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Abstract: In this work, we formulate and mathematically study integer and fractional models of
typhoid fever transmission dynamics. The models include vaccination as a control measure. After
recalling some preliminary results for the integer model (determination of the epidemiological
threshold denoted by Rc, asymptotic stability of the equilibrium point without disease whenever
Rc < 1, the existence of an equilibrium point with disease wheneverRc > 1), we replace the integer
derivative with the Caputo derivative. We perform a stability analysis of the disease-free equilibrium
and prove the existence and uniqueness of the solution of the fractional model using fixed point
theory. We construct the numerical scheme and prove its stability. Simulation results show that when
the fractional-order η decreases, the peak of infected humans is delayed. To reduce the proliferation
of the disease, mass vaccination combined with environmental sanitation is recommended. We
then extend the previous model by replacing the mass action incidences with standard incidences.
We compute the corresponding epidemiological threshold denoted byRc? and ensure the uniform
stability of the disease-free equilibrium, for both new models, when Rc? < 1. A new calibration
of the new model is conducted with real data of Mbandjock, Cameroon, to estimate Rc? = 1.4348.
We finally perform several numerical simulations that permit us to conclude that such diseases can
possibly be tackled through vaccination combined with environmental sanitation.

Keywords: typhoid fever disease; vaccination; model calibration; Caputo derivative; asymptotic
stability; fixed point theory

MSC: 26A33; 93D20; 47H10; 93E24; 92D30

1. Introduction

Typhoid fever, caused by a salmonella bacterium (Salmonella typhi), is a tropical
disease transmitted by the ingestion of food or/and water contaminated with feces. It
is most prevalent in countries located below the equator, in Southeast Asia, and in the
Indian subcontinent, where hygiene conditions are poor [1,2]. The principal symptoms of
typhoid fever are insomnia, fever, generalized fatigue, headaches, stomach ache, anorexia,
constipation or diarrhea, and vomiting. These symptoms can last several weeks. Without
effective treatment, typhoid fever can lead to death. According to the World Health
Organization (WHO), the number of cases of typhoid fever is estimated to be between
11 and 21 million, with 128,000 to 161,000 deaths annually due to the severity of the
disease [1,2]. Vaccination, sanitary measures, and hygiene measures are the best ways to
prevent the spread of the disease [2].
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Since the work of Sir Ronald Ross on malaria [3], mathematical tools such as dif-
ferential equations have usually been used to understand and describe the dynamics of
infectious diseases [4–12]. In [7], the authors proposed a SVIIcR that takes into account
some control mechanisms (treatment, education campaigns, and vaccination). Quarantin-
ing the infected individuals and their treatment are the main control measures studied
in [8]. The author used optimal control methods to conclude that the outbreak can be
eliminated or controlled if the control strategies are combined to their highest levels. The
same conclusions are given in [10,11]. Recently, Olumuyiwa James et al. [9] formulated and
studied an optimal control model for typhoid fever that takes into account both indirect
and direct transmission. They compared various proposed strategies using numerical
simulations and concluded that the disease burden can be controlled if all the available
control measures are combined.

Very recently, many authors have proposed fractional-order models in mathematical
epidemiology (ref. [13]), ecology (ref. [14]), plant epidemiology (refs. [15,16]), and psychol-
ogy (ref. [17]). Indeed, the necessity of the use of fractional derivatives in epidemiology,
for example, comes from the fact that these operators have many properties, such as their
different types of kernels and the crossover behavior in the model, which can only be de-
scribed using these operators. Moreover, any real data that have zigzag dynamics (mostly
many) that cannot be projected by an integer-order derivative can be solved by a fractional
model more clearly.

The principal disadvantage of models with integer derivatives is that they do not
permit the definition of memory effects. Replacing integer derivatives with fractional
derivatives makes it possible to remedy this problem. Indeed, they offer different ways
to forecast data by varying the fractional-order parameter [12,18,19]. Several fractional
operators have been defined so far. The most popular are the fractional operators of Caputo,
the fractional Caputo–Fabrizio operator, and the fractional operator of Atangana–Baleanu.
Each operator explores the dynamics of the studied phenomenon differently, thus helping
us to predict more variations in the evolution of the phenomenon. The advantages and
disadvantages of each fractional operator and their application domains can be found
in [20–22].

To the best of our knowledge, there are few mathematical works on typhoid fever using
fractional operators [6,12]. In [12], the authors used the Caputo–Fabrizio operator to extend
the model proposed in [23]. They provided existence, uniqueness, and stability criteria
for the proposed fractional-order typhoid model. More recently, Abboubakar et al. [6]
formulated a SIR-B-type compartmental model with both integer and Caputo derivatives.
The only control measure was vaccination. They computed the control reproduction
number, Rc, and performed stability analysis of the disease-free equilibrium point for both
models. The present contributions are listed as follows:

1. Using a fractional derivative in place of an integer derivative, as used in our previous
model [5], we formulate a new model. To prove the existence and uniqueness of
the solutions, we use fixed point theory. The corresponding numerical scheme is
obtained through the Adams–Bashforth–Moulton method [24,25]. The stability of this
numerical scheme is also proven. Finally, several numerical simulations are carried
out from the real values of parameters estimated with real data of Mbandjock, in
Cameroon (see [5]).

2. Secondly, we extend the previous models by replacing the mass action incidence
law with the standard incidence law. For these new models, we compute the corre-
sponding control reproduction number,Rc?, and ensure the uniform stability of the
equilibrium point without disease. As in [6], model parameters are estimated. With
these new parameter values, we finally perform several numerical simulations that
permit us to compare the quantitative dynamics of the two types of models.

The rest of the work is organized as follows. We devote Section 2 to preliminary defini-
tions of the fractional derivative in the sense of Caputo and useful results. Formulation of
the models with mass incidence law and standard incidence, as well as their mathematical
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analysis (computation of control reproduction numbers, asymptotic stability analysis of
the disease-free equilibrium, existence as well as the uniqueness of solutions, construction
of the numerical scheme with its stability), is also described in this section. The calibration
of the model with standard incidences and several numerical results is given in Section 3.
We end the paper with a discussion and conclusions.

2. Materials and Methods
2.1. Useful Definitions and Results

For over ten years, fractional derivatives have captured the attention of researchers,
who use these fractional operators to model physical, chemical, and biological processes.
One can cite the dynamics of transmissible diseases [26–28]. Before the formulation of the
fractional models, it is important to recall their definition, as well as two results that will be
used later in the fractional model analysis.

Definition 1. Let f ∈ Cl
−1, and we have the following relation:

Dν
τ f (τ) =

{
dr f (τ)

dτr , ν = r ∈ N
1

Γ(r−ν)

∫ τ
0 (τ − ι)r−ν−1 f (r)(ι)dι, −1 + r < ν < r , r ∈ N,

(1)

which represents the Caputo derivative of f .

Lemma 1. Assume that χ, Q, h, Y > 0, kh ≤ Y with k ∈ N, and

yq,m =

{
(m− q)χ−1 q = 1, 2, . . . , m− 1,
0 q ≥ m.

Let ∑
q=i
q=k yq,m|eq| = 0 for k > m ≥ 1.
If

|em| ≤ Qhχ
m−1

∑
q=1

yq,m|eq|+ |η0|, m = 1, 2, . . . , k,

then
|ek| ≤ M|η0|, k ∈ {1, 2, . . .}

whereM ∈ R+ does not depend on h and k.

Lemma 2. If 0 < χ < 1 and d ∈ N, then there exist positive constants Wχ,1 and Wχ,2 only
dependent on χ, such that

(1 + v)χ − vχ ≤ Wχ,1(1 + v)χ−1 and (2 + v)χ+1 − 2(1 + v)χ+1 + vχ+1 ≤ Wχ,2(1 + v)χ−1.

2.2. Model Dynamics with Mass Action Incidence Law
2.2.1. Model Formulation in ODE Sense and Its Analysis

In a previous work [5], we formulated and analyzed a new mathematical model for the
transmission dynamics of typhoid fever with application to the town of Mbandjock, in the
central region of Cameroon. The model is divided into seven compartments: susceptible
individuals S(t), vaccinated individuals V(t), infected individuals in latent stage E(t),
infected individuals without any sign of the disease C(t), symptomatic infected individuals
I(t), recovered individuals R(t), and the density of bacteria in the environment B(t).
Each individual in each compartment naturally dies at a rate µh. Susceptible humans
are recruited at a constant rate Λh. The population in compartment Sh decreases either
by vaccination at a rate ξ, or by infection at an incidence rate νB(t)S(t), where ν is the
contact rate. We denote by θ the rate at which vaccinated individuals lose their immunity.
The vaccine efficacy is denoted by ε. The compartment E of latent individuals, which
include infected susceptible individuals and vaccinated individuals, progresses either to
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the carriers compartment C at a rate qγ1 or to the compartment I at the rate (1− q)γ1.
Asymptomatic individuals become symptomatic at the rate (1− p)γ2 or recover at the
rate pγ2. δ denotes the disease-induced death rate of symptomatic individuals. Recovered
individuals become susceptible at a rate α. With this brief description, the mathematical
formulation of the model studied in [5] is presented as follows:

Ṡ(t) = Λh − (k1 + νB(t))S(t) + θV(t) + αR(t), (2a)

V̇(t) = −[k2 + (1− ε)νB(t)]V(t) + ξS(t), (2b)

Ė(t) = −k3E(t) + ν[πV(t) + S(t)]B(t), (2c)

Ċ(t) = qγ1E(t)− k4C(t), (2d)

İ(t) = q1γ1E(t) + p1γ2C(t)− [k5 + σ]I(t), (2e)

Ṙ(t) = pγ2C(t) + σI(t)− k6R(t), (2f)

Ḃ(t) = pcC(t) + pi I(t)− µbB(t), (2g)

where k1 = ξ + µh, k2 = θ + µh, k3 = γ1 + µh, k4 = µh + γ2, k5 = δ + µh, k6 = α + µh,
π = −1 + ε, q1 = 1− q, p1 = −p + 1, k7 = k1k2 − θξ = µh(k2 + ξ) > 0, k8 = k5 + σ.

Model (2) is defined in the following set:

W =

{
(S, V, E, C, I, R, B)′ ∈ R7

+ : N = V + S + C + E + I + R ≤ Λh
µh

; B ≤ (pi + pc)Λh
µhµb

}
,

in which a dynamical system is defined, and where N denotes the human population.
Without disease, model (2) has the following equilibrium: Q0 = (S0, V0, 0, 0, 0, 0, 0)′,

where S0 = Λhk2/(µh(k2 + ξ)) and V0 = Λhξ/(µh(k2 + ξ)). Using the same approach
developed in [29], we obtain the control reproduction number given by

Rc =

√
νΛh(k2 + πξ)γ1[pcq(σ + k5) + pi(k4(1− q) + γ2q(1− p))]

µbµhk3k4(k2 + ξ)(σ + k5)
. (3)

Considering the model without vaccination, Rc is equal to the basic reproduction number:

R0 =

√
νΛhγ1[pcq(σ + k5) + pi(k4(1− q) + γ2q(1− p))]

µbµhk3k4(σ + k5)
. (4)

Thus, it follows that

Rc = R0

√
(k2 + πξ)

(k2 + ξ)
.

Since πξ = (1− ε)ξ ≤ ξ, we have
(k2 + πξ)

(k2 + ξ)
≤ 1, which means thatRc ≤ R0. This proves

that mass vaccination is a useful tool that can be used to effectively tackle this kind of
tropical disease.

For typhoid model (2) in the ODE sense, the following results were proven in [5].

Proposition 1 ([5]). For model (2),Q0 is locally and globally asymptotically stable inW ifRc < 1
and unstable ifRc > 1.
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Proposition 2 ([5]). Let us define the following coefficients:

a2 = R4
c k2

3k2
4k2

8µ2
h(ξ + k2)

2π×
× (µhγ1α(k5 + σq) + γ2µhk8(α + γ1) + γ1γ2α(1− pq)k5 + [µ2

h + (α + γ2 + γ1)µh]µhk8),

a1 = −R2
c k2

3k2
4k2

8µ2
h(ξ + k2)

2γ1Λhk6π(k4q1 + γ2 p1q)(R2
c −R2

b),

a0 = −γ2
1µhΛ2

hk3k4k6k8(k4q1 + γ2 p1q)2(πξ + k2)
2(ξ + k2)(R2

c − 1).

Model (2) with the integer derivative either has (1) only one endemic equilibrium whenever (a0 <
0⇐⇒ Rc > 1) or (a1 < 0 and a0 = 0 or a2

1 − 4a2a0 = 0), (2) two endemic equilibrium points if
(a0 > 0 (Rc < 1), a1 < 0 (Rc > Rb) and a2

1 − 4a2a0 > 0), or (3) no equilibrium otherwise.

Theorem 1 ([5]). Model (2) exhibits a supercritical bifurcation at Rc = 1, which implies that
wheneverRc > 1, the endemic equilibrium is locally asymptotically stable.

Remark 1. Proposition 1 combined with Theorem 1 implies that Proposition 2 (iii) will never hold
true for model (2). Thus, the conditionRc < 1 is sufficient to eradicate the disease.

2.2.2. Fractional-Order Typhoid Model

The following model is obtained when we replace the integer derivative operator
in (2) with the non-integer operator in the Caputo sense.

C
t0

Dη
t S(t) = Λh − (k1 + νB(t))S(t) + θV(t) + αR(t), (5a)

C
t0

Dη
t V(t) = −[k2 + (1− ε)νB(t)]V(t) + ξS(t), (5b)

C
t0

Dη
t E(t) = −k3E(t) + ν[πV(t) + S(t)]B(t), (5c)

C
t0

Dη
t C(t) = qγ1E(t)− k4C(t), (5d)

C
t0

Dη
t I(t) = q1γ1E(t) + p1γ2C(t)− [k5 + σ]I(t), (5e)

C
t0

Dη
t R(t) = pγ2C(t) + σI(t)− k6R(t), (5f)

C
t0

Dη
t B(t) = pcC(t) + pi I(t)− µbB(t). (5g)

with S(0) ≥ 0, V(0) ≥ 0, B(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, C(0) ≥ 0, and R(0) ≥ 0.

Asymptotic Stability of the Disease-Free Equilibrium

Before investigating the stability of the disease-free equilibrium point, we consider
the fractional-order system (5) as follows:

C
t0

Dη
t x(t) = F (x(t)), (6)

where x(ζ) ∈ R7, F ∈ R7 ×R7, 0 < η < 1. The characteristic equation of the matrix F
evaluated at any equilibrium (see [30]) is given by

det(s(I− (1− η)F )− ηF ) = 0. (7)

For the fractional model (5), the asymptotic stability ofQ0 is claimed in the following result.

Theorem 2. The disease-free equilibrium Q0 is uniformly asymptotically stable if Rc < 1, and
unstable otherwise.
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Proof. The Jacobian matrix of system (5) evaluated at the disease–free equilibrium Q0 is
given by

J(Q0) =



−k1 θ 0 0 0 α −νS0
ξ −k2 0 0 0 0 −νπV0
0 0 −k3 0 0 0 ν(S0 + πV0)
0 0 qγ1 −k4 0 0 0
0 0 q1γ1 p1γ2 −(k5 + σ) 0 0
0 0 0 pγ2 σ −k6 0
0 0 0 pc pi 0 −µb


=

(
J1 J2
J3 J4

)
,

where J1 =

(
−k1 θ

ξ −k2

)
, J2 =

(
0 0 0 α −νS0
0 0 0 0 −νπV0

)
, J3 = OR5×2 , and

J4 =


−k3 0 0 0 ν(S0 + πV0)
qγ1 −k4 0 0 0
q1γ1 p1γ2 −(k5 + σ) 0 0

0 pγ2 σ −k6 0
0 pc pi 0 −µb

.

The characteristic Equation (7) of the typhoid fractional model (5) becomes{
det(s(I2 − (1− η)J1)− η J1) = 0
det(s(I5 − (1− η)J4)− η J4) = 0,

(8)

which is equivalent to{
a2s2 + a1s + a0 = 0,

{s[(1− η)k6 + 1] + k6η}
(

s4 + A1
A5

s3 + A2
A5

s2 + A3
A5

s + A4
A5

)
= 0,

(9)

where a2 = (1− η)2k7 + (1− η)(k1 + k2) + 1, a1 = 2η(1− η)k7 + η(k1 + k2), a0 = η2k7,

A5 = η3
1k3k4k8µb(η1k9 + q1 pi + pcq)(1−R2

c )

+ η3
1µb[k3k8(k8 pcq + p1γ2 piq) + k3k4(q1k4 pi + p1γ2 piq) + k4k8k9]

+ η2
1µb(k8k9 + k4k9 + k3k9) + η1k9µb

+
(((

η3
1k3 + η2

1

)
k4 + η2

1k3 + η1

)
k8 +

(
η2

1k3 + η1

)
k4 + η1k3 + 1

)
k9,

A1 =
{

4k3k4k8k9µbη3
1η + 3η2

1k3k8µbηq1k4 pi + 3η2
1ηk3k4µbk8 pcq

}
(1− R2

c )

+ 3η2
1ηk3k4µb(q1k4 pi + p1γ2 piq) + 3η2

1k3k8µbη[k8 pcq + p1γ2 piq]

+ 2η1k4k9µbη + (2η1k3 + 1)k9µbη + 3η2
1k4k8k9µbη + 2η1k8k9µbη

+
(((

3η2
1k3 + 2η1

)
k4 + 2η1k3 + 1

)
k8 + (2η1k3 + 1)k4 + k3

)
k9η,

A2 =
[
6η2

1k3k4k8k9µbη2 + 3η1k3k4k8µbη2(pcq + q1 pi)
]
(1−R2

c )

+ 3η1η2[k3k8µb(k8 pcq + p1γ2 piq) + k4k8k9(µb + k3) + k3k4µb(q1k4 pi + p1γ2 piq)]

+ (k4k8 + k3k8 + k3k4 + k8µb + k4µb + k3µb)k9η2,

A3 = µbη3k3k4k8[4k9η1 + q1 pi + pcq](1−R2
c )

+ (µb + k3)k4k8k9η3 + k3µbη3{k8q(k8 pc + p1γ2 pi) + k4 pi(q1k4 + p1γ2q)},

A4 =
(

1−R2
c

)
η4k3k4k8µb

k9︷ ︸︸ ︷
[q1k4 pi + k8 pcq + p1γ2 piq],

and η1 = 1− η.
Since both coefficients of the first equation of (9) are positive, it follows that the real

parts of the solution of (9) are negative. From the second equation of (9), we have that
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s1 = − k6η
[(1−η)k6+1] is one solution, and the other solutions are the root of

T (s) := A5s4 + A1s3 + A2s2 + A3s + A4. Note that A4 > 0⇐⇒ Rc < 1, andRc < 1 =⇒
(A1 > 0, A2 > 0, A3 > 0, and A5 > 0). Then, it follows that, if Rc < 1, then the disease-
free equilibrium Q0 is asymptotically stable whenever the following Routh–Hurwitz

criteria A1 A2
A2

5
− A3

A5
> 0 and A1 A2 A3

A3
5
− A2

1 A4
A3

5
− A2

3
A2

5
> 0 are satisfied for polynomial T (s) .

For uniform stability, we use the Lyapunov function:

M(E, C, I, B) = b1E(t) + b2C(t) + b3 I(t) + b4B(t), (10)

where b1 = 1, b2 = k3(k8 pc + pi p1γ2)/[k4 piq1γ1 + qγ1(k8 pc + pi p1γ2)], and b3 = k3k4 pi/
[k4 piq1γ1 + qγ1(k8 pc + pi p1γ2)] and b4 = k3k4k8/[k4 piq1γ1 + qγ1(k8 pc + pi p1γ2)].

The fractional derivative ofM is given by

C
t0

Dη
tM(E, C, I, B) ≤ C

t0
Dη

t Eb1 +
C
t0

Dη
t Cb2 +

C
t0

Dη
t Ib3 +

C
t0

Dη
t Bb4

= b1(νB[S + πV]− k3E) + b2(qγ1E− k4C) + b3(q1γ1E + p1γ2C− k8 I)

+ b4(pcC + pi I − µbB)

≤ b1

(
νB
[
S0 + πV0

]
− k3E

)
+ b2(qγ1E− k4C) + b3(q1γ1E + p1γ2C− k8 I)

+ b4(pcC + pi I − µbB)

= b1νB
(

S0 + πV0
)
− b1k3E + b2qγ1E− b2k4C + b3q1γ1E + b3 p1γ2C

− b3k8 I + b4 pcC + b4 pi I − b4µbB

= b1νB
(

S0 + πV0
)
− b4µbB + (b3q1γ1 + b2qγ1 − b1k3)E

+ (b4 pc + b3 p1γ2 − b2k4)C + (b4 pi − b3k8)I

=
µbk3k4(k5 + σ)

piq1γ1k4 + qγ1(p1 piγ2 + pc(k5 + σ))

(
R2

c − 1
)

B.

Thus, C
t0

Dη
tM(E, C, I, B) < 0 whenever Rc < 1, and C

t0
Dη

tM(E, C, I, B) = 0 if and only if
Rc = 1 or B(ζ) = 0. Setting B = 0 in (5), we obtain S = S0, V = V0, and E = C = I = R = 0.
Thus, lim

t→∞
(S(t), V(t), E(t), C(t), I(t), R(t))′ → (S0, V0, 0, 0, 0, 0, 0)′ := Q0. Consequently,

by [31] (Theorem 2.5), it follows that ifRc < 1, then Q0 is uniformly asymptotically stable
inW .

Existence and Uniqueness Analysis

Before describing the existence and uniqueness of solutions for the fractional model
using the fixed point theorem, we define T as a Banach space of continuous functions
defined on an interval P with the norm

‖ X ‖=
i=7

∑
i=1
‖ Xi ‖,

where X = (S, V, E, C, I, R, B), ‖ Xi ‖= sup{|Xi(t)| : t ∈ P}, and T =M(P)×M(P)×
M(P)×M(P)×M(P)×M(P)×M(P).



Fractal Fract. 2021, 5, 149 8 of 31

Let us write system (5) as follows:

CDη
t S(t) = H1(t, S),

CDη
t V(t) = H2(t, V),

CDη
t E(t) = H3(t, E),

CDη
t C(t) = H4(t, C)

CDη
t I(t) = H5(t, I)

CDη
t R(t) = H6(t, R)

CDη
t B(t) = H7(t, B)

(11)

Application of the Caputo fractional integral operator permits us to reduce (11) to the
following system:

− S(0) + S(t) =
[∫ t

0
(t− ς)η−1H1(ς, S)dς

]
1

Γ(η)
,

−V(0) + V(t) =
[∫ t

0
(t− ς)η−1H2(ς, V)dς

]
1

Γ(η)
,

− E(0) + E(t) =
[∫ t

0
(t− ς)η−1H3(ς, E)dς

]
1

Γ(η)
,

− C(0) + C(t) =
[∫ t

0
(t− ς)η−1H4(ς, C)dς

]
1

Γ(η)
,

− I(0) + I(t) =
[∫ t

0
(t− ς)η−1H5(ς, I)dς

]
1

Γ(η)
,

− R(0) + R(t) =
[∫ t

0
(t− ς)η−1H6(ς, R)dς

]
1

Γ(η)
,

− B(0) + B(t) =
[∫ t

0
(t− ς)η−1H7(ς, R)dς

]
1

Γ(η)
,

(12)

with 0 < η < 1.
Now, we will provide the Lipschitz conditions fulfilled by Hi, for i = 1, 2, . . . , 7, as

well as the contraction conditions. In the following theorem, we only provide the condition
for H1, the rest being similar.

Theorem 3. The kernel H1 satisfies the Lipschitz and contraction conditions provided that
0 ≤ νκ7 + k1 < 1.

Proof. For S, we proceed as below:

‖ H1(t, S)−H1(t, S1) ‖ =‖ −νB(S− S1)− k1(S− S1) ‖
=‖ νB + k1 ‖‖ (S(t)− S1(t)) ‖
≤‖ νκ7 + k1 ‖‖ S(t)− S1(t) ‖

where κ7 is the upper bound of the function B(t). Now, setting W1 = νκ7 + k1, we
finally obtain

‖ H1(t, S)−H1(t, S1) ‖≤W1 ‖ S(t)− S(t1) ‖, (13)

which provide the Lipschitz condition. If, additionally, we can have 0 < W1 = νκ7 + k1 < 1,
then the contraction is also obtained.
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As in the case of H1, it is easy to obtain the Lipschitz condition for the other kernels.
Thus, we have

‖ H2(t, C)−H2(t, C1) ‖ ≤W2 ‖ V(t)−V(t1) ‖,
‖ H3(t, E)−H3(t, E1) ‖ ≤W3 ‖ E(t)− E(t1) ‖,
‖ H4(t, C)−H4(t, C1) ‖ ≤W4 ‖ C(t)− C(t1) ‖,
‖ H5(t, I)−H5(t, I1) ‖ ≤W5 ‖ I(t)− I(t1) ‖,
‖ H6(t, R)−H6(t, R1) ‖ ≤W6 ‖ R(t)− R(t1) ‖,
‖ H7(t, B)−H7(t, B1) ‖ ≤W7 ‖ B(t)− B(t1) ‖ .

(14)

Recursively, Equation (12) can be rewritten as follows:

Sn(t)− S(0) =
1

Γ(η)

∫ t

0
(t− ς)η−1H1(ς, Sn−1)dς,

Vn(t)−V(0) =
1

Γ(η)

∫ t

0
(t− ς)η−1H2(ς, Vn−1)dς,

En(t)− E(0) =
1

Γ(η)

∫ t

0
(t− ς)η−1H3(ς, En−1)dς,

Cn(t)− C(0) =
1

Γ(η)

∫ t

0
(t− ς)η−1H4(ς, Cn−1)dς,

In(t)− I(0) =
1

Γ(η)

∫ t

0
(t− ς)η−1H5(ς, In−1)dς,

Rn(t)− R(0) =
1

Γ(η)

∫ t

0
(t− ς)η−1H6(ς, Rn−1)dς,

Bn(t)− B(0) =
1

Γ(η)

∫ t

0
(t− ς)η−1H7(ς, Bn−1)dς.

(15)

By determing, in a recursive manner, the difference between the successive terms of (11),
we obtain

ψ1n(t) = Sn(t)− Sn−1(t) =
1

Γ(η)

∫ t

0
(t− ς)η−1(H1(ς, Sn−1)−H1(ς, Sn−2))dς,

ψ2n(t) = Vn(t)−Vn−1(t) =
1

Γ(η)

∫ t

0
(t− ς)η−1(H2(ς, Vn−1)−H2(ς, Vn−2))dς,

ψ3n(t) = En(t)− En−1(t) =
1

Γ(η)

∫ t

0
(t− ς)η−1(H3(ς, En−1)−H3(ς, En−2))dς,

ψ4n(t) = Cn(t)− Cn−1(t) =
1

Γ(η)

∫ t

0
(t− ς)η−1(H4(ς, Cn−1)−H4(ς, Cn−2))dς,

ψ5n(t) = In(t)− In−1(t) =
1

Γ(η)

∫ t

0
(t− ς)η−1(H5(ς, In−1)−H5(ς, In−2))dς,

ψ6n(t) = Rn(t)− Rn−1(t) =
1

Γ(η)

∫ t

0
(t− ς)η−1(H6(ς, Rn−1)−H6(ς, Rn−2))dς,

ψ7n(t) = Bn(t)− Bn−1(t) =
1

Γ(η)

∫ t

0
(t− ς)η−1(H7(ς, Bn−1)−H7(ς, Bn−2))dς,

(16)

with S0(t) = S(0), V0(t) = V(0), E0(t) = E(0), C0(t) = C(0), I0(t) = I(0), R0(t) = R(0),
and B0(t) = B(0).
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The norm of φ1n(t) gives

‖ ψ1n(t) ‖=‖ Sn(t)− Sn−1(t) ‖ =‖
1

Γ(η)

∫ t

0
(t− ς)η−1(H1(ς, Sn−1)−H1(ς, Sn−2))dς ‖

≤ 1
Γ(η)

‖
∫ t

0
(t− ς)η−1(H1(ς, Sn−1)−H1(ς, Sn−2))dς ‖ .

(17)

With the Lipschitz condition (13), we obtain

‖ ψ1n(t) ‖=‖ Sn(t)− Sn−1(t) ‖≤
1

Γ(η)
W1

∫ t

0
(t− ς)η−1 ‖ Sn−1 − Sn−2 ‖ dς. (18)

Thus, we have

‖ ψ1n(t) ‖≤
1

Γ(η)
W1

∫ t

0
(t− ς)η−1 ‖ ψ1(n−1)(ς) ‖ dς. (19)

By proceeding in a similar way, we obtain, for the other φin(t), i = 2, . . . , 7,

‖ ψ2n(t) ‖≤
1

Γ(η)
W2

∫ t

0
(t− ς)η−1 ‖ ψ2(n−1)(ς) ‖ dς,

‖ ψ3n(t) ‖≤
1

Γ(η)
W3

∫ t

0
(t− ς)η−1 ‖ ψ3(n−1)(ς) ‖ dς,

‖ ψ4n(t) ‖≤
1

Γ(η)
W4

∫ t

0
(t− ς)η−1 ‖ ψ4(n−1)(ς) ‖ dς,

‖ ψ5n(t) ‖≤
1

Γ(η)
W5

∫ t

0
(t− ς)η−1 ‖ ψ5(n−1)(ς) ‖ dς,

‖ ψ6n(t) ‖≤
1

Γ(η)
W6

∫ t

0
(t− ς)η−1 ‖ ψ6(n−1)(ς) ‖ dς,

‖ ψ7n(t) ‖≤
1

Γ(η)
W7

∫ t

0
(t− ς)η−1 ‖ ψ7(n−1)(ς) ‖ dς.

(20)

Each nth term of the state variables of (5) is given by

Sn(t) =
n
∑

i=1
ψ1i(t), Vn(t) =

n
∑

i=1
ψ2i(t), En(t) =

n
∑

i=1
ψ3i(t),

Cn(t) =
n
∑

i=1
ψ4i(t), In(t) =

n
∑

i=1
ψ5i(t), Rn(t) =

n
∑

i=1
ψ6i(t),

Bn(t) =
n
∑

i=1
ψ7i(t).

(21)

The following result guarantees that the solution of the fractional model (5) is unique.

Theorem 4. If the following inequality holds,

1
Γ(η)

xηWi < 1, for i = 1, 2, . . . , 7, (22)

then the solution of the fractional model (5), for t ∈ [0, T], is unique.
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Proof. With Equation (13), inequalities (19) and (20), combined with a recursive technique,
we obtain:

‖ ψ1n(t) ‖≤‖ S0(t) ‖
[

W1

Γ(η)
xη

]n

, ‖ ψ2n(t) ‖≤‖ W0(t) ‖
[

W2

Γ(η)
xη

]n

,

‖ ψ3n(t) ‖≤‖ E0(t) ‖
[

W3

Γ(η)
xη

]n

, ‖ ψ4n(t) ‖≤‖ C0(t) ‖
[

W4

Γ(η)
xη

]n

,

‖ ψ5n(t) ‖≤‖ I0(t) ‖
[

W5

Γ(η)
xη

]n

, ‖ ψ6n(t) ‖≤‖ R0(t) ‖
[

W6

Γ(η)
xη

]n

,

‖ ψ7n(t) ‖≤‖ B0(t) ‖
[

W7

Γ(η)
xη

]n

.

(23)

Therefore, the above sequences satisfy lim
n→∞

‖ ψin(t) ‖→ 0, j = 1, 2, . . . , 7. The triangle

inequality applied to (23) permits us to obtain

‖ Sk+n(t)− Sn(t) ‖≤
k+n

∑
j=n+1

Zj
1 =

Zn+1
1 − Zk+n+1

1
1− Z1

,

‖ Vk+n(t)−Vn(t) ‖≤
k+n

∑
j=n+1

Zj
2 =

Zn+1
2 − Zk+n+1

2
1− Z2

,

‖ Ek+n(t)− En(t) ‖≤
k+n

∑
j=n+1

Zj
3 =

Zn+1
3 − Zk+n+1

3
1− Z3

,

‖ Ck+n(t)− Cn(t) ‖≤
k+n

∑
j=n+1

Zj
4 =

Zn+1
4 − Zk+n+1

4
1− Z4

,

‖ Ik+n(t)− In(t) ‖≤
k+n

∑
j=n+1

Zj
5 =

Zn+1
5 − Zk+n+1

5
1− Z5

,

‖ Rk+n(t)− Rn(t) ‖≤
k+n

∑
j=n+1

Zj
6 =

Zn+1
6 − Zk+n+1

6
1− Z6

,

‖ Bk+n(t)− Bn(t) ‖≤
k+n

∑
j=n+1

Zj
7 =

Zn+1
7 − Zn+k+1

7
1− Z7

,

(24)

with
1

Γ(η)
bηWl < 1 and Zl =

(
1

Γ(η)
Wlxη

)n
, l = 1, 2, . . . , 7.

Therefore, Sn, Vn, En, Cn, In, Rn, and Bn are uniformly convergent Cauchy sequences
(see [32]). With n→ ∞, it follows that the limit of these sequences represents the unique
solution to model (5).

Numerical Scheme of the Fractional Model and Its Stability Analysis

Several methods have been developed to construct numerical schemes for fractional
models. One can cite, among others, the Implicit Quadrature method [24], the Approximate
Mittag–Leffler method [33], the Predictor Corrector method [34], and the Adams–Bashforth–
Moulton method [25]. The choice of the method depends on several factors, such as the
amount of information treated [35] and the accuracy order [36]. The numerical scheme
proposed in this work is constructed using the Adams–Bashforth–Moulton method.

Let us consider the following general form of a fractional differential equation [37]:{
Dη

t ϕ(t) = h(t, ϕ(t)), 0 ≤ t ≤ T,
ϕ(l)(0) = ϕl

0, l = 0, 1, 2, . . . , n− 1, where n = [η],
(25)
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which is equivalent to

ϕ(t) =
n−1

∑
l=0

hl
0

tl

l!
+

1
Γ(η)

∫ t

0
(t− ζ)η−1h(ζ, ϕ(ζ))dζ. (26)

For η ∈ [0, 1], 0 ≤ t ≤ T and setting κ = T/N and tm = mκ, for m = 0, 1, 2, . . . , N ∈
Z+, the solution of the fractional model is

S1+m = S0 +
κη

Γ(η + 2)

(
Λh + ηRp

1+m + θVp
1+m − (νBp

1+m + k1)S
p
1+m

)
+

κη

Γ(η + 2)

m

∑
j=0

aj,1+m

(
Λh + ηRj + θVj − (νBj + k1)Sj

)
,

V1+m = V0 +
κη

Γ(η + 2)

(
ξSp

1+m −
[
(1− ε)νBp

1+m + k2

]
Vp

1+m

)
+

κη

Γ(η + 2)

m

∑
j=0

aj,1+m

(
ξSj −

[
(1− ε)νBj + k2

]
Vj

)
,

E1+m = E0 +
κη

Γ(η + 2)

(
νBp

1+m

[
Sp

1+m + πVp
1+m

]
− k3Ep

1+m

)
+

κη

Γ(η + 2)

m

∑
j=0

aj,1+m

(
νBj
[
Sj + πVj

]
− k3Ej

)
,

C1+m = C0 +
κη

Γ(η + 2)

(
qγ1Ep

1+m − k4Cp
1+m

)
+

κη

Γ(η + 2)

m

∑
j=0

aj,1+m

(
qγ1Ej − k4Cj

)
,

I1+m = I0 +
κη

Γ(η + 2)

(
q1γ1Ep

1+m + p1γ2Cp
1+m − [k5 + σ]Ip

1+m

)
+

κη

Γ(η + 2)

m

∑
j=0

aj,1+m

(
q1γ1Ej + p1γ2Cj − [k5 + σ]Ij

)
,

R1+m = R0 +
κη

Γ(η + 2)

(
pγ2Cp

1+m + σIp
1+m − k6Rp

1+m

)
+

κη

Γ(η + 2)

m

∑
j=0

aj,1+m

(
pγ2Cj + σIj − k6Rj

)
,

B1+m = B0 +
κη

Γ(η + 2)

(
pcCp

1+m + pi I
p
1+m − µbBp

1+m

)
+

κη

Γ(η + 2)

m

∑
j=0

aj,1+m

(
pcCj + pi Ij − µbBj

)
,

(27)
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where

Sp
1+m = S0 +

1
Γ(η)

m

∑
j=0

bj,1+m

(
Λh + ηRj + θVj − (νBj + k1)Sj

)
,

Vp
1+m = V0 +

1
Γ(η)

m

∑
j=0

bj,1+m

(
ξSj −

[
(1− ε)νBj + k2

]
Vj

)
,

Ep
1+m = E0 +

1
Γ(η)

m

∑
j=0

bj,1+m

(
νBj
[
Sj + πVj

]
− k3Ej

)
,

Cp
1+m = C0 +

1
Γ(η)

m

∑
j=0

bj,1+m

(
qγ1Ej − k4Cj

)
,

Ip
1+m = I0 +

1
Γ(η)

m

∑
j=0

bj,1+m

(
= q1γ1Ej + p1γ2Cj − [k5 + σ]Ij

)
,

Rp
1+m = R0 +

1
Γ(η)

m

∑
j=0

bj,1+m

(
pγ2Cj + σIj − k6Rj

)
,

Bp
1+m = B0 +

1
Γ(η)

m

∑
j=0

bj,1+m

(
pcCj + pi Ij − µbBj

)
,

(28)

and

aj,1+m =


mη+1 − (m + 1)(−η + m), j = 0,
(2− j + m)η+1 − 2(m− j + 1)1+η + (−j + m)1+η 1 ≤ j ≤ m,
1, j = 1 + m,

bj,1+m =
κη

η

(
(m + 1− j)η − (m− j)η

)
, 0 ≤ j ≤ m.

We then claim the following result.

Theorem 5. Under some conditions, the above numerical scheme (see Equations (27) and (28))
is stable.

Proof. Let S?
0 , S?

j (j = 0, . . . , 1 + m) and S?p
1+m(m = 0, . . . , N − 1) be perturbations of S0,

Sj, and Sp
1+m, respectively. By using Equations (19) and (28), the following perturbation

equations are obtained:

S?p
1+m = S?

0 +
1

Γ(η)

m

∑
j=0

bj,1+m(G1(tj, Sj + S?
j )− G1(tj, Sj)), (29)

S?
1+m = S?

0 +
κη

Γ(η + 2)
(G1(t1+m, Sp

1+m + SP
1+m)− G1(t1+m, Sp

1+m))

+
κη

Γ(η + 2)

m

∑
j=0

aj,1+m(G1(tj, Sj + S?
j )− G1(tj, Sj)).

(30)

The Lipschitz condition permits us to obtain

|S?
1+m| ≤ φ0 +

κη M
Γ(η + 2)

(
|S?p

1+m|+
m

∑
j=1

aj,1+m|S?
j |
)

, (31)
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where φ0 = max
0≤m≤N

{
|S?

0 |+
κη Mam,0

Γ(η + 2)
|S?

0 |
}

. From [32] (Equation (3.18)), it follows that

|S?p
1+m| ≤ Θ0 +

M
Γ(η)

m

∑
j=1

bj,1+m|S?
j |, (32)

where Θ0 = max
0≤m≤N

{
|S?

0 |+
Mbm,0

Γ(η)
|S?

0 |
}

. Substituting |S?p
1+m| from Equation (32) into

Equation (31) gives

|S?
1+m| ≤ $0 +

κη M
Γ(η + 2)

(
M

Γ(η)

m

∑
j=1

bj,1+m|S?
j |+

m

∑
j=1

aj,1+m|S?
j |
)

≤ $0 +
κη M

Γ(η + 2)

m

∑
j=1

(
M

Γ(η)
bj,1+m + aj,1+m

)
|S?

j |

≤ $0 +
κη MCη,2

Γ(η + 2)

m

∑
j=1

(m + 1− j)η−1|S?
j |,

(33)

where $0 = max{φ0 +
κη Ma1+m,1+m

Γ(η + 2)
Θ0}.

Thanks to Lemma 2, we have that Cη,2 > 0 and depends only on η, and κ is assumed
to be small enough. A direct application of Lemma 1 implies |S?

1+m| ≤ C$0. The proof for
the other variables is obtained in the same way. This ends the proof.

2.3. Model Dynamics with the Standard Incidence Law

In this section, we extend model (2) by replacing the mass action incidence law with
the standard incidence law, and considering direct transmission (human to human). The
new typhoid fever transmission dynamics model is thus presented as follows:

Ṡ(t) = Λh + θV(t) + αR(t)− k1S(t)− β
(I + C)

N(t)
S(t)− ν

B(t)
B(t) + K

S(t), (34a)

V̇(t) = −
[

k2 + πβ
(C + I)

N(t)
+ πν

B(t)
K + B(t)

]
V(t) + ξS(t), (34b)

Ė(t) =
[

β
(C + I)

N(t)
+ ν

B(t)
B(t) + K

]
(πV(t) + S(t))− k3E(t), (34c)

Ċ(t) = qγ1E(t)− k4C(t), (34d)

İ(t) = q1γ1E(t) + p1γ2C(t)− k8 I(t), (34e)

Ṙ(t) = pγ2C(t) + σI(t)− k6R(t), (34f)

Ḃ(t) = pcC(t) + pi I(t)− µbB(t), (34g)

where β is the direct transmission rate, and K represents the half-saturation constant.
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The corresponding fractional model is given by

C
t0

Dη
t S(t) = Λh + θV(t) + αR(t)− k1S(t)− β

(I + C)
N(t)

S(t)− ν
B(t)

K + B(t)
S(t), (35a)

C
t0

Dη
t V(t) = −

[
k2 + πβ

(I + C)
N(t)

+ πν
B(t)

K + B(t)

]
V(t) + ξS(t), (35b)

C
t0

Dη
t E(t) =

[
β
(I + C)

N(t)
+ ν

B(t)
K + B(t)

]
(πV(t) + S(t))− k3E(t), (35c)

C
t0

Dη
t C(t) = qγ1E(t)− k4C(t), (35d)

C
t0

Dη
t I(t) = q1γ1E(t) + p1γ2C(t)− k8 I(t), (35e)

C
t0

Dη
t R(t) = pγ2C(t) + σI(t)− k6R(t), (35f)

C
t0

Dη
t B(t) = pcC(t) + pi I(t)− µbB(t). (35g)

Without loss of generality, it is evident that the new model (34) (resp. (35)) is also
defined inW .

Model (34) has the same disease-free equilibrium as model system (2). Using the same
approach developed in [29], we define the next-generation matrix of model system (34) as

NGM =


R1

H0 p1γ2β
N0k4k8

+ H0β
N0k4

H0β
N0k8

R4

0 0 0 0
0 0 0 0

R5
p1γ2 pi

k4k8
+ pc

k4

pi
k8

0


where R1 =

H0βγ1

N0k3k4

[
(p1γ2q + q1k4)

k8
+ q
]

, R4 =
H0ν

Kµb
, R5 =

γ1

k3k4

[
pi(p1γ2q + q1k4)

k8
+ pcq

]
,

and H0 = S0 + πV0.
Thus, the control reproduction number of model (34), which is the spectral radius of

NGM, is given by

Rc? =
R1 +

√
R2

1 + 4R4R5

2
. (36)

The following result is a direct consequence of Theorem 2 in [29] (see Appendix A for
the proof).

Proposition 3. For model (34) (resp. (35)), Q0 is locally asymptotically stable inW ifRc? < 1
and unstable ifRc? > 1.

Theorem 6. For the new typhoid model (34) (resp. (35)), the disease-free equilibriumQ0 is globally
asymptotically stable ifRc? < 1 and unstable otherwise.

Proof. See Appendix B.

3. Results
3.1. Numerical Results of the Fractional Model with Mass Action Incidence Law

We perform several simulations with the parameter values listed in Table 1.

Table 1. Parameter values of (2) taken from [5].

Parameter Value Parameter Value Parameter Value

Λh 1 µb 0.149990 ν 3.2618× 10−6

γ1 0.2145 ε 0.9495 δ 0.1499
γ2 0.1498 ξ 0.3221 σ 0.49992
α 0.0834 θ 0.0833 Rc 2.4750
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The step size is κ = 10−8, the initial time is T = 0, and the final time is T > 0. We
begin by showing the impact of fractional order on the dynamics of the disease. To this
aim, the fractional-order parameter varies between η = 1 and η = 0.5.

Figure 1 displays the impact of the Caputo fractional operator on the model dynamics.
For different values of the fractional-order parameter η, the infected state profiles are drawn.
From Figure 1, it follows that when the fractional order η decreases, the solutions of our
fractional model (5) have different behaviors. Indeed, when the fractional order decreases,
the number of infected humans in latent, carrier, and symptomatic states increases. This
is the same for the compartment B. This phenomenon was also observed in a malaria
fractional model studied by [38]. It is important to note that for η = 1, the solutions of the
fractional model converge to the solutions of the integer model.
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Figure 1. Simulation results showing the fractional dynamics on the infected state variable profiles
for different values of the fractional-order parameter η.

To evaluate the impact of vaccination on typhoid fever transmission dynamics, we
fix the vaccine efficacy at ε = 70% while the vaccine coverage parameter varies between
ξ = 0% and ξ = 90% (ξ ∈ {0.90, 0.50, 0.20, 0}), with different values of the fractional-order
η (η ∈ {1, 0.90, 0.80, 0.70, 0.60, 0.50}). The results are displayed in Figures 2–5.
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Figure 2. Simulation results showing the infected state variable profiles without vaccination (ξ = 0).
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Figure 3. Simulation results showing the infected state variable profiles when the vaccination
coverage ξ = 20% with different values of the fractional order.
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Figure 4. Simulation results showing the infected state variable profiles when the vaccination
coverage ξ = 50% with different values of the fractional order.
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Figure 5. Cont.
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Figure 5. Simulation results showing the infected state variable profiles when the vaccination
coverage ξ = 90% with different values of the fractional order.

Without vaccination coverage ξ = 0 (Figure 2), the peak delayed phenomenon is
observable. Indeed, for η = 1, the peak date corresponds to T = 45 months, with
approximately 3000 infected individuals in the latent stage, 400 asymptomatic individ-
uals, 950 symptomatic individuals, and 26,000 free salmonella in the environment. This
peak date is delayed when the fractional-order parameter η decreases. Thus, the peak
dates are beyond T = 45 months. From Figures 3–5, we note that this peak date is
forward delayed beyond T = 45 months whenever the fractional-order parameter η de-
creases. Moreover, the number of infected individuals decreases with the decrease in the
fractional-order parameter.

Now, in addition to vaccination, we consider environmental sanitation. To this aim,
the bacterial decay rate µb is modified to µb := µb + ω, where ω ∈ {0, 0.1, 0.2.0.3, 0.4}
represents the additional decay rate of free salmonella due to environmental sanitation [6].
The vaccination coverage is fixed at ξ = 32.21% as reported in Table 1. From Figures 6–9, it
is evident that mass vaccination combined with environmental sanitation has a positive
impact, reducing the disease burden.

Figure 6. Simulation results showing the infected state variable profiles when vaccination is combined
with environmental sanitation, for fractional order η = 1.
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Figure 7. Simulation results showing the infected state variable profiles when vaccination is combined
with environmental sanitation, for fractional order η = 0.90.

Figure 8. Simulation results showing the infected state variable profiles when vaccination is combined
with environmental sanitation, for fractional order η = 0.80.

Figure 9. Cont.
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Figure 9. Simulation results showing the infected state variable profiles when vaccination is combined
with environmental sanitation, for fractional order η = 0.70.

3.2. Numerical Results of the Fractional Model with Standard Incidence Law

To simulate the new fractional model (35), we use the parameter values listed in Table 2.
Note that the new typhoid model has been calibrated using real data from Mbandjock,
Cameroon (see [5,6]). In Figure 10, panel (a) shows the cumulative typhoid cases versus fitted
confirmed cases (infectious individuals tested positive), which is equal to (1− q)γ1E(t) +
(1− p)γ2C(t), while panel (b) presents the cumulative estimated cases for the next year.
The following fractions are used as initial conditions S(0) = 20,950/32,000, V(0) = 20/32,000,
E(0) = 200/32,000, C(0) = 150/32,000, I(0) = 60/32,000, R(0) = 1/32,000, and
B(0) = 500/106. The relative change is r = 1.83 × 10−7 and the function tolerance is equal
to 10−6.

Table 2. Estimated parameter values of the new typhoid model (35).

Parameter Values Source Parameter Values Source

Λh 3 Fitted µb 0.0015 Fitted
γ1 0.1512 Fitted ε 0.9497 Fitted
γ2 0.3039 Fitted ξ 0.1538 Fitted
δ 0.1382 Fitted β 0.60 Fitted
ν 0.00050 Fitted K 995.7957 Fitted
σ 0.4992 Fitted Rc? 1.4348 Estimated
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Figure 10. Parameter estimation and forecasting of cumulative new cases of typhoid fever in
Mbandjock, Cameroon, from 1 July 2019 to 31 August 2020, for the new model (35). Red bullets
denote real data (see [5,6]). The fitted model is represented with the blue line, and new forecasted
cases are represented by the dotted line.

First, we observe the general dynamics of the new fractional model. The results are
displayed in Figure 11. As for the case of the fractional model with mass incidence law (5),
Figure 11 reveals that when the fractional order η decreases, the solutions of our fractional
model (35) have different behaviors. The number of typhoid cases decreases and the peak
is delayed when the fractional order decreases.

Figure 11. Simulation results showing the fractional dynamics on the infected state variable profiles
for different values of the fractional-order parameter η.

Vaccination coverage impact is studied numerically. From Figures 12–15, it follows that
the more ξ increases, the fewer individuals are infected. This shows that mass vaccination
plays a important role in reducing the spread of the disease.
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Figure 12. Simulation results showing the infected state variable profiles when the vaccination
coverage ξ = 0% with different values of the fractional order.

Figure 13. Simulation results showing the infected state variable profiles when the vaccination
coverage ξ = 20% with different values of the fractional order.

Figure 14. Cont.
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Figure 14. Simulation results showing the infected state variable profiles when the vaccination
coverage ξ = 50% with different values of the fractional order.

Figure 15. Simulation results showing the infected state variable profiles when the vaccination
coverage ξ = 90% with different values of the fractional order.

4. Discussion and Conclusions

In this work, we extended our previous SVEIR-B compartmental model [5] by replac-
ing the integer derivative with fractional derivatives, to evaluate the memory effect on the
transmission dynamics of typhoid fever. We began by recalling some previous results on
the integer model (the control reproduction numberRc, existence and stability of equilib-
rium points). In order to describe the non-local character as well as long-term memory
effects in the typhoid fever transmission dynamics, we replaced the integer derivative
with the fractional derivative in the Caputo sense and studied the asymptotic stability of
the disease-free equilibrium. Using fixed point theory, we proved the existence as well as
the uniqueness of the solutions of the fractional model. We used the Adams–Bashforth
method to construct the numerical scheme of the proposed fractional model. We then
established the stability of this proposed numerical scheme. We simulated our fractional
model using the Adams–Bashforth–Moulton scheme implemented by [39]. Using parame-
ter values for Mbandjock, a city in the central region of Cameroon, we simulates the model
by varying the fractional-order parameter, the vaccination coverage, and the bacterial
decay rate. Apart from the fact that the solutions of the fractional model converged to
the solutions of the integer model when the fractional-order approached one (η = 1), the
simulation results showed that the expected date of the disease peak was forward delayed
when the fractional-order parameter decreased. In addition, combining vaccination with
environmental sanitation can permit a considerable reduction in the disease’s spread.
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We then extended the previous models by replacing the mass action incidence law
with the standard incidence. The analysis of the models showed that the disease-free
equilibrium is also globally asymptotically stable whenever the corresponding reproduc-
tion number Rc? is less than one. Due to the complexity of the newly proposed models,
we could not prove the existence and uniqueness of the endemic equilibrium. However,
numerical simulations showed that it is possible that the new typhoid fever models permit
a unique endemic equilibrium that is globally stable whenever Rc? > 1, and no equi-
librium otherwise. We also found that, from a quantitative point of view, the disease
burden was overestimated with the models the with mass incidence law compared to the
one with the standard incidence law. Indeed, for the models with mass incidence, the
control reproduction number was estimated at 2.4750, while the one with the standard
incidence was estimated at 1.4348. This was in accordance with our previous work in
which we considered the standard incidence law. In [6], the control reproduction number
was estimated at 1.3722. As for the models with mass action incidences, we observed a
delay in the disease peaks whenever the fractional-order derivative decreased.

It was observed that mass vaccination can overcome this disease. In fact, if the means
are put in place to finance and implement vaccination campaigns in rural areas, it is possible
to eradicate typhoid fever. Moreover, these vaccination campaigns must be accompanied
by awareness campaigns among the population in order to combat this type of disease, as
well as instructing citizens on ways to protect their environment against the proliferation
of salmonella.

Our main contribution in this paper consisted in the formulation, using both integer
and fractional derivatives, of new transmission dynamics typhoid fever models that in-
corporate the standard incidence rates and mass vaccination. The values of the control
reproductive number differ from the model with mass action incidence and those with
the standard incidences. Indeed, for the model with mass action incidences,Rc = 2.4750,
while, for those with standard incidences, Rc∗ = 1.4348. This proves that mass action
incidence overestimates the disease burden.
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Appendix A. Proof of Proposition 3

Proof. The Jacobian matrix of (34) (resp. (35)) evaluated at the disease-free equilibrium Q0
is given by

J (Q0) =



−k1 θ 0 − S0β
N0

− S0β
N0

α − S0ν
K

ξ −k2 0 −πV0β
N0

−πV0β
N0

0 −πV0ν
K

0 0 −k3
H0β
N0

H0β
N0

0 H0ν
K

0 0 γ1q −k4 0 0 0
0 0 q1γ1 p1γ2 −k8 0 0
0 0 0 pγ2 σ −k6 0
0 0 0 pc pi 0 −µb


=

(
J1 J2
J3 J4

)
,

where J1 =

(
−k1 θ

ξ −k2

)
, J4 =


−k3

H0β
N0

H0β
N0

0 H0ν
K

γ1q −k4 0 0 0
q1γ1 p1γ2 −k8 0 0

0 pγ2 σ −k6 0
0 pc pi 0 −µb

,

J2 =

(
0 − S0β

N0
− S0β

N0
α − S0ν

K

0 −πV0β
N0

−πV0β
N0

0 −πV0ν
K

)
, and J3 = 0R5×2 . The eigenvalues of J (Q0)

are those of J1 and J4. It is evident that the eigenvalues of J1 have negative real
parts. Indeed, the characteristic polynomial of J1 is T (x) = det(J1 − xI2) = x2 + (k1 +
k2)x + k7. Since all its coefficients are positive, it follows that all its roots have negative
real parts. A trivial eigenvalue of J4 is x = −k6. The others are the roots of the fol-
lowing polynomial: I(x) = x4 + a1x3 + a2x2 + a3x + a4, with a1 = µb + k8 + k4 + k3,
a4 = k3k4k8µb(1−R?

c )(R?
c − R1 + 1),

a2 =
1

k8q + p1γ2q + q1k4

[
k2

8µbq + k4k8µbq + k3k8µbq + p1γ2k8µbq + p1γ2k4µbq + p1γ2k3µbq

+k4k2
8q + k3k2

8q + k3k4k8q(1− R1) + p1γ2k4k8q + p1γ2k3k8q + p1γ2k3k4q + q1k4k8µb

+q1k2
4µb + q1k3k4µb + q1k2

4k8 + q1k3k4k8(1− R1) + q1k3k2
4

]
,

and

a3 =
1

((p1γ2k8 + p2
1γ2

2)pi + (k2
8 + p1γ2k8)pc)q2 + ((q1k4k8 + 2p1q1γ2k4)pi + q1k4k8 pc)q + q2

1k2
4 pi
×

×
[
((((p1γ2k4 + p1γ2k3)k2

8 + (((1− R1)p1γ2k3 + p2
1γ2

2)k4 + p2
1γ2

2k3)k8 + p2
1γ2

2k3k4)µb

+(1− R1)p1γ2k3k4k2
8 + (1− R1)p2

1γ2
2k3k4k8)pi + K1 pc)q2

+(K2 pi + (q1k3k2
4k8µb

(
1−R2

c? + R1Rc?

)
+ q1k2

4k2
8µb + (1− R1)q1k3k4k2

8µb + (1− R1)q1k3k2
4k2

8)pc)q

+(q2
1k3k2

4k8µb(1−Rc?)(1− R1 +Rc?) + q2
1k3

4k8µb + q2
1k3k3

4µb + (1− R1)q2
1k3k3

4k8)pi

]
.

K1 =
{

k8(1−Rc?)(1− R1 +Rc?) + p1γ2

(
1−R2

c? + R1Rc?

)}
k3k4k8µb

+ (k4 + k3)(k8 + p1γ2)k2
8µb + (1− R1)(k8 + p1γ2)k3k4k2

8

K2 = (k8 + p1γ2)q1k3k4k8µb

(
1−R2

c? + R1Rc?

)
+ (1− R1)p1γ2q1k3k4k8µb + ((1− R1)q1k3 + 2p1γ2q1)k2

4k8µ2
b + 2p1γ2q1k3k2

4µb

+ q1k2
4k2

8µb + q1k3k2
4k8(1− R1)(k8 + 2p1γ2)
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It is clear that a1 is always positive, and ai, i ∈ {2, 3, 4} are positive ifRc? < 1. Indeed, it is
important to note that

Rc? < 1 =⇒ R1 < 1, (A1)

which implies that K1 > 0 and K2 > 0.
Thus, all coefficients of the polynomial I(x) are always positive wheneverRc? < 1. It

follows that, ifRc? < 1, then the disease-free equilibrium is locally asymptotically stable
if and only if the following conditions hold (because of the length of the expressions, we
omit them here):

a1a2 − a3 > 0 and a1a2a3 − a2
1a4 − a2

3 > 0. (A2)

This ends the proof.

It remains now to prove the corresponding result for the new fractional model (35).
To this aim, let us define the following equation:

det[r(I − (1− η)J (Q0))− ηJ (Q0)] = 0, (A3)

which is the characteristic equation of

J (Q0) =



−k1 ϑ 0 − S0β
N0

− S0β
N0

0 − S0ν
K

ξ −k2 0 −V0βπ
N0

−V0βπ
N0

0 −V0νπ
N0

0 0 −k3
H0β
N0

H0β
N0

0 H0ν
K

0 0 γ1q −k4 0 0 0
0 0 q1γ1 p1γ2 −k8 0 0
0 0 0 γ2 p σ −k6 0
0 0 0 pc pi 0 −µb


.

From [4,30], it follows thatQ0 is asymptotically stable, for the new fractional model, if
all solutions of (A3) have negative real parts.

Setting D := [r(I − (1− η)J (Q0))− ηQ0] =

(
D1 •

0R5×2 D4

)
, with

D1 :=
(
(η1k1 + 1)r + k1η −η1rϑ− ηϑ
−η1rξ − ηξ (η1k2 + 1)r + k2η

)
and

D4 :=


(η1k3 + 1)r + k3η − H0η1 βr

N0
− H0 βη

N0
− H0η1 βr

N0
− H0 βη

N0
0 − H0η1νr

K − H0ην
K

−η1γ1qr− γ1ηq (η1k4 + 1)r + k4η 0 0 0
−η1q1γ1r− q1γ1η −η1 p1γ2r− p1γ2η (η1k8 + 1)r + k8η 0 0

0 −η1γ2 pr− γ2ηp −η1rσ− ησ (η1k6 + 1)r + k6η 0
0 −η1 pcr− pcη −η1 pir− ηpi 0 (η1µb + 1)r + µbη

,

it follows that the solutions of (A3) are the solutions of det(D1) = 0 and det(D4) = 0. From
the Proof of Theorem 2, it follows that the solutions of det(D1) = 0 have negative real parts.

It thus remains to show that the same is true for det(D4) = 0. Note that r = − k8η

η1k8 + 1
< 0

is a solution of det(D4) = 0. The others are the solutions of det(D?
4 ) = 0, where

D?
4 :=


(η1k3 + 1)r + k3η −H0η1βr

N0
− H0βη

N0
−H0η1βr

N0
− H0βη

N0
−H0η1νr

K − H0ην
K

−η1γ1qr− γ1ηq (η1k4 + 1)r + k4η 0 0
−η1q1γ1r− q1γ1η −η1 p1γ2r− p1γ2η (η1k8 + 1)r + k8η 0

0 −η1 pcr− pcη −η1 pir− ηpi (η1µb + 1)r + µbη

.

After some straightforward algebraic computations, we obtain that

det(D?
4 ) = 0⇐⇒ r4 +

A2

A1
r3 +

A3

A1
r2 +

A4

A1
r +

A5

A1
= 0, (A4)

where
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A1 = ((((−p1γ2k3k4k2
8 − p2

1γ2
2k3k4k8)µbR2

c? + (R1 p1γ2k3k4k2
8 + R1 p2

1γ2
2k3k4k8)µbRc?

+ ((1− R1)p1γ2k3k4k2
8 + (1− R1)p2

1γ2
2k3k4k8)µb)η

4

+ (((p1γ2k4 + p1γ2k3)k2
8 + (((1− R1)p1γ2k3 + p2

1γ2
2)k4 + p2

1γ2
2k3)k8 + p2

1γ2
2k3k4)µb

+ (1− R1)p1γ2k3k4k2
8 + (1− R1)p2

1γ2
2k3k4k8)η

3 + ((p1γ2k2
8 + (p1γ2k4 + p1γ2k3 + p2

1γ2
2)k8 + p2

1γ2
2k4 + p2

1γ2
2k3)µb

+ (p1γ2k4 + p1γ2k3)k2
8 + (((1− R1)p1γ2k3 + p2

1γ2
2)k4 + p2

1γ2
2k3)k8 + p2

1γ2
2k3k4)η

2

+ ((p1γ2k8 + p2
1γ2

2)µb + p1γ2k2
8 + (p1γ2k4 + p1γ2k3 + p2

1γ2
2)k8 + p2

1γ2
2k4 + p2

1γ2
2k3)η + p1γ2k8 + p2

1γ2
2)pi

+ ((−k3k4k3
8 − p1γ2k3k4k2

8)µbR2
c + (R1k3k4k3

8 + R1 p1γ2k3k4k2
8)µbRc? + ((1− R1)k3k4k3

8 + (1− R1)p1γ2k3k4k2
8)µb)pcη4

+ ((−k3k4k2
8 − p1γ2k3k4k8)µbR2

c? + (R1k3k4k2
8 + R1 p1γ2k3k4k8)µbRc? + ((k4 + k3)k3

8 + (((1− R1)k3 + p1γ2)k4 + p1γ2k3)k2
8

+ p1γ2k3k4k8)µb + (1− R1)k3k4k3
8 + (1− R1)p1γ2k3k4k2

8)pcη3 + ((k3
8 + (k4 + k3 + p1γ2)k2

8 + (p1γ2k4 + p1γ2k3)k8)µb

+ (k4 + k3)k3
8 + (((1− R1)k3 + p1γ2)k4 + p1γ2k3)k2

8 + p1γ2k3k4k8)pcη2 + ((k2
8 + p1γ2k8)µb + k3

8 + (k4 + k3 + p1γ2)k2
8

+ (p1γ2k4 + p1γ2k3)k8)pcη + (k2
8 + p1γ2k8)pc)q2

+ ((((−q1k3k2
4k2

8 − 2p1q1γ2k3k2
4k8)µbR2

c? + (R1q1k3k2
4k2

8 + 2R1 p1q1γ2k3k2
4k8)µbRc?

+ ((1− R1)q1k3k2
4k2

8 + (2− 2R1)p1q1γ2k3k2
4k8)µb)η

4

+ ((−q1k3k4k2
8 − p1q1γ2k3k4k8)µbR2

c? + (R1q1k3k4k2
8 + R1 p1q1γ2k3k4k8)µbRc?

+ ((q1k2
4 + q1k3k4)k2

8 + (((1− R1)q1k3 + 2p1q1γ2)k2
4 + (2− R1)p1q1γ2k3k4)k8 + 2p1q1γ2k3k2

4)µb

+ (1− R1)q1k3k2
4k2

8 + (2− 2R1)p1q1γ2k3k2
4k8)η

3 + ((q1k4k2
8 + (q1k2

4 + (q1k3 + 2p1q1γ2)k4)k8 + 2p1q1γ2k2
4 + 2p1q1γ2k3k4)µb

+ (q1k2
4 + q1k3k4)k2

8 + (((1− R1)q1k3 + 2p1q1γ2)k2
4 + (2− R1)p1q1γ2k3k4)k8 + 2p1q1γ2k3k2

4)η
2 + ((q1k4k8 + 2p1q1γ2k4)µb

+ q1k4k2
8 + (q1k2

4 + (q1k3 + 2p1q1γ2)k4)k8 + 2p1q1γ2k2
4 + 2p1q1γ2k3k4)η + q1k4k8 + 2p1q1γ2k4)pi

+ (−q1k3k2
4k2

8µbR2
c? + R1q1k3k2

4k2
8µbRc? + (1− R1)q1k3k2

4k2
8µb)pcη4

+ (−q1k3k2
4k8µbR2

c? + R1q1k3k2
4k8µbRc? + ((q1k2

4 + (1− R1)q1k3k4)k2
8 + q1k3k2

4k8)µb + (1− R1)q1k3k2
4k2

8)pcη3

+ ((q1k4k2
8 + (q1k2

4 + q1k3k4)k8)µb + (q1k2
4 + (1− R1)q1k3k4)k2

8 + q1k3k2
4k8)pcη2

+ (q1k4k8µb + q1k4k2
8 + (q1k2

4 + q1k3k4)k8)pcη + q1k4k8 pc)q

+ ((−q2
1k3k3

4k8µbR2
c? + R1q2

1k3k3
4k8µbRc? + (1− R1)q2

1k3k3
4k8µb)η

4

+ (−q2
1k3k2

4k8µbR2
c? + R1q2

1k3k2
4k8µbRc? + ((q2

1k3
4 + (1− R1)q2

1k3k2
4)k8 + q2

1k3k3
4)µb + (1− R1)q2

1k3k3
4k8)η

3

+ ((q2
1k2

4k8 + q2
1k3

4 + q2
1k3k2

4)µb + (q2
1k3

4 + (1− R1)q2
1k3k2

4)k8 + q2
1k3k3

4)η
2 + (q2

1k2
4µb + q2

1k2
4k8 + q2

1k3
4 + q2

1k3k2
4)η + q2

1k2
4)pi,

A4 = ((4(k8 + p1γ2)p1γ2k3k4k8µb(1−Rc?)(1 +Rc? − R1)η
4

+ (((p1γ2k4 + p1γ2k3)k2
8 + (((1− R1)p1γ2k3 + p2

1γ2
2)k4 + p2

1γ2
2k3)k8 + p2

1γ2
2k3k4)µb

+ (1− R1)p1γ2k3k4k2
8 + (1− R1)p2

1γ2
2k3k4k8)η

3)pi + 4(k8 + p1γ2)(1−Rc?)(1 +Rc? − R1)k3k4k2
8µb pcη4

+ ((k8 + p1γ2)k3k4k8µbRc?(R1 −Rc?) + ((k4 + k3)k3
8

+ (((1− R1)k3 + p1γ2)k4 + p1γ2k3)k2
8 + p1γ2k3k4k8)µb + (1− R1)k3k4k3

8 + (1− R1)p1γ2k3k4k2
8)pcη3)q2

+ ((((−4q1k3k2
4k2

8 − 8p1q1γ2k3k2
4k8)µbR2

c? + (4R1q1k3k2
4k2

8 + 8R1 p1q1γ2k3k2
4k8)µbRc?

+ ((4− 4R1)q1k3k2
4k2

8 + (8− 8R1)p1q1γ2k3k2
4k8)µb)η

4

+ ((−q1k3k4k2
8 − p1q1γ2k3k4k8)µbR2

c? + (R1q1k3k4k2
8 + R1 p1q1γ2k3k4k8)µbRc? + ((q1k2

4 + q1k3k4)k2
8

+ (((1− R1)q1k3 + 2p1q1γ2)k2
4 + (2− R1)p1q1γ2k3k4)k8 + 2p1q1γ2k3k2

4)µb + (1− R1)q1k3k2
4k2

8

+ (2− 2R1)p1q1γ2k3k2
4k8)η

3)pi + (−4q1k3k2
4k2

8µbR2
c? + 4R1q1k3k2

4k2
8µbRc? + (4− 4R1)q1k3k2

4k2
8µb)pcη4

+ (−q1k3k2
4k8µbR2

c? + R1q1k3k2
4k8µbRc? + ((q1k2

4 + (1− R1)q1k3k4)k2
8 + q1k3k2

4k8)µb

+ (1− R1)q1k3k2
4k2

8)pcη3)q + ((−4q2
1k3k3

4k8µbR2
c? + 4R1q2

1k3k3
4k8µbRc? + (4− 4R1)q2

1k3k3
4k8µb)η

4

+ (−q2
1k3k2

4k8µbR2
c? + R1q2

1k3k2
4k8µbRc? + ((q2

1k3
4 + (1− R1)q2

1k3k2
4)k8 + q2

1k3k3
4)µb + (1− R1)q2

1k3k3
4k8)η

3)pi,
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A5 = k3k4k8µb(Rc? − R1 + 1)η4(k8q + p1γ2q + q1k4)(p1γ2 piq + k8 pcq + q1k4 pi)(1−Rc?),

A2 = ((((−4p1γ2k3k4k2
8 − 4p2

1γ2
2k3k4k8)µbR2

c? + (4R1 p1γ2k3k4k2
8 + 4R1 p2

1γ2
2k3k4k8)µbRc?

+ ((4− 4R1)p1γ2k3k4k2
8 + (4− 4R1)p2

1γ2
2k3k4k8)µb)η

4

+ (((3p1γ2k4 + 3p1γ2k3)k2
8 + (((3− 3R1)p1γ2k3 + 3p2

1γ2
2)k4 + 3p2

1γ2
2k3)k8 + 3p2

1γ2
2k3k4)µb

+ (3− 3R1)p1γ2k3k4k2
8 + (3− 3R1)p2

1γ2
2k3k4k8)η

3 + ((2p1γ2k2
8 + (2p1γ2k4 + 2p1γ2k3 + 2p2

1γ2
2)k8 + 2p2

1γ2
2k4 + 2p2

1γ2
2k3)µb

+ (2p1γ2k4 + 2p1γ2k3)k2
8 + (((2− 2R1)p1γ2k3 + 2p2

1γ2
2)k4 + 2p2

1γ2
2k3)k8 + 2p2

1γ2
2k3k4)η

2

+ ((p1γ2k8 + p2
1γ2

2)µb + p1γ2k2
8 + (p1γ2k4 + p1γ2k3 + p2

1γ2
2)k8 + p2

1γ2
2k4 + p2

1γ2
2k3)η)pi

+ ((−4k3k4k3
8 − 4p1γ2k3k4k2

8)µbR2
c? + (4R1k3k4k3

8 + 4R1 p1γ2k3k4k2
8)µbRc? + 4(1− R1)(k8 + p1γ2)k3k4k2

8µb)pcη4

+ ((−3k3k4k2
8 − 3p1γ2k3k4k8)µbR2

c? + (3R1k3k4k2
8 + 3R1 p1γ2k3k4k8)µbRc?

+ (3(k4 + k3)k3
8 + ((3(1− R1)k3 + 3p1γ2)k4 + 3p1γ2k3)k2

8 + 3p1γ2k3k4k8)µb + 3(1− R1)k3k4k3
8 + 3(1− R1)p1γ2k3k4k2

8)pcη3

+ ((2k3
8 + (2k4 + 2k3 + 2p1γ2)k2

8 + (2p1γ2k4 + 2p1γ2k3)k8)µb + (2k4 + 2k3)k3
8 + (((2− 2R1)k3 + 2p1γ2)k4 + 2p1γ2k3)k2

8

+ 2p1γ2k3k4k8)pcη2 + ((k2
8 + p1γ2k8)µb + k3

8 + (k4 + k3 + p1γ2)k2
8 + (p1γ2k4 + p1γ2k3)k8)pcη)q2

+ ((((−4q1k3k2
4k2

8 − 8p1q1γ2k3k2
4k8)µbR2

c? + (4R1q1k3k2
4k2

8 + 8R1 p1q1γ2k3k2
4k8)µbRc?

+ ((4− 4R1)q1k3k2
4k2

8 + (8− 8R1)p1q1γ2k3k2
4k8)µb)η

4

+ ((−3q1k3k4k2
8 − 3p1q1γ2k3k4k8)µbR2

c? + (3R1q1k3k4k2
8 + 3R1 p1q1γ2k3k4k8)µbRc?

+ ((3q1k2
4 + 3q1k3k4)k2

8 + (((3− 3R1)q1k3 + 6p1q1γ2)k2
4 + (6− 3R1)p1q1γ2k3k4)k8 + 6p1q1γ2k3k2

4)µb + (3− 3R1)q1k3k2
4k2

8

+ (6− 6R1)p1q1γ2k3k2
4k8)η

3 + ((2q1k4k2
8 + (2q1k2

4 + (2q1k3 + 4p1q1γ2)k4)k8 + 4p1q1γ2k2
4 + 4p1q1γ2k3k4)µb

+ (2q1k2
4 + 2q1k3k4)k2

8 + (((2− 2R1)q1k3 + 4p1q1γ2)k2
4 + (4− 2R1)p1q1γ2k3k4)k8 + 4p1q1γ2k3k2

4)η
2

+ ((q1k4k8 + 2p1q1γ2k4)µb + q1k4k2
8 + (q1k2

4 + (q1k3 + 2p1q1γ2)k4)k8 + 2p1q1γ2k2
4 + 2p1q1γ2k3k4)η)pi

+ 4(1− R1 + R1Rc? −R2
c?)q1k3k2

4k2
8µb pcη4

+ (−3q1k3k2
4k8µbR2

c? + 3R1q1k3k2
4k8µbRc? + ((3q1k2

4 + (3− 3R1)q1k3k4)k2
8 + 3q1k3k2

4k8)µb + (3− 3R1)q1k3k2
4k2

8)pcη3

+ ((2q1k4k2
8 + (2q1k2

4 + 2q1k3k4)k8)µb + (2q1k2
4 + (2− 2R1)q1k3k4)k2

8 + 2q1k3k2
4k8)pcη2

+ (q1k4k8µb + q1k4k2
8 + (q1k2

4 + q1k3k4)k8)pcη)q

+ ((−4q2
1k3k3

4k8µbR2
c? + 4R1q2

1k3k3
4k8µbRc? + (4− 4R1)q2

1k3k3
4k8µb)η

4

+ (−3q2
1k3k2

4k8µbR2
c + 3R1q2

1k3k2
4k8µbRc? + ((3q2

1k3
4 + (3− 3R1)q2

1k3k2
4)k8 + 3q2

1k3k3
4)µb + (3− 3R1)q2

1k3k3
4k8)η

3

+ ((2q2
1k2

4k8 + 2q2
1k3

4 + 2q2
1k3k2

4)µb + (2q2
1k3

4 + (2− 2R1)q2
1k3k2

4)k8 + 2q2
1k3k3

4)η
2 + (q2

1k2
4µb + q2

1k2
4k8 + q2

1k3
4 + q2

1k3k2
4)η)pi,
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A3 = ((((−6p1γ2k3k4k2
8 − 6p2

1γ2
2k3k4k8)µbR2

c + (6R1 p1γ2k3k4k2
8 + 6R1 p2

1γ2
2k3k4k8)µbRc

+ ((6− 6R1)p1γ2k3k4k2
8 + (6− 6R1)p2

1γ2
2k3k4k8)µb)η

4 + (((3p1γ2k4 + 3p1γ2k3)k2
8

+ (((3− 3R1)p1γ2k3 + 3p2
1γ2

2)k4 + 3p2
1γ2

2k3)k8 + 3p2
1γ2

2k3k4)µb + (3− 3R1)p1γ2k3k4k2
8 + (3− 3R1)p2

1γ2
2k3k4k8)η

3

+ ((p1γ2k2
8 + (p1γ2k4 + p1γ2k3 + p2

1γ2
2)k8 + p2

1γ2
2k4 + p2

1γ2
2k3)µb + (p1γ2k4 + p1γ2k3)k2

8

+ (((1− R1)p1γ2k3 + p2
1γ2

2)k4 + p2
1γ2

2k3)k8 + p2
1γ2

2k3k4)η
2)pi

+ ((−6k3k4k3
8 − 6p1γ2k3k4k2

8)µbR2
c? + (6R1k3k4k3

8 + 6R1 p1γ2k3k4k2
8)µbRc? + (6− 6R1)(k3k4k3

8 + p1γ2k3k4k2
8)µb)pcη4

+ ((−3k3k4k2
8 − 3p1γ2k3k4k8)µbR2

c? + (3R1k3k4k2
8 + 3R1 p1γ2k3k4k8)µbRc

+ ((3k4 + 3k3)k3
8 + (((3− 3R1)k3 + 3p1γ2)k4 + 3p1γ2k3)k2

8 + 3p1γ2k3k4k8)µb + 3(1− R1)k3k4k2
8(k8 + p1γ2))pcη3

+ ((k3
8 + (k4 + k3 + p1γ2)k2

8 + p1γ2(k4 + k3)k8)µb + (k4 + k3)k3
8 + (((1− R1)k3 + p1γ2)k4 + p1γ2k3)k2

8 + p1γ2k3k4k8)pcη2)q2

+ ((((−6q1k3k2
4k2

8 − 12p1q1γ2k3k2
4k8)µbR2

c + (6R1q1k3k2
4k2

8 + 12R1 p1q1γ2k3k2
4k8)µbRc?

+ ((6− 6R1)q1k3k2
4k2

8 + (12− 12R1)p1q1γ2k3k2
4k8)µb)η

4

+ ((−3q1k3k4k2
8 − 3p1q1γ2k3k4k8)µbR2

c? + (3R1q1k3k4k2
8 + 3R1 p1q1γ2k3k4k8)µbRc

+ ((3q1k2
4 + 3q1k3k4)k2

8 + (((3− 3R1)q1k3 + 6p1q1γ2)k2
4 + (6− 3R1)p1q1γ2k3k4)k8 + 6p1q1γ2k3k2

4)µb

+ (3− 3R1)q1k3k2
4k2

8 + (6− 6R1)p1q1γ2k3k2
4k8)η

3

+ ((q1k4k2
8 + (q1k2

4 + (q1k3 + 2p1q1γ2)k4)k8 + 2p1q1γ2k2
4 + 2p1q1γ2k3k4)µb + (q1k2

4 + q1k3k4)k2
8

+ (((1− R1)q1k3 + 2p1q1γ2)k2
4 + (2− R1)p1q1γ2k3k4)k8 + 2p1q1γ2k3k2

4)η
2)pi

+ (−6q1k3k2
4k2

8µbR2
c? + 6R1q1k3k2

4k2
8µbRc? + (6− 6R1)q1k3k2

4k2
8µb)pcη4

+ (−3q1k3k2
4k8µbR2

c? + 3R1q1k3k2
4k8µbRc? + ((3q1k2

4 + (3− 3R1)q1k3k4)k2
8 + 3q1k3k2

4k8)µb + (3− 3R1)q1k3k2
4k2

8)pcη3

+ ((q1k4k2
8 + (q1k2

4 + q1k3k4)k8)µb + (q1k2
4 + (1− R1)q1k3k4)k2

8 + q1k3k2
4k8)pcη2)q

+ ((−6q2
1k3k3

4k8µbR2
c? + 6R1q2

1k3k3
4k8µbRc? + (6− 6R1)q2

1k3k3
4k8µb)η

4

+ (−3q2
1k3k2

4k8µbR2
c? + 3R1q2

1k3k2
4k8µbRc? + ((3q2

1k3
4 + (3− 3R1)q2

1k3k2
4)k8 + 3q2

1k3k3
4)µb + (3− 3R1)q2

1k3k3
4k8)η

3

+ ((q2
1k2

4k8 + q2
1k3

4 + q2
1k3k2

4)µb + (q2
1k3

4 + (1− R1)q2
1k3k2

4)k8 + q2
1k3k3

4)η
2)pi.

It is possible to show that all the above coefficients are positive whenever Rc? < 1.
Then, it follows that, ifRc < 1, then the disease-free equilibriumQ0 is asymptotically stable

whenever the following Routh–Hurwitz criteria, A1 A2
A2

5
− A3

A5
> 0 and A1 A2 A3

A3
5
− A2

1 A4
A3

5
− A2

3
A2

5
> 0,

are satisfied for polynomial det(D?
4). (Given the heaviness of these coefficients, we do not

present the Routh–Hurwitz conditions here.)

Appendix B. Proof of Theorem 6

Let us rewrite system (34) as

dE
dt
dC
dt
dI
dt
dB
dt


=


−k3

H0β
N0

H0β
N0

H0ν
K

γ1q −k4 0 0
q1γ1 p1γ2 −k8 0

0 pc pi −µb




E
C
I
B

−N (S, V, E, C, I, R, B), (A5)

where N (S, V, E, C, I, R, B) =


β(C + I)

(
H0

N0
− H

N

)
+ νB

(
H0

K
− H

K + B

)
0
0
0

.
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In W , H = S + πV < H0 = S0 + πV0 for t > 0; thus, N (S, V, E, C, I, R, B) ≥ OR4 .
Note that Proposition 3 ensures that the following matrix

J (Q0) =


−k3

H0β
N0

H0β
N0

H0ν
K

γ1q −k4 0 0
q1γ1 p1γ2 −k8 0

0 pc pi −µb


has all its eigenvalues with negative real parts. It follows that from the comparison
theorem [40], (E, C, I, B) −→ (0, 0, 0, 0) and (S, V, R) −→ (S0, V0, 0) as t −→ +∞. Thus,
(S, V, E, C, I, R, B) −→ Q0 = (S0, V0, 0, 0, 0, 0, 0) as t −→ +∞. We finally conclude that the
disease–free equilibrium is globally asymptotically stable inW ifRc? < 1.
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