:

Mβ,λ
α,γ(z) =

Γ(γ)
Γ(λ)

∞

∑
n=0

RL
0 Dnβ+λ−n−1

z

[
znβ+λ−1

Γ(αn + γ)

]

=
Γ(γ)
Γ(λ)

RL
0 Dnβ+λ−n−1

z

[
∞

∑
n=0

znβ+λ−1

Γ(αn + γ)

]

=
Γ(γ)
Γ(λ)

RL
0 Dnβ+λ−n−1

z

[
zλ−1

∞

∑
n=0

znβ

Γ(αn + γ)

]

=
Γ(γ)
Γ(λ)

RL
0 Dnβ+λ−n−1

z

[
zλ−1Eα,γ

(
zβ
)]

.

Hence, we have the result.

Corollary 1. For any α, λ ∈ C with <(α) > 0, we have:

Mβ,λ
α (z) =

Γ(γ)
Γ(λ)

RL
0 Dnβ+λ−n−1

z

[
zλ−1Eα

(
zβ
)]

. (27)

Proof. The proof is immediately followed by replacing γ with 1 in Theorem 1.
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It is obvious that, if we recover the basic identity, M1,1
α,1(z) = Eα(z) =

∞
∑

n=0

zn

Γ(αn+1) by

establishing β = γ = λ = 1 in Equation (26). Using the exact same logic as in Theorem 1,
we can demonstrate this.

Corollary 2. Let α, β, λ, γ, τ ∈ C with <(α) > 0, <(γ) > 0. We obtain:

Mβ,λ
α,γ(τz) =

Γ(γ)
Γ(λ)

RL
0 Dnβ+λ−n−1

z

[
zλ−1Eα,γ

(
τzβ
)]

, z ∈ C. (28)

Proof. The proof is as proven above in Theorem 1 with an additional element of τn

contained in each of the sum terms.

Theorem 2. For α, β, γ, τ ∈ C and λ = 1 with <(α) > 0, <(γ) > 0, we have:

Mβ
α,γ(τzα) =

z1−γ

Γ(γ)
RL
0 Dnβ−αn−γ+1

z

[
Eα,γ

(
τzαβ

)]
, z ∈ C. (29)

Proof. We start this time from the right side of the appropriate identity and then use the
definition in Equation (6) of the function Eα,γ:

z1−γ

Γ(γ)
RL
0 Dnβ−αn−γ+1

z

[
Eα,γ

(
τzαβ

)]
=

z1−γ

Γ(γ)
RL
0 Dnβ−αn−γ+1

z

[
∞

∑
n=0

(
τzαβ

)n

Γ(αn + γ)

]

=
z1−γ

Γ(γ)
RL
0 Dnβ−αn−γ+1

z

[
∞

∑
n=0

τnznαβ

Γ(αn + γ)

]
.

The series is uniformly convergent, so we can switch the summation and fractional
differintegration by Lemma 2 given that the resulting series always converges uniformly
(at least in the case of 1 > <(γ) > 0). Then, we switch the operations and end with the
appropriate illustration.

z1−γ

Γ(γ)
RL
0 Dnβ−αn−γ+1

z

[
Eα,γ

(
τzαβ

)]
=

z1−γ

Γ(γ)

∞

∑
n=0

RL
0 Dnβ−αn−γ+1

z

[
τnznαβ

Γ(αn + γ)

]

=
z1−γ

Γ(γ)

∞

∑
n=0

Γ(βn + 1)
Γ(αn + γ)

τnznαβ

Γ(βn + 1)
=

∞

∑
n=0

τnznαβ

Γ(βn + 1)
.

The series converges uniformly, being explicitly in the Equation (6) series expression
for Eα,γ

(
τzβ
)
. Thus, our aforementioned switching of operations was appropriate, and the

proof is now true.

Corollary 3. For α, β, τ ∈ C and γ = λ = 1 with <(α) > 0, we have:

Mβ
α (τz) = z1−γRL

0 Dn(β−α)
z

[
Eα

(
τzαβ

)]
. (30)

Proof. The proof is immediately followed by replacing γ with 1 in Theorem 2.

By combining Theorems 1 and 2, a composite expression can be obtained in Equation (6)
for the four-parameter Mittag-Leffler function, as defined in the following theorem, in terms
of fractional integrals.
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Theorem 3. Let α, β, λ, γ, τ ∈ C and <(α) > 0, <(γ) > 0 with <(λ) < 1, and we obtain:

Mβ,λ
α,γ(τzα) =

α sin(πλ)B(1−λ,n−nβ)
π Γ(n−nβ)

×
∫ z

0 (zα − uα)−nβ+n−λuα(nβ+λ−n)−γRL
0 Dnβ−αn−γ+1

u
[
Eα,γ

(
τuαβ

)]
du,

(31)

where z ∈ C and B is beta function.

Proof. For<(λ) < 1, the fractional differintegrals showing up in Theorem 1 and Corollary 1
are integrals, so Equation (28) can be modified as follows:

Mβ,λ
α,γ(τz) =

Γ(γ)
Γ(λ)

RL
0 Dnβ+λ−n−1

z

[
zλ−1Eα,γ

(
τzβ
)]

=
Γ(γ)

Γ(λ)Γ(n + 1− nβ− λ)

∫ z

0
(z− y)−nβ+n−λynβ+λ−n−1

[
Eα,γ

(
τyβ

)]
dy.

Then, we shift variables y with uα and use the reflection formula for the gamma
function with the definition of beta function to have

Mβ,λ
α,γ(τz) =

Γ(γ) sin(πλ)B(1− λ, n− nβ)

π Γ(n− nβ)

×
∫ z1/α

0
(z− uα)−nβ+n−λuα(nβ+λ−n−1)

[
Eα,γ

(
τuαβ

)]
αuα−1du

=
αΓ(γ) sin(πλ)B(1− λ, n− nβ)

π Γ(n− nβ)

×
∫ z1/α

0
(z− uα)−nβ+n−λuα(nβ+λ−n)−1

[
Eα,γ

(
τuαβ

)]
du.

Applying the result of Theorem 2, we have

Mβ,λ
α,γ(τz) =

αΓ(γ) sin(πλ)B(1− λ, n− nβ)

π Γ(n− nβ)

×
∫ z1/α

0
(z− uα)−nβ+n−λuα(nβ+λ−n)−1

[
u1−γ

Γ(γ)
RL
0 Dnβ−αn−γ+1

z

[
Eα,γ

(
τuαβ

)]]
du

=
α sin(πλ)B(1− λ, n− nβ)

π Γ(n− nβ)

×
∫ z1/α

0
(z− uα)−nβ+n−λuα(nβ+λ−n)−γRL

0 Dnβ−αn−γ+1
z

[
Eα,γ

(
τuαβ

)]
du.

Substituting zα for z, we obtain:

Mβ,λ
α,γ(τzα) =

α sin(πλ)B(1− λ, n− nβ)

π Γ(n− nβ)
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×
∫ z

0
(zα − uα)−nβ+n−λuα(nβ+λ−n)−γRL

0 Dnβ−αn−γ+1
u

[
Eα,γ

(
τuαβ

)]
du.

Hence, we have the result.

Corollary 4. Let α, β, λ, τ ∈ C and <(α) > 0 with <(λ) < 1, and we have:

Mβ,λ
α (τzα) =

α sin(πλ)B(1−λ,n−nβ)
π Γ(n−nβ)

×
∫ z

0 (zα − uα)−nβ+n−λuα(nβ+λ−n)−1RL
0 Dn(β−α)

u
[
Eα

(
τuαβ

)]
du,

(32)

where z ∈ C and B is beta function.

Proof. The proof is immediately followed by replacing γ with 1 in Theorem 3.

Corollary 5. Let α, β, λ, γ, τ ∈ C and <(α) > 0, <(γ) > 0 with <(λ) < 1, we have:

Mβ,λ
α,γ(τzα) =

α sin(πλ)B(1−λ,n−nβ)
π Γ(n−nβ)Γαn+γ−nβ

×
∫ z

0 (zα − uα)−nβ+n−λuα(nβ+λ−n)−γ
∫ u

0 (u− x)αn+γ−nβ−1Eα,γ
(
τxαβ

)
dxdu,

(33)

z ∈ C.

Proof. Here, we have <(1− γ) < 0; hence, the fractional diffintegral that occurs in the
Equation (31) is an integral component. Thus, we obtain:

RL
0 Dαn+γ−nβ−1

u

[
Eα,γ

(
τuαβ

)]
=

1
Γαn + γ− nβ

∫ u

0
(u− x)αn+γ−nβ−1Eα,γ

(
τxαβ

)
dx,

and substitute this into Equation (31) to find:

Mβ,λ
α,γ(τzα) =

α sin(πλ)B(1−λ,n−nβ)
π Γ(n−nβ)

×
∫ z

0 (zα − uα)−nβ+n−λuα(nβ+λ−n)−γ
[

1
Γαn+γ−nβ

∫ u
0 (u− x)αn+γ−nβ−1Eα,γ

(
τxαβ

)
dx
]
du,

which gives the required proof.

Theorem 4. The Mittag-Leffler Four-Parameter function in Equation (16) can be given as an
integral transformation of the following form:

Mβ,λ
α,γ(τzα) =

α sin(πλ)B(1− λ, n− nβ)

π Γ(n− nβ)Γαn + γ− nβ

∫ z

0
Ωα,γ,λ(x; z)Eα,γ

(
τxαβ

)
dx, z ∈ C, (34)

where α, β, λ, γ, τ ∈ C and <(α) > 0, <(γ) > 1 with <(λ) < 1, and Ω is a function defined as

Ωα,γ,λ(x; z) =
∫ z

x
(zα − uα)−nβ+n−λuα(nβ+λ−n)−γ(u− x)αn+γ−nβ−1du. (35)

Proof. Fubini’s theorem implies that the order of the integrals can be exchanged in
Equation (33). We have 0 6 u 6 z and 0 6 x 6 u, which is equivalent to 0 6 x 6 z
and x 6 u 6 z after swapping. Thereby, we have (33):

Mβ,λ
α,γ(τzα) =

α sin(πλ)B(1− λ, n− nβ)

π Γ(n− nβ)Γαn + γ− nβ

×
∫ z

0

∫ u

0
(zα − uα)−nβ+n−λuα(nβ+λ−n)−γ(u− x)αn+γ−nβ−1Eα,γ

(
τuαβ

)
dxdu
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=
α sin(πλ)B(1− λ, n− nβ)

π Γ(n− nβ)Γαn + γ− nβ

×
∫ z

0

∫ z

x
(zα − uα)−nβ+n−λuα(nβ+λ−n)−γ(u− x)αn+γ−nβ−1Eα,γ

(
τuαβ

)
dudx

=
α sin(πλ)B(1− λ, n− nβ)

π Γ(n− nβ)Γαn + γ− nβ

×
∫ z

0
Eα,γ

(
τuαβ

) ∫ z

x
(zα − uα)−nβ+n−λuα(nβ+λ−n)−γ(u− x)αn+γ−nβ−1dudx

=
α sin(πλ)B(1− λ, n− nβ)

π Γ(n− nβ)Γαn + γ− nβ

∫ z

0
Eα,γ

(
τxαβ

)
Ωα,γ,λ(x; z)dx,

as required.

3. Conclusions

The study uses Riemann-Liouville fractional calculus to establish new links between
the Mittag-Leffler functions of one to four parameters. Most probably, those findings can
be extended in the future to simplify certain important physical models that utilize four
parameters or more of Mittag-Leffler functions, or to offer more productive mathematical
models for these functions, as the original Mittag-Leffler function is increasingly popular
and studied in greater detail.
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