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1. Introduction

In this work, we obtain some oscillation conditions of equation

(
b(t)

(
y′′′(t)

)α
)′

+
j

∑
i=1

νi(t)xα(gi(t)) = 0. (1)

where j is a positive integer and

y(t) = x(t) + β(t)x(z̃(t)). (2)

Equation (1) is said to be in canonical form if
∫ ∞

t0
b−1/α(s)ds = ∞; otherwise, it is

called noncanonical. Throughout this work, we suppose the hypotheses as follows:
b ∈ C1([t0, ∞)), b(t) > 0, b′(t) ≥ 0, β, ν ∈ C([t0, ∞)), ν(t) > 0, 0 ≤ β(t) < β0 < ∞,

z̃ ∈ C1([t0, ∞)), gi ∈ C([t0, ∞)), z̃′(t) > 0, z̃(t) ≤ t and limt→∞ z̃(t) = limt→∞ gi(t) = ∞,

α is quotient of odd positive integers, α > 0

and
ξ(t0) :=

∫ ∞

t0

b−1/α(s)ds < ∞. (3)

Neutral/delay differential equations are used in a variety of problems in economics,
biology, medicine, engineering and physics, including lossless transmission lines, vibration
of bridges, as well as vibrational motion in flight, and as the Euler equation in some varia-
tional problems, see [1,2]. In particular, fourth-order neutral delay differential Equation (1)
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find application in explaining human self-balancing. With regard to their practical impor-
tance, oscillation of fourth-order neutral differential equations has been studied extensively
during recent decades, see [3–9].

As a result, there is an ongoing interest in obtaining several sufficient conditions for the
oscillatory behavior of the solutions of different kinds of differential equations, especially
their the oscillation and asymptotic. Baculikova [10], Dzurina and Jadlovska [11], and
Bohner et al. [12] developed approaches and techniques for studying oscillatory properties
in order to improve the oscillation criteria of second-order differential equations with
delay/advanced terms. Xing et al. [13] and Moaaz et al. [14] also extended this evolution
to differential equations of the neutral type. Therefore, there are many studies on the
oscillatory properties of different orders of some differential equations in noncanonical
form, see [15–25].

The qualitative theory of differential equations as well as analytical methods for
qualitative behavior of solutions have contributed to the development of many new mathe-
matical ideas and methodologies for solving ordinary and fractional differential equations
as well as systems of differential equations. From the viewpoint of applications, differ-
ential equations are crucially important for modeling any kind of dynamical systems or
processes in real life. So, in this work, we study the oscillatory behavior of solutions of
the fourth-order neutral delay differential equations in noncanonical form. However, to
the best of our knowledge, only a few papers have studied the oscillation and qualitative
behavior of fourth-order neutral delay differential equations in noncanonical form.

2. Mathematical Background

In this section, we collect some relevant facts and auxiliary results from the existing
literature. Furthermore, we fix the notations.

Definition 1. A solution of (1) is said to be non-oscillatory if it is positive or negative, ultimately;
otherwise, it is said to be oscillatory.

Definition 2. Equation (1) is said to be oscillatory if every solution of it is oscillatory.

For convenience, we denote:

Pk(t) : =
1

β(z̃−1(t))

1−

((
z̃−1(t)

)k−1
β
(
z̃−1(z̃−1(t)

)))−1

(z̃−1(z̃−1(t)))1−k

, for k = 2, . . ., n,

Θ(s) : =
αα+1

(α + 1)α+1
bα
(
z̃−1(gi(s))

)
b1/α(s)ξ(s)

(
(z̃−1(gi(s)))

′
)α

and

Θ̃(s) =
αb+1

(α + 1)α+1
2αbα

(
z̃−1(gi(s))

)
b1/α(s)ξ(s)µ1

(
(z̃−1(gi(s)))

′
(z̃−1(gi(s)))

2
)α .

Furthermore,

ω(t) :=
b(t)(y′′′(t))α

(y′′(z̃−1(gi(t))))
α (4)

and

ζ(t) :=
b(t)(y′′′(t))α

yα(z̃−1(gi(t)))
. (5)

The motivation for this article is to complement the results reported in [13,26], which
discussed the oscillatory properties of equation in a canonical form.
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Xing et al. [13] discussed the equation(
b(t)y(m−1)(t)

)′
+ ν(t)ϕ(x(g(t))) = 0.

Moreover, the authors used the comparison method to obtain oscillation conditions
for this equation.

Agarwal et al. [26] investigated the oscillation of equation(
b(t)

(
y′′′(t)

)α
)′

+ ν(t)ϕ(x(g(t))) = 0.

The authors used the integral averaging technique to obtain oscillatory properties for
this equation.

Moaaz et al. [14] established some criteria of (1) under condition

lim inf
t→∞

∫ t

z̃−1(η(t))

( (
z̃−1(η(s))

)n−1

b1/α(z̃−1(η(s)))

)α

ν(s)Pα
n (g(s))ds >

((n− 1)!)α

e
. (6)

Tang et al. [27] presented oscillation results for (1) under

lim sup
t→∞

∫ t

t0

(
ν(s)(1− β(z̃(s)))α

(
λ1z̃n−2(s)z̃(s)

(n− 2)!

)α

− αb+1

(α + 1)α+1z̃(s)b1/α(s)

)
ds = ∞.

In [18], the authors established asymptotic behavior for neutral equation(
b(t)

(
y′′′(t)

)α
)′

+ ν(t)xα(g(t)) = 0,

under condition ∫ ∞

t0

b−1/α(s)ds = ∞. (7)

The authors in [13,26] used the comparison technique that differs from the one we
used in this article. Their approach is based on using these mentioned methods to reduce
Equation (1) into a first-order equation, while in our article, we discuss the oscillation and
asymptotic properties of differential equations in a noncanonical form of the neutral-type,
and we employ a different approach based on using the Riccati technique to reduce the
main equation into a first-order inequality to obtain more effective oscillation conditions
for Equation (1).

Motivated by these reasons mentioned above, in this paper, we extend the results
using Riccati transformation under (3). These results contribute to adding some important
conditions that were previously studied in the subject of oscillation of differential equations
with neutral term. To prove our main results, we give some examples.

To prove the main results, we present some lemmas:

Lemma 1 ([16]). If the function x satisfies x(i)(t) > 0, i = 0, 1, . . ., n, and x(n+1)(t) <
0 eventually. Then, for every ε ∈ (0, 1), x(t)/x′(t) ≥ εt/n eventually.

Lemma 2 ([17]). Let x ∈ Cn([t0, ∞), (0, ∞)) and x(n−1)(t)x(n)(t) ≤ 0 for all t ≥ t1. If
limt→∞ x(t) 6= 0, then for every µ ∈ (0, 1) there exists tµ ≥ t1 such that

x(t) ≥ µ

(n− 1)!
tn−1

∣∣∣x(n−1)(t)
∣∣∣ for t ≥ tµ.

Lemma 3 ([24]). Let A2 > 0. Then

A2w− A1w(r+1)/r ≤ rr

(r + 1)r+1
Ar+1

1
Ar

2
, A1.
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Lemma 4. Let
x be a positive solution of (1), (8)

Then, b(z)(y′′′(z))α is non-increasing. Furthermore, the following cases are possible:

(S1) : y′(t) > 0, y′′(t) > 0, y′′′(t) > 0 and y(4)(t) < 0;
(S2) : y′(t) > 0, y′′(t) < 0, y′′′(t) > 0 and y(4)(t) < 0;
(S3) : y′(t) > 0, y′′(t) > 0 and y′′′(t) < 0;
(S4) : y′(t) < 0, y′′(t) > 0 and y′′′(t) < 0.

3. Oscillation Criteria

Lemma 5. Let (8) hold with property (S1) or (S2). Then

w′(t) + (1− β0)
α ∑

j
i=1 νi(t)

b(gi(t))

(µ

6
g3

i (t)
)α

w(gi(t)) = 0 (9)

has a non-oscillatory solution for every constant µ ∈ (0, 1) .

Proof. Let (8) hold with property (S1) or (S2). Then, we have that

y′(t) > 0, y′′′(t) > 0 and y(4)(t) < 0.

Using Lemma 2, we find

y(t) ≥ µ

6
t3y′′′(t). (10)

From definition of y, we get that x(t) ≥ (1− β0)y(t), which with (1) gives

(
b(t)

(
y′′′(t)

)α
)′

+ (1− β0)
α

j

∑
i=1

νi(t)yα(gi(t)) ≤ 0. (11)

Hence, from (10), if we set w := b(y′′′)α > 0, then

w′(t) + (1− β0)
α ∑

j
i=1 νi(t)

b(gi(t))

(µ

6
g3

i (t)
)α

w(gi(t)) ≤ 0.

From [19] (Corollary 1), we find (9) also has a positive solution. Thus, Lemma 5
is proved.

Lemma 6. Let (8) hold with property (S3). Then the equation

(
b(t)

(
ω′(t)

)α
)′

+ (1− β0)
α

j

∑
i=1

νi(t)
(µ

2
g2

i (t)
)α

ωα(t) = 0, (12)

has a non-oscillatory solution for every constant µ ∈ (0, 1) .

Proof. Let (8) hold with property (S3). Using Lemma 2, we obtain

y(t) ≥ µ

2
t2y′′(t). (13)

As in the proof of Lemma 6, we find (11). Next, if we set G := b(y′′′/y′′)α < 0, then we find

G′(t) ≤ −(1− β0)
α

j

∑
i=1

νi(t)
yα(gi(t))
(y′′(t))α − αb−1/α(t)G1+1/α(t).
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Hence, from the fact that y′′′ < 0 and (13), we get

G′(t) + (1− β0)
α

j

∑
i=1

νi(t)
(µ

2
g2

i (t)
)α

+ αb−1/α(t)G1+1/α(t) ≤ 0. (14)

Thus, we get that (14) holds. It follow from [19] that (12) has a non-oscillatory solution.
Lemma 6 is proved.

Theorem 1. Let (9) and (12) be oscillatory. If

∫ ∞

t0

(
1

b(u)

∫ t

t0

ν(s)ds
)1/α

du = ∞, (15)

then every non-oscillatory solution of (1) tends to zero.

Proof. Let (8) hold with property limt→∞ x(t) 6= 0. From Lemma 4, we have cases
(S1)–(S4). Using Lemmas 5 and 6 with the fact that (9) and (12) are oscillatory, we get that
x satisfies case (S4). Then, we find limt→∞ y(t) = c ≥ 0. Let c > 0. Thus, for all ε > 0 and t
enough large, we have c ≤ y(t) < c + ε. Set ε < (1− β0)(c/β0), we find

x(t) = y(t)− β0(t)x(z̃(t)) > c− β0y(z̃(t))

> L(γ + ε) > Ly(t), (16)

where L = (c− β0(c + ε))/(c + ε) > 0. So, from (1), we see

(
b(t)

(
y′′′(t)

)α
)′

= −
j

∑
i=1

νi(t)xα(gi(t)) ≤ −Lα
j

∑
i=1

νi(t)yα(gi(t))

≤ −Lαεα
j

∑
i=1

νi(t).

Integrating this inequality from t1 to t, we get

y′′′(t) ≤ −Lε

(
1

b(t)

∫ t

t1

ν(s)ds
)1/α

.

By integrating from t1 to t, we obtain

y′′(t) ≤ y′′(t1)− Lε
∫ t

t1

(
1

b(u)

∫ t

t1

ν(s)ds
)1/α

du.

Letting t → ∞ and taking into account (15), we get that limt→∞ y′′(t) = −∞. This
contradicts the fact that y′′(t) > 0. Therefore, c = 0; moreover the fact x(t) ≤ y(t) implies
limt→∞ x(t) = 0, a contradiction. Theorem 1 is proved.

Corollary 1. Assume that (15) holds. If
∫ ∞

t0
ν(s)ds = ∞, and

lim inf
t→∞

∫ t

g(t)

ν(s)g3α
i (s)

b(gi(s))
ds >

6α

eµα(1− β0)
α (17)

and

lim sup
t→∞

∫ t

t0

(
(1− β0)

αξα(s)ν(s)
(µ

2
g2

i (s)
)α
−
(

α

α + 1

)α+1 1
b1/α(s)ξ(s)

)
ds > 0, (18)

for every µ ∈ (0, 1), then every non-oscillatory solution of (1) tends to zero.
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Corollary 2. Assume that (15) holds. Then every non-oscillatory solution of (1) tends to zero if∫ ∞
t0

ν(s)ds = ∞,

lim inf
t→∞

∫ t

g(t)

(
1− β̂(gi(s))

)α ν(s)g3α
i (s)

b(gi(s))
ds >

6α

µαe

and

lim sup
t→∞

∫ t

t0

((
1− β̂(gi(s))

)α
ξα(s)ν(s)

(µ

2
g2

i (s)
)α
−
(

α

α + 1

)α+1 1
b1/α(s)ξ(s)

)
ds > 0,

for every constant µ ∈ (0, 1).

Lemma 7. Assume that (8) holds and(
z̃−1
(

z̃−1(t)
))n−1

<
(

z̃−1(t)
)n−1

β
(

z̃−1
(

z̃−1(t)
))

. (19)

Then

x(t) ≥
y
(
z̃−1(t)

)
β(z̃−1(t))

− 1
β(z̃−1(t))

y
(
z̃−1(z̃−1(t)

))
β(z̃−1(z̃−1(t)))

. (20)

Proof. Let (8) hold. From the definition of y(t), we get

β(t)x(z̃(t)) = y(t)− x(t)

and so
β
(

z̃−1(t)
)

x(t) = y
(

z̃−1(t)
)
− y
(

z̃−1(t)
)

.

Repeating the same process, we find

x(t) =
1

β(z̃−1(t))

(
y
(

z̃−1(t)
)
−
(

y
(
z̃−1(z̃−1(t)

))
β(z̃−1(z̃−1(t)))

−
x
(
z̃−1(z̃−1(t)

))
β(z̃−1(z̃−1(t)))

))
,

which yields

x(t) ≥
y
(
z̃−1(t)

)
β(z̃−1(t))

− 1
β(z̃−1(t))

y
(
z̃−1(z̃−1(t)

))
β(z̃−1(z̃−1(t)))

.

Thus, (20) holds. Lemma 7 is proved.

Lemma 8. Suppose that (8) holds. If y satisfies (S3), then

(
b(t)

(
y′′′(t)

)α
)′
≤ −

j

∑
i=1

νi(t)Pα
1 (gi(t))yα

(
z̃−1(gi(t))

)
(21)

and if y satisfies (S4), then

(
b(t)

(
y′′′(t)

)α
)′

+
j

∑
i=1

νi(t)Pα
2 (gi(t))yα

(
z̃−1(gi(t))

)
≤ 0. (22)

Proof. Suppose that case (S3) holds. Using Lemma 1, we find y(t) ≥ εty′(t) and hence the
function t−1y(t) is nonincreasing, which with the fact that z̃(t) ≤ t gives(

z̃−1(t)
)

y
(

z̃−1
(

z̃−1(t)
))
≤
(

z̃−1
(

z̃−1(t)
))

y
(

z̃−1(t)
)

. (23)
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Combining (20) and (23), we see that

x(t) ≥ 1
β(z̃−1(t))

(
1−

(
z̃−1(z̃−1(t)

))
z̃−1(t)β(z̃−1(z̃−1(t)))

)
y
(

z̃−1(t)
)

= P2(t)y
(

z̃−1(t)
)

. (24)

From (1) and (24), we obtain

(
b(t)

(
y′′′(t)

)α
)′
≤ −

j

∑
i=1

νi(t)Pα
n (gi(t))yα

(
z̃−1(gi(t))

)
. (25)

Thus, (21) holds.
Let (S4) holds. Since z̃−1(t) ≤ z̃−1(z̃−1(t)

)
. From (20), we see that

x(t) ≥ 1
β(z̃−1(t))

(
1− 1

β(z̃−1(z̃−1(t)))

)
y
(

z̃−1(t)
)

= P2(t)y
(

z̃−1(t)
)

. (26)

which with (1) yields

(
b(t)

(
y′′′(t)

)α
)′

+
j

∑
i=1

νi(t)Pα
2 (gi(t))yα

(
z̃−1(gi(t))

)
≤ 0.

Thus, (22) holds. This completes the proof.

Lemma 9. Let (8) and (S3) hold. If ω ∈ C1[t, ∞) defined as (4), then

ω′(t) ≤ −
j

∑
i=1

νi(t)Pα
1 (gi(t))

(
λ

2

(
z̃−1(gi(t))

)2
)α

− α

(
z̃−1(gi(t))

)′
b1/α(t)b(z̃−1(gi(t)))

ω
α+1

α (t), (27)

for all t > t1and λ ∈ (0, 1), where t1 large enough.

Proof. Let (8) hold. From Lemma (2), we get

y
(

z̃−1(gi(t))
)
≥ λ

2

(
z̃−1(gi(t))

)2
y′′
(

z̃−1(gi(t))
)

. (28)

Recalling that b(t)(y′′′(t))α is decreasing, we get

b
(

z̃−1(gi(t))
)(

y′′′
(

z̃−1(gi(t))
))α
≥ b(t)

(
y′′′(t)

)α.

This yields (
y′′′
(

z̃−1(gi(t))
))α
≥ b(t)

b(z̃−1(gi(t)))
(
y′′′(t)

)α. (29)

From (4), we obtain

ω′(t) =
(
b(t)(y′′′(t))α)′

(y′′(z̃−1(gi(t))))
α − α

b(t)(y′′′(t))αy′′′
(
z̃−1(gi(t))

)(
z̃−1(gi(t))

)′
(y′′(z̃−1(gi(t))))

α+1 .
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From (4), (28) and (29), we get

ω′(t) ≤ −
j

∑
i=1

νi(t)Pα
1 (gi(t))

yα
(
z̃−1(gi(t))

)
(y′′(z̃−1(gi(t))))

α

− α
b(t)

(
z̃−1(gi(t))

)′
b(z̃−1(gi(t)))

(y′′′(t))α+1

(y′′(z̃−1(gi(t))))
α+1

≤ −
j

∑
i=1

νi(t)Pα
1 (gi(t))

(
λ

2

(
z̃−1(gi(t))

)2
)α

− α

(
z̃−1(gi(t))

)′
b1/α(t)b(z̃−1(gi(t)))

ω
α+1

α (t).

The proof is complete.

Lemma 10. Let (8) and (S4) hold. If ζ ∈ C1[t, ∞) defined as (5), then

ζ ′(t) ≤ −
j

∑
i=1

νi(t)Pα
2 (gi(t))− α

µ1
(
z̃−1(gi(t))

)′(z̃−1(gi(t))
)2

2b1/α(z̃−1(gi(t)))
ζα+1(t), (30)

for all µ1 ∈ (0, 1) and t > t1, where t1 large enough.

Proof. Let (8) hold. From ξ(t), we find ξ(t) < 0. By differentiating, we see

ζ ′(t) ≤ −
j

∑
i=1

νi(t)Pα
2 (gi(t))− α

b(t)(y′′′(t))α(z̃−1(gi(t))
)′y′(z̃−1(gi(t))

)
yα+1(z̃−1(gi(t)))

. (31)

From Lemma 2 and (29), we get

y′
(

z̃−1(gi(t))
)
≥ µ1

2

(
z̃−1(gi(t))

)2
(

b(t)
b(z̃−1(gi(t)))

)1/α

y′′′(t), (32)

for all µ1 ∈ (0, 1). Thus, by (5), (31) and (32), we get

ζ ′(t) ≤ −
j

∑
i=1

νi(t)Pα
2 (gi(t))− α

µ1
(
z̃−1(gi(t))

)′(z̃−1(gi(t))
)2

2b1/α(z̃−1(gi(t)))
ζα+1(t).

The proof is complete.

Theorem 2. Suppose that (6) holds. If

∫ ∞

t0

(
ν(s)Pα

1 (gi(s))
(

λ

2

(
z̃−1(gi(t))

)2
)α

ξα(s)ds−Θ(s)
)

ds = ∞ (33)

and ∫ ∞

t0

(
ν(s)Pα

2 (gi(s))ξα(s)ds− Θ̃(s)
)

ds = ∞, (34)

then (1) is oscillatory.

Proof. Let (8) hold. From Lemma 4, we have cases (S1)–(S4). Let (S3) holds. From
Lemma 9, we find (27) holds.
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When we multiply this inequality by ξα(t) and then integrating from t1 to t, we find

ξα(t)ω(t)− ξα(t1)ω(t1) + α
∫ t

t1

b
−1
α (s)ξα−1(s)ω(s)ds

≤ −
∫ t

t1

ν(s)Pα
1 (gi(s))

(
λ

2

(
z̃−1(gi(t))

)2
)α

ξα(s)ds

− α
∫ t

t1

ξα(s)
(
z̃−1(gi(s))

)′g′i(s)
b1/α(s)b(z̃−1(gi(s)))

ω
α+1

α (s)ds. (35)

We set

A2 = b
−1
α (s)ξα−1(s), A1 =

ξα(s)
(
z̃−1(gi(s))

)′g′i(s)
b1/α(s)b(z̃−1(gi(s)))

, w := −ω(s).

Using Lemma 10, we find

b
−1
α (s)ξα−1(s)ω(s)−

ξα(s)
(
z̃−1(gi(s))

)′g′i(s)
b1/α(s)b(z̃−1(gi(s)))

ω
α+1

α

≤ αb+1

(α + 1)α+1
bα
(
z̃−1(gi(s))

)
b1/α(s)ξ(s)

(
(z̃−1(gi(s)))

′
)α .

From (35), we get

∫ t

t1

(
ν(s)Pα

1 (gi(s))
(

λ

2

(
z̃−1(gi(t))

)2
)α

ξα(s)ds−Θ(s)
)

ds ≤ ξα(t1)gi(t1) + 1,

but this contradicts (33).
Suppose that case (S3) holds. By Lemma 10, we find (30) holds.
When we multiply this inequality by ξα(t) and then integrating from t1 to t, we get

ξα(t) ζ(t)− ξα(t1)ζ(t1) + α
∫ t

t1

b
−1
α (s)ξα−1(s)ζ(s)ds

≤ −
∫ t

t1

ν(s)Pα
2 (gi(s))ξα(s)ds

− α
∫ t

t1

µ1ξα(s)
(
z̃−1(gi(s))

)′g′i(s)(z̃−1(gi(s))
)2

2b1/α(s)b(z̃−1(gi(s)))
ζ

α+1
α (s)ds.

We set

A2 = b
−1
α (s)ξα−1(s), A1 =

µ1ξα(s)
(
z̃−1(gi(s))

)′g′i(s)(z̃−1(gi(s))
)2

2b1/α(s)b(z̃−1(gi(s)))
, w := −ζ(s).

Applying Lemma 3, for every µ1 ∈ (0, 1), we obtain

b
−1
α (s)ξα−1(s)ζ(s)−

µ1ξα(s)
(
z̃−1(gi(s))

)′g′i(s)(z̃−1(gi(s))
)2

2b1/α(s)b(z̃−1(gi(s)))
ζ

α+1
α

≤ αb+1

(α + 1)α+1
2αbα

(
z̃−1(gi(s))

)
b1/α(s)ξ(s)µ1

(
(z̃−1(gi(s)))

′
(z̃−1(gi(s)))

2
)α ,

which implies that∫ t

t1

(
ν(s)Pα

2 (gi(s))ξα(s)ds− Θ̃(s)
)

ds ≤ ξα(t1)gi(t1) + 1,
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but this contradicts (34). Theorem 2 is proved.

Example 1. Consider the equation(
t2
(

x(t) + 4x
(

t
2

))′′′)′
+ ν0x

(
t
2

)
= 0, t ≥ 1, ν0 > 0. (36)

Let α = 1, b(t) = t2, β(t) = 4, z̃(t) = g(t) = t/2 and ν(t) = ν0. Furthermore, we see

P1(t) =
1
8

, P2(t) =
3

16
.

Hence, Conditions (33) and (34) become

ν0 > 4

and
ν0 >

8
3

,

By using Theorem 2, Equation (36) is oscillatory if ν0 > 4.

Example 2. Consider the equation(
t2
(

x(t) + 16x
(

t
2

))′′′)′
+ ν0x

(
t
2

)
= 0, t ≥ 1, ν0 > 0, (37)

let α = 1, b(t) = t2, β(t) = 16, z̃(t) = g(t) = t/2 and ν(t) = ν0. Moreover, we find

P1(t) =
7

128
, P2(t) =

1
32

, ξ(t) =
1
t

, Θ(t) =
t
4

and
Θ̃(t) =

1
2t

.

So, we obtain ∫ ∞

t0

(
ν(s)Pα

1 (gi(s))
(

λ

2

(
z̃−1(gi(t))

)2
)α

ξα(s)ds−Θ(s)
)

ds

=

(
7ν0

256
− 1

4

) ∫ ∞

t0

sds

= ∞ if ν0 > 9.14

and ∫ ∞

t0

(
ν(s)Pα

2 (gi(s))ξα(s)ds− Θ̃(s)
)

ds

=

(
ν0

32
− 1

2

) ∫ ∞

t0

1
s

ds

= ∞ if ν0 > 16.

From Theorem 2, Equation (37) is oscillatory if ν0 > 16.

4. Conclusions

In this paper, we study the qualitative and oscillatory properties of solutions to a class
of fourth-order neutral delay differential equations with noncanonical operators. Via the
Riccati transformation, we offer new criteria for the oscillation of all solutions to a given
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differential equation. Our technique essentially simplifies the process of investigation and
reduces the number of conditions required in previously known results. We may say that,
in future work, we will study oscillatory properties of Equation (1) with p-Laplacian like
operators and under the condition∫ ∞

t0

b−1/p−1(s)ds < ∞. (38)

An interesting problem is to extend our results to even-order damped differential
equations with p-Laplacian like operators(

b(t)
(

y(n−1)(t)
)p−1

)′
+ q(t)

(
y(n−1)(t)

)p−1
+

j

∑
i=1

νi(t)xp−1(gi(t)) = 0,

under the condition ∫ ∞

t0

[
1

b(s)
exp

(
−
∫ t

t0

q(z)
b(z)

dz
)]1/p−1

ds < ∞.
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