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Abstract: In this paper, we use ideas from fractional calculus to study the rheological response of
soft materials under steady-shearing flow conditions. The linear viscoelastic properties of many
multi-scale complex fluids exhibit a power-law behavior that spans over many orders of magnitude
in time or frequency, and we can accurately describe this linear viscoelastic rheology using fractional
constitutive models. By measuring the non-linear response during large step strain deformations, we
also demonstrate that this class of soft materials often follows a time-strain separability principle,
which enables us to characterize their nonlinear response through an experimentally determined
damping function. To model the nonlinear response of these materials, we incorporate the damping
function with the integral formulation of a fractional viscoelastic constitutive model and develop an
analytical framework that enables the calculation of material properties such as the rate-dependent
shear viscosity measured in steady-state shearing flows. We focus on a general subclass of fractional
constitutive equations, known as the Fractional Maxwell Model, and consider several different
analytical forms for the damping function. Through analytical and computational evaluations of the
shear viscosity, we show that for sufficiently strong damping functions, for example, an exponential
decay of fluid memory with strain, the observed shear-thinning behavior follows a power-law
response with exponents that are set by the power-law indices of the linear fractional model. For
weak damping functions, however, the power-law index of the high shear rate viscosity is set by
the terminal behavior of the damping function itself at large strains. In the limit of a very weak
damping function, the theoretical formulation predicts an unbounded growth of the shear stress
with time and a continuously growing transient viscosity function that does not converge to a
meaningful steady-state value. By determining the leading terms in our analytical solution for the
viscosity at both low and high shear rates, we construct an approximate analytic expression for the
rate-dependent viscosity. An error analysis shows that, for each of the damping functions considered,
this closed-form expression is accurate over a wide range of shear rates.

Keywords: Fractional Maxwell Model; non-linear fractional viscoelasticity; Wagner model; damping
functions; rate-dependent steady shear viscosity; Gamma function

1. Introduction

A wide range of soft solids and complex fluids from consumer products to fracking
fluids exhibit viscoelastic properties characterized by a broad spectrum of relaxation time
scales. This can make the quantitative constitutive modeling of the material response
very challenging. At its simplest level, the incorporation of both solid-like and liquid-
like responses for a viscoelastic material can be achieved by using a simple mechanical
combination of a linear elastic spring and a constant viscosity dashpot [1]. The serial
combination of a dashpot and a spring is commonly referred to as the Maxwell model [1,2]
and, in this case, the constitutive relationship between the shear stress and strain can be
written as:

σ +
η0

G0

dσ

dt
= η0

dγ

dt
, (1)
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where σ is the shear stress, γ denotes the strain, η0 is the viscosity and G0 is the elastic mod-
ulus of the material. The time-dependent relaxation modulus G(t) for the linear Maxwell
model can be derived by finding the stress response to an imposed step strain function:

G(t) = G0 exp(−t/τ), (2)

where τ = η0/G0 is the single characteristic relaxation time of the Maxwell model. The com-
plex modulus G∗(ω) = G′(ω) + iG′′(ω) characterizing the response of the Maxwell model
to a small amplitude oscillatory shear (SAOS) deformation can be obtained by taking a
Fourier transform of Equation (1):

G′(ω) = G0
(ωτ)2

1 + (ωτ)2 (3)

G′′(ω) = G0
(ωτ)

1 + (ωτ)2 (4)

where the dimensionless product ωτ is often referred to as the Deborah number. Several
classes of complex materials have been shown to closely approximate Maxwell behavior
with a single relaxation time scale, at least in the limit of small deformations. In particular,
complex fluids constructed from ideal reversible networks or self assembling worm-like
surfactants often exhibit a single dominant relaxation time scale and show Maxwell-like
behavior for small deformation amplitudes [3–5].

However, most complex fluids, such as soft glassy materials, colloids, polymer melts,
biopolymers, hydrogels, and microgel dispersions exhibit a wide range of relaxation timescales
due to the broad range of length scales that characterize their microstructure [6–8]. This results
in very broad relaxation spectra that cannot be described well using single relaxation
models such as the classical Maxwell or Kelvin–Voigt representation [9]. Such multiscale
complex materials are often observed to exhibit power-law–like responses in standard
rheological experiments. To describe this rheological behavior, an additive combination
of several mechanical elements can be used, resulting in multiple relaxation timescales;
however, the number of discrete modes required for a quantitative description of the
material response often becomes excessive [1,6]. Thus, Gemant [10,11] and Scott Blair [12]
proposed to write the stress response to an imposed deformation in terms of a fractional
derivative of the strain to accurately and compactly capture the power-law response
observed in real industrial materials. The resulting material properties characterizing
the strength of the material response (denoted as G and/or V in the present work) are,
thus, quasi-properties with non-integer physical dimensions [13,14]. This class of material
response can be represented in terms of the response of a ‘spring-pot’ mechanical element
also commonly referred to as the Scott Blair element (shown in Figure 1b) [14]. As shown
in Figure 1a, the Scott Blair element compactly describes the bulk rheological behavior of a
class of viscoelastic materials known as critical gels [15], whose linear viscoelastic properties
are characterized by power-law responses of the form G(t) ∼ t−α and G∗(ω) ∼ ωα.

Researchers have additively combined spring-pot elements in series and parallel
in order to construct fractional constitutive models to model more complex rheological
response [14,16,17]. One such combination that is widely used in the literature is the Frac-
tional Maxwell Model (FMM), shown in Figure 1c, which consists of a linear combination
of two spring-pots in series [18]. This fractional framework is broadly applicable, since
most complex materials exhibit distinct power-law behaviors at short and long time scales,
which can be well described by the FMM [6,18–27].

Although these linear fractional models can accurately describe the linear viscoelastic
response of a wide range of materials, the results are independent of the applied deformation
amplitude and, in consequence, fail to capture the non-linear response that arises at large
deformations [28]. Real soft solids and complex fluids typically undergo softening or stiff-
ening at large deformations which affects the relaxation time scales and the magnitudes of
rheological properties such as the relaxation modulus [1,29–31]. Thus, for example, the rate-
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dependent steady shear viscosity of a real viscoelastic fluid cannot be described by typical
linear constitutive models formulated as fractional differential equations of any order in time.

There are many integral constitutive models that have been developed over the years
in order to characterize the non-linear response of complex fluids [32–35]. One such integral
formulation that has been used ubiquitously to describe non-linear viscoelastic properties
is the Wagner model [30,36]. It is a special limit of the more general Rivlin–Sawyers
constitutive equation [37] but ignores any possible contribution of the Cauchy–Green
strain tensor to the strain history and, consequently, predicts that the second normal
stress difference is zero [1]. This constitutive model has been carefully and extensively
investigated and it has been shown to describe the rate-dependent shear viscosity, large
amplitude oscillatory shear response, orthogonal superposition modulus as well as other
viscoelastic properties of complex fluids that change with deformation or flow [21,38,39].

In the absence of non-linear effects, any general linear viscoelastic constitutive model
can be written in an integral form:

σ(t) =
∫ t

−∞
G(t− t′)γ̇(t′)dt′ (5)

By a change of variables and integration by parts, we can rewrite Equation (5) into:

σ(t) = −
∫ t

−∞
M(t− t′)γ(t, t′)dt′ (6)

where M(t − t′) ≡ ∂G(t − t′)/∂t′ is known as the memory function and γ(t, t′) is the
strain between time t and t′. The integral model in Equation (6), when extended to non-
linear deformations by combining the memory function (with a form that remains to be
specified) together with a strain-dependent damping function in its integral to incorporate
the softening or stiffening observed in a real viscoelastic material at large strains, is known
as the Wagner integral model [40]. There have been several mathematical expressions
developed for damping functions to model the material softening that arises from large
deformations. Jaishankar and McKinley [6,21] selected a memory kernel consistent with the
fractional integral formulation of the FMM and combined it with a simple damping function
in order to numerically compute the Wagner integral and predict the rate-dependent steady
shear viscosity for multiscale materials. This framework of using a fractional relaxation
kernel combined with a damping function to capture the linear and non-linear response,
respectively, through a Wagner model or other Rivlin–Sawyers- type formulation, is becoming
increasingly common [21,29,41]. However, evaluating the rate-dependent viscosity requires
a numerical computation of the Mittag–Leffler function (MLF) and careful integration over
the entire strain history and, consequently, there is no closed-form analytical expression
for the steady shear viscosity as a function of shear rate in the literature. In addition, there
is little systematic understanding on how the steady shear viscosity for fractional models
depends on the fractional model parameters that describe the linear properties or on the
damping function parameters that describe the softening (or stiffening) of the material at
large non-linear deformations.

In this paper, we begin by briefly summarizing the Fractional Maxwell model and
highlighting two important distinguishing limits: the Fractional Maxwell Liquid (FML)
and the Fractional Maxwell Gel (FMG). In Figure 1c, we provide a graphical represen-
tation for these two models. Using experimental data from three biopolymer systems
(xanthan gum, casein, and alginate), we show how well these simple fractional models
capture the linear viscoelastic response over a wide range of time and frequency scales. We
introduce the Wagner integral model and motivate the functional form of the damping
functions through measurements of the strain-dependent relaxation modulus that is ob-
tained from step-strain experiments with xanthan gum. In [21], Jaishankar and McKinley
utilize a Doi–Edwards-type damping form [42] with a linear FMM kernel and obtain the
high shear-rate asymptotes for the steady shear viscosity through the Wagner integral
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model. Here, we derive analytical expressions for the rate-dependent viscosity predicted
by the Wagner model with a fractional Maxwell kernel and different forms of the damp-
ing function: the exponential damping function [30] and the Soskey–Winter damping
function [43], which is a more generalized version of the Doi–Edwards damping function
considered by [21]. Through the analytical expressions we discuss the dependence of the
rate-dependent viscosity on the parameters characterizing the linear fractional kernel and
the nonlinear strain-dependent damping function. We observe that, for a sufficiently strong
strain damping, the power-law exponents of the steady shear viscosity response are set by
the power-law exponents of the linear rheological response (e.g., by the complex modulus
measured in Small Amplitude Oscillatory Strain (SAOS), or the relaxation modulus deter-
mined in step strain). The material parameters in the damping function simply affect the
numerical values of the pre-factors. However, for sufficiently weak strain damping, we find
that the power-law exponents characterizing the rate-dependent viscosity are set by the
functional form of the damping function at large shear strains. Finally, we propose a simple
compact analytic expression for the shear-thinning viscosity function of a complex fluid
based on the asymptotic expressions that we obtain for a generalized damping function
under weak and strong shear flow conditions.
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Figure 1. (a) Relaxation modulus of a 3.5 wt.% alginate gel and a casein milk protein gel (4 wt.%
casein gel acidified with 1 wt.% glucono-δ-lactone (GDL)). Power-law fits (Equation (11)) to the
experimental data show that the materials closely obey the constitutive response predicted by a
single spring-pot element or Scott Blair element, Equation (7). (b) Mechanical representation of the
classical linear Maxwell model and the spring-pot element of Koeller [14] as a compact representation
of a hierarchical ladder model constructed from recursive Maxwell elements [44]. (c) Mechanical
representation of (i) Fractional Maxwell Gel (FMG), (ii) Fractional Maxwell Model (FMM), and (iii)
Fractional Maxwell Liquid (FML). (d) The general form of the FMM simplifies to a single spring-pot
when either of the quasi-properties of one mechanical element (V or G) diverge to infinity.
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2. Fractional Maxwell Model (FMM) for Linear Rheology

The Fractional Maxwell Model consists of two spring-pots, each characterized by a
pair of material parameters (here, denoted by G, β and V, α, respectively), arranged in
series as illustrated in Figure 1c (ii). It can be shown that the spring-pot is a compact
representation of a recursive ladder model constructed from Maxwell elements [26,44] as
indicated schematically in Figure 1b: (ii) and (iii). The shear stress response of a single
spring-pot is characterized by a quasi-property G (with units of Pa·sβ). Schiessel [26] writes
Equation (7) in terms of three parameters; a modulus E, a time scale τ, and a fractional
exponent 0 ≤ β ≤ 1. The stress is, thus, written as σ = Eτβ

(
dβγ/dtβ

)
; however, only the

combination of (Eτβ) and β can actually be measured experimentally. This response can be
written in terms of a fractional derivative as [14,45]:

σ(t) = Gdβγ(t)
dtβ

(7)

where the fractional derivative we denoted dβγ/dtβ represents the compact form of a
Caputo derivative when γ(t) = 0 for t ≤ 0, and is defined as [6,46,47]:

dβγ(t)
dtβ

=
1

Γ(1− β)

∫ t

0
(t− t′)−βγ̇(t′)dt′ (8)

where 0 ≤ β ≤ 1, and Γ(a) =
∫ ∞

0 xa−1e−xdx is the complete Gamma function. The overdot
indicates the conventional first order derivative with time, so that γ̇(t′) = dγ(t′)/dt′ is the
shear rate. The fractional constitutive equation in Equation (7) can, thus, also be written in
an integral form:

σ(t) = G
∫ t

0
(t− t′)−βγ̇(t′)dt′ (9)

for initial value problems in which γ̇(t′) = 0 ∀t′ < 0. We also note that Equation (9) can be
integrated by parts to represent the stress at time t in terms of the history of the strain field.

Defining γ(t, t′) =
∫ t′

t γ̇(t
′′
)dt

′′
, we obtain:

σ(t) = −Gβ
∫ t

0
(t− t′)−β−1γ(t, t′)dt′ (10)

All three expressions given by Equations (8)–(10) are equivalent forms of the linear
viscoelastic response predicted by a single spring-pot. The relaxation modulus of the
spring-pot element following a step strain γ(t) = γ0H(t) results in a decaying power-law
response with time:

σ(t)
γ0
≡ G(t) =

G
Γ(1− β)

t−β (11)

where G/Γ(1− β) is known as the strength of the critical gel (often denoted by S with units
of Pa · sβ) and β is the relaxation exponent. Boltzmann considered a power-law decaying
kernel of the form of Equation (10), as he developed his original theories of viscoelasticity
(see Markovitz [48]) This is exactly the form of the material response observed in a particular
class of soft matter known as a critical gel [15]. As we showed in Figure 1, the simple two
parameter model provides a quantitative description of the relaxation modulus of two
different biopolymer gels over many decades of elapsed time. The complex moduli of a
single spring-pot in a small amplitude oscillatory deformation can be computed by Fourier
transformation of Equation (11) and both the elastic storage modulus and viscous loss
modulus show power-law dependencies with frequency:

G′(ω) = G cos
(

πβ

2

)
ωβ (12)
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G′′(ω) = G sin
(

πβ

2

)
ωβ (13)

A much broader class of soft solids and complex fluids are not quite critical gels with
a pure power-law response, but can be described by more complex fractional constitutive
models constructed by linear combinations of the spring-pot element (see, for example, [49]).
The constitutive equation relating the stress and strain for the FMM, which comprises of
a series of two spring-pots arranged in series as shown in Figure 1c (ii), is described by
two quasi-properties (G, V) and two power-law exponents (α, β) [6,21]. This model can be
written in the form:

σ(t) +
V
G

dα−βσ(t)
dtα−β

= Vdαγ(t)
dtα

(14)

The parameters α and β need to obey the inequality 0 ≤ β ≤ α ≤ 1 to be thermo-
dynamically consistent [50]. The relaxation modulus of the FMM can be obtained by
calculating the response of Equation (14) for a step strain input γ0H(t) [18]:

σ(t)
γ0
≡ G(t) = Gt−βEα−β,1−β

(
−G
V tα−β

)
(15)

where Ea,b is the Mittag–Leffler function (MLF) [51] which is defined as:

Ea,b(z) =
∞

∑
k=0

zk

Γ(ak + b)
(16)

A careful consideration of the physical dimensions of Equations (14) and (15) shows
that the characteristic relaxation time of the FMM can be defined as [21]:

τc =

(
V
G

)1/(α−β)

(17)

This characteristic time corresponds to the intersection of the two asymptotic responses
of the relaxation modulus in Equation (15) at long and short times. The relaxation modulus
in Equation (15) can be non-dimensionalized by defining a characteristic modulus Gc
in terms of the quasi-property V and characteristic relaxation time τc as Gc = Vτ−α

c ≡
(Gα/Vβ)1/(α−β). Consequently, the relaxation modulus can be written in a dimensionless
form as:

G
Gc

= (t/τc)
−βEα−β,1−β

(
−(t/τc)

α−β
)

(18)

The Fourier transform may be taken of Equation (14) to obtain the complex modulus:

G∗(ω) =
G(iω)β ·V(iω)α

G(iω)β +V(iω)α
(19)

Similar to the relaxation modulus in Equation (18), the complex modulus can be
non-dimensionalized using Gc and τc and thus rewritten in a simpler, cleaner form:

G∗(ω)

Gc
=

(iωτc)α

1 + (iωτc)α−β
(20)

The real and imaginary part of the complex modulus provides us with the storage
and loss modulus of the complex fluid, respectively:

G′(ω)

Gc
=

(ωτc)α cos(πα/2) + (ωτc)2α−β cos(πβ/2)
1 + (ωτc)α−β cos(π(α− β)/2) + (ωτc)2(α−β)

(21)

G′′(ω)

Gc
=

(ωτc)α sin(πα/2) + (ωτc)2α−β sin(πβ/2)
1 + (ωτc)α−β cos(π(α− β)/2) + (ωτc)2(α−β)

(22)
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The FMM has two important limiting cases: the Fractional Maxwell Liquid (FML) and
the Fractional Maxwell Gel (FMG). In the FML limit, exponent α is set to unity (α = 1).
By considering the low frequency limit of Equation (22) and the definition G′′ ≡ η′ω,
Jaishankar and McKinley [21] show that a bounded steady shear viscosity of the general
Fractional Maxwell Model only exists in the FML limit (i.e., α = 1). Consequently, the three-
parameter FML model (G, β and V) has been used extensively to describe complex fluids in
the pre-gel state [24]. It can also be shown that the constant shear viscosity of the FML model
corresponds to the quasi-property V in the FML limit corresponding to α = 1 (V = η0).
The mechanical representation of the FML is illustrated in Figure 1c (iii), and comprises of
a series arrangement of a dashpot and a spring-pot.

Secondly, in the Fractional Maxwell Gel (FMG) limit, exponent β is constrained to be
zero (β = 0). This FMG model accurately captures the predominantly elastic behavior of
viscoelastic materials beyond the gel point [52], and the quasi-property G characterizes
the plateau modulus of the gel (G′(ω → ∞) = G (Pa)). The three-parameter FMG model
(G, α and V) mechanically translates to a series combination of a spring and a spring-
pot as shown in Figure 1c (i). Finally, for completeness, we note that the special case of
α = 1 and β = 0 leads to the simple Maxwell model introduced in Equation (1) and the
quasi-properties V and G simplify to the viscosity η0 and G0, respectively. As indicated
schematically in Figure 1, the FMM also reduces to a simple single spring-pot element or
Scott Blair element when either one of the quasi-properties diverges to infinity (V→ ∞ or
G→ ∞). The asymptotes of the complex moduli for these three canonical models can be
obtained from Equations (21) and (22) are tabulated in Table 1.

Table 1. The asymptotes of the storage (G′) and loss modulus (G′′) for the Fractional Maxwell Model
(FMM) (0 < β < α < 1), the Fractional Maxwell Liquid (FML) (α = 1), and the Fractional Maxwell
Gel (FMG) (β = 0).

ωτc � 1 ωτc � 1

FMM
G′/Gc (ωτc)α cos(πα/2) (ωτc)β cos(πβ/2)

G′′/Gc (ωτc)α sin(πα/2) (ωτc)β sin(πβ/2)

FML
G′/Gc (ωτc)2−β cos(πβ/2) (ωτc)β cos(πβ/2)

G′′/Gc ωτc (ωτc)β sin(πβ/2)

FMG
G′/Gc (ωτc)α cos(πα/2) 1

G′′/Gc (ωτc)α sin(πα/2) (ωτc)−α sin(πα/2)

Using the expressions given above in Equations (21) and (22), the magnitude of the
complex viscosity defined as |η∗(ω)| =

√
G′(ω)2 + G′′(ω)2/ω can be written in terms of

the four FMM parameters as:

|η∗(ω)|
Vτ1−α

c
=

1√
(ωτc)2−2α + 2(ωτc)2−α−β cos(π(α− β)/2) + (ωτc)2−2β

(23)

The dependence of the relaxation modulus on dimensionless time and the variation of
the complex moduli and complex viscosity with the Deborah number (ωτc) for the FMM,
FML, and FMG models are illustrated graphically in Figure 2.
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Figure 2. Representative plots of the linear viscoelastic properties of the Fractional Maxwell Model
(FMM) (α = 0.7, β = 0.3), Fractional Maxwell Liquid (FML) (α = 1, β = 0.3) and Fractional Maxwell
Gel (FMG) (α = 0.7, β = 0). (a,b) show the relaxation modulus and the frequency dependence of
the complex viscosity for the FMM, FML, and FMG models, respectively. The storage modulus (c),
loss modulus (d), and the phase angle (tanδ = G′′/G′) (e) are also presented for the FMM, FML, and
FMG models, respectively.

3. Wagner Formulation for Steady Shear Viscosity

The fractional models outlined above can quantitatively describe the linear rheological
response of a range of complex materials (see examples in [25]). However, they fail to
capture the non-linear rheological responses measured at large deformations, such as the
strain-dependent relaxation modulus or the rate-dependent viscosity [28]. To describe the
non-linear response of complex materials, we make use of the Wagner integral formula-
tion [53], in which the tensorial stress can be expressed in terms of an integral over the
strain history experienced by the material, which is described by the Finger strain tensor
C−1 [30,36,40,54]:

σ(t) =
∫ t

−∞
M(t− t′)h(I1, I2)

[
C−1(t, t′)− I

]
dt′ (24)
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where I1 and I2 are the first and second invariants of the Finger strain tensor (see [1]
and [21] for more details). Here, we focus only on shear flows for which I1 = I2 = γ2 + 3,
and the shear stress can, thus, be written in the form:

σ(t) = −
∫ t

−∞
M(t− t′)h(γ)γ(t, t′)dt′ (25)

where the minus sign in front of the integral appears because we define the finite strain
as γ(t, t′) = γ(t′)− γ(t), and h(γ) is the damping function (discussed below in detail).
The function, M(t− t′) is a memory kernel that is defined by the rate of change in the
relaxation modulus (with physical dimensions of Pa/s):

M(t− t′) =
∂G(t− t′)

∂t′
(26)

Equation (25) is, evidently, a non-linear generalization of Equation (10) and we can
use this for constructing the non-linear viscoelastic constitutive equations of fractional
order by a suitable choice of the memory function. Thus, for a Fractional Maxwell Model
with a relaxation modulus given by Equation (15), the memory function is written as:

M(t− t′) = −Vτ
−(1+α)
c

(
(t− t′)/τc

)−1−βEα−β,−β

(
−
(
(t− t′)/τc

)α−β
)

(27)

In polymeric systems, the damping function h(γ) that enters Equation (25) is related
to the survival probability of network chains after the application of a large deforma-
tion [30,36]. The non-linear response of a given material can be calculated from measure-
ments of the strain-dependent relaxation modulus G(t, γ). Values of the strain-dependent
relaxation moduli for a 0.5 wt.% solution of xanthan gum in water are shown in Figure 3a.
For strain amplitudes up to γ = 0.4, each measurement of the relaxation modulus over-
lapped on top of one another, corresponding to the linear viscoelastic response. This
response is well described by the non-linear regression of the data to the FMM model with
G = 11.6 Pa·sβ, β = 0.2, V = 458 Pa·s, and α = 1. The characteristic relaxation time (corre-
sponding to an appropriate moment of the relaxation spectrum) is thus τc = (V/G)1/(α−β)

= 98.9 s. However, for strain amplitudes γ > 0.4, there is a clear softening of the material
with large deformations reducing the strain-dependent relaxation modulus. In fact, at the
largest strain (γ = 6), the relaxation modulus of this complex fluid at any time t decreases
by a factor of fifty. It is also clear that the functional form of each measured response in
Figure 3a is self-similar and the data show that the material follow a principle of time-strain
separability [54], so that G(t, γ) ∼= G(t)h(γ) is consistent with Equation (25). The damping
function for this complex fluid can, thus, be found directly from experimental measure-
ments by collapsing the strain-dependent relaxation modulus onto the linear relaxation
modulus as shown in Figure 3b using the relation:

h(γ) =
G(t, γ)

G(t)
(28)

The corresponding values of h(γ) obtained at each imposed strain are plotted in
Figure 3c. We compared the measurements with the predictions of three different damping
functions proposed in the literature to describe the strain softening: exponential damping
h(γ) = exp(−γ/γ∗) [31], Doi–Edwards damping h(γ) = 1/

(
1 + (γ/γ∗)2

)
[42,55], and

the discontinuous Tanner–Simmons damping function h(γ) = H(1− γ/γ∗)[56], whereH
is the Heaviside step function. The value of the critical strain γ∗ used in drawing Figure 3c
was evaluated from fitting the Doi–Edwards damping function to the measurements of
h(γ), and was found to be γ∗ = 0.89. For comparative purposes, rather than refitting γ∗

for each model, we use the same value of γ∗ = 0.89 also for plotting the other damping
functions. We note that both the exponential damping function and the Doi–Edwards
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damping function describe the measured values of the damping function much better than
the simple Tanner–Simmons damping function and, hence, they have been used extensively
in recent years [30,34] to capture the strain softening observed in a wide range of complex
fluids such as polymer melts, liquid foods, and biopolymer solutions.
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(a) (b)

(c)

FML Fit

0

Figure 3. (a) Strain–dependence of the relaxation modulus G(t, γ) for a 0.5 wt.% solution of xanthan
gum. A single master curve was obtained by collapsing the strain-dependent relaxation moduli using
a vertical shift factor (corresponding to a single damping value h(γ) for each imposed strain) as shown
in (b). The solid line in (a,b) represents the FML fit (G = 11.6 Pa·sβ, V = 458 Pa·s, β = 0.2, α = 1) to
the linear viscoelastic relaxation moduli G(t). The characteristic relaxation time for the FML fit is
τc = (V/G)1/(α−β) = 98.9 s. The corresponding damping values are shown as filled circles in (c) and
the solid lines correspond to: (blue) exponential damping function, h(γ) = exp(−γ/γ∗) [39,57], (red)

Doi–Edwards damping function h(γ) = 1/
(

1 + (γ/γ∗)2
)

[42,55,58], and (green) Tanner–Simmons

damping function (h(γ) = H(1− γ/γ∗)) with γ∗ = 0.89.

For a steady shear flow with a constant shear rate γ̇, Equation (25) can be rewritten
using the change of variables u = t− t′ as:

σ(γ̇) =
∫ ∞

0
M(u)h(γ̇u)γ̇udu (29)

The steady shear viscosity can, thus, be written as:

η(γ̇) ≡ σ(γ̇)

γ̇
=
∫ ∞

0
M(u)h(γ̇u)udu (30)

As the shear rate is progressively incremented, it is clear that the impact of the strong
decrease in h(γ) with accumulated strain is to reduce the area integral embodied by the
right hand side of Equation (30) and reduce the total shear viscosity; thus, giving rise to
the shear thinning observed experimentally. Substituting the linear fractional kernel given
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by Equation (27) in Equation (30) and replacing t− t′ = u, the resulting fractional Wagner
model predicts that the shear viscosity is given by:

η(γ̇) = −Vτ
β−α
c

∫ ∞

0
u−βEα−β,−β

(
−(u/τc)

α−β
)

h(γ̇u)du (31)

which can be evaluated when the appropriate form of the damping function h(γ̇u) is
specified. Evaluating the above integral results in a rate-dependent steady shear viscosity
that can not be predicted by linear fractional constitutive models such as the Fractional
Maxwell Model (FMM). In the subsequent sections, we find analytic results for the rate-
dependent viscosity for the case of an exponential damping function and, then, extend our
analysis for a more generalized form of damping function.

3.1. Exponential Damping

For an exponential damping function, substituting h(γ) = exp(−γ/γ∗) and recalling
that in a steady shear flow the accumulated strain is γ(t, t′) = γ̇ × (t′ − t) = −γ̇u, in
Equation (31), the rate-dependent viscosity can be written in a dimensionless form as:

η(γ̇)

Vτ1−α
c

= τ
β−1
c

∫ ∞

0
−u−βEα−β,−β

(
−(u/τc)

α−β
)

exp(−γ̇u/γ∗)du (32)

Using the following recurrence property of the MLF,

Ea,b(z) =
b

Γ(1 + b)
+ zEa,b+a(z). (33)

we simplify Equation (32) to find a new expression for the steady shear viscosity:

η(γ̇) =Vτ
β−α
c

{
β

Γ(1− β)

∫ ∞

0
u−β exp(−γ̇u/γ∗)du+

(
1
τc

)α−β ∫ ∞

0
uα−2βEα−β,α−2β

(
−(u/τc)

α−β
)

exp(−γ̇u/γ∗)du

} (34)

The integral in the first term of the brackets can be identified as a complete Gamma
function with x = γ̇u/γ∗ = γ/γ∗, and can be expressed as:

η(γ̇) =Vτ
β−α
c

{
β

Γ(1− β)

∫ ∞

0
x−β exp(−x)dx+

(
1
τc

)α−β ∫ ∞

0
uα−2βEα−β,α−2β

(
−(u/τc)

α−β
)

exp(−γ̇u/γ∗)du

} (35)

Thus, Equation (34) can be further simplified to:

η(γ̇) = Vτ
β−α
c

{
β

(
γ̇

γ∗

)β−1
+

(
1
τc

)α−β ∫ ∞

0
uα−2βEα−β,α−2β

(
−(u/τc)

α−β
)

exp(−γ̇u/γ∗)du

}
(36)

Using this recursive relationship, one can repeat this process and replace Eα−β,α−2β with
its corresponding recursive representation in Equation (33). Hence, we write Equation (36)
in the form of an infinite series:

η(γ̇) = Vτ
β−α
c (γ̇/γ∗)β−1

∞

∑
k=1

(−1)k+1(α− k(α− β))(γ̇τ/γ∗)−(k−1)(α−β) (37)

The above equation is valid if the kth term of the infinite series approaches 0 as
k → ∞ [59]. Thus, the infinite series in Equation (37) is convergent and equivalent to
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Equation (32) only when the argument (γ̇τc/γ∗) > 1. The dimensionless product γ̇τc is
known as the Weissenberg number, Wi (see Dealy [60] for additional details), which is
a parameter that measures the strength of a given non-linear flow. It was clear that the
relevant measure in our study emerges as a comparison between the strength of the flow
and the value of the strain at which substantial damping in the relaxation modulus is
encountered. Accordingly, the steady shear rate-dependent viscosity can be expressed in
the following form:

η(γ̇)

Vτ1−α
c

=

(
Wi
γ∗

)β−1 ∞

∑
k=1

(−1)k+1(α− k(α− β))

(
Wi
γ∗

)−(k−1)(α−β)

(38)

In order to find an analogous analytical expression between the flow viscosity and the
applied shear rate for weak flows in which Wi/γ∗ < 1, we used the following recurrence
property for the MLF [51]:

Ea,b(z) =
1
z

[
Ea,b−a(z)−

1
Γ(b− a)

]
(39)

Using Equation (39) and a similar recursive procedure to that outlined above, we
obtain an expression for the steady shear viscosity, when Wi/γ∗ < 1:

η(γ̇)

Vτ1−α
c

=

(
Wi
γ∗

)α−1 ∞

∑
k=1

(−1)k+1(β + k(α− β))

(
Wi
γ∗

)(k−1)(α−β)

(40)

This infinite series is, again, a valid representation of Equation (32) if the kth term of
the infinite series Equation (40) approaches 0 as k→ ∞ [59]. This requirement is satisfied
only for Wi/γ∗ < 1.

We can combine Equation (40) and Equation (38) using a Heaviside function H to
write an expression for the steady shear viscosity that is valid for all Wi as:

η(γ̇)

Vτ1−α
c

=H(1−Wi/γ∗)

(
Wi
γ∗

)α−1 ∞

∑
k=1

(−1)k+1(β + k(α− β))

(
Wi
γ∗

)(k−1)(α−β)

+H(Wi/γ∗ − 1)
(

Wi
γ∗

)β−1 ∞

∑
k=1

(−1)k+1(α− k(α− β))

(
Wi
γ∗

)−(k−1)(α−β)
(41)

This series solution for the rate-dependent viscosity of a fractional Maxwell memory
function with an exponential damping function is illustrated in Figure 4a for the FML and
Figure 4b for the FMM, respectively, for various numbers of summation terms. The param-
eters used in Figure 4a,b were β = 0.3, α = 1, τc = 1 s, γ∗ = 1 and β = 0.3, α = 0.8, τc = 1
s, γ∗ = 1, respectively. The steady shear viscosity decreases by over a factor of 1000, with
increasing Weissenberg number. At high shear rates, the viscosity approaches a power-law
shear thinning response with η(γ̇) ∼ γ̇β−1. The series solution for the rate-dependent
viscosity approaches the accurate numerical calculation of the integral in Equation (32) as
the number of summed terms (K) increased. We observe that K = O(10) gives an extremely
good approximation of the rate-dependent viscosity. A similar series expansion can be
implemented for the Tanner–Simmons damping function as well (see Appendix A for
more details).

The exponential damping expression captures the experimentally observed levels of
damping quite well (especially if the value of γ∗ was to be further adjusted to minimize
the mean square error between the function exp(−γ/γ∗) and the data in Figure 3c), and it
is widely used in the literature since it provides the possibility of obtaining solutions with
different relaxation kernels in the integral expression given by Equation (31). Vermant et al.
in [31] showed that the damping function of a 4 wt. % poly-isobutylene in a decalin solution
follows exponential damping at large strains and, also, measured the corresponding
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steady shear viscosity. However, a more general damping function is needed to correctly
capture the rate-dependent response of most materials. In particular, we note that for the
exponential damping function ∂h(γ)/∂γ 6= 0 as γ→ 0 so the range of linear viscoelastic
behavior is in fact vanishingly small, whereas most real materials exhibited a clearly
defined (and measurable) linear viscoelastic behavior for applied strains less than some
characteristic value γ∗.

!35
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1−β
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V= η0[ ]
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1−β

1

1
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Wi γ∗<1 Wi γ∗>1 Wi γ∗<1 Wi γ∗>1

Figure 4. The rate–dependent viscosity of a fractional Rivlin–Sawyers model constructed from a
Fractional Maxwell Liquid (FML) and Fractional Maxwell Model (FMM) linear relaxation kernel
combined with an exponential damping function is illustrated in (a,b), respectively. For steady shear
flow with Wi/γ∗ � 1, the viscosity decreases as a power-law with a slope 1− β for both the FMM
and FML linear kernels with exponential damping. For flows with Wi/γ∗ � 1, the power-law
exponent characterizing the rate-dependence of the FMM is (1− α), and for the FML model (α = 1),
the viscosity approaches a zero-shear-rate limit given by η0 = V.

3.2. Generalized Damping Function

We introduced a generalized damping function (also known as the Soskey–Winter
damping) which can capture the functional form of the strain softening observed in most
real materials at large deformations [43]:

h(γ) =
1

1 + (γ/γ∗)m (42)

where the damping exponent m > 0 and γ∗ is the critical strain of the material. The form
of damping function in Equation (42) has been shown to accurately describe the damping
effects or strain softening due to large strains for polymer melts, polymers, suspensions,
magnetorheological fluids, polymer blends, and also in food rheology [30,43,57,61–68].
In [21,66], both the damping of the form given in Equation (42) and the resulting steady
shear viscosity for xanthan gum solutions as well as for a lubricating grease are illustrated,
respectively. The well-known Doi–Edwards constitutive model for entangled polymers
predicts strain softening with a damping function that is a special case of Equation (42)
with m = 2 [42]. Using the recursive relationship procedure outlined in Section 3.1, the rate-
dependent viscosity for a damping function h(γ) of the form in Equation (42) can be
derived to be:

η(γ̇)

Vτ1−α
c

=H(1−Wi/γ∗)

(
Wi
γ∗

)α−1 ∞

∑
k=1

(−1)k+1 p
(

Wi
γ∗

)(k−1)(α−β) 1
Γ(1− p)

∫ ∞

0

x−p

1 + xm dx

+H(Wi/γ∗ − 1)
(

Wi
γ∗

)β−1 ∞

∑
k=1

(−1)k+1q
(

Wi
γ∗

)−(k−1)(α−β) 1
Γ(1− q)

∫ ∞

0

x−q

1 + xm dx

(43)
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where p = β + k(α − β), q = α − k(α − β) and x = γ/γ∗. Using the Euler reflection
formula:∫ ∞

0

xa

1 + xm dx = Γ
(

1 + a
m

)
Γ
(

1− 1 + a
m

)
=

π

m sin
[
π
(

1+a
m

)] for 0 <
1 + a

m
< 1 (44)

and identifying a = −p and a = −q in the first and second term of Equation (43), respec-
tively, we can simplify the rate-dependent shear viscosity as follows:

η(γ̇)

Vτ1−α
c

=H(1−Wi/γ∗)

(
Wi
γ∗

)α−1 ∞

∑
k=1

(−1)k+1 pπ

Γ(1− p) sin
(

π
(1−p)

m

)(Wi
γ∗

)(k−1)(α−β)


+H(Wi/γ∗ − 1)
(

Wi
γ∗

)β−1 ∞

∑
k=1

(−1)k+1 qπ

Γ(1− q) sin
(

π
(1−q)

m

)(Wi
γ∗

)−(k−1)(α−β)
 (45)

Importantly, we note that the precise form of the damping function does not affect the
powers of the polynomial terms in Equation (45) just the magnitude of the coefficients in
the summation. It is noteworthy to mention that the first term in the brackets of the series
expansion given above in Equation (45) is valid only in the case of:

0 < (1− p)/m < 1 (46)

for the first series sum, and the second series term is valid when:

0 < (1− q)/m < 1 (47)

The asymptotes at low and high Wi are dominated by the (k = 1) terms in Equation (45).
The asymptotes can be directly calculated from Equation (45), and for cases when the in-
equalities in Equation (46) or Equation (47) are not satisfied (i.e., when (1− α) < m <
(1− β)) or m < 1− α < 1− β), we evaluated the asymptotes from Equation (31) (see
Appendix B for more details).

For completeness, we provide the asymptotic behavior of the rate-dependent shear
viscosity for both the FMM and FML model with non-linear damping and different values
of the damping function parameter m in Tables 2 and 3, respectively.

From the asymptotes, it is clear that at low shear rates, the exponent of the power-law
behavior of the steady shear viscosity is set by the FMM parameter α, i.e., the power-
law exponent that characterizes the linear viscoelastic properties of the fluid at low
De = ωτc � 1 (cf. Figure 2). At high shear rates Wi/γ∗ � 1, the power-law behav-
ior of the viscosity depends on the strength of damping. For a sufficiently strong damping
function (i.e., m > 1− β), the FMM parameter β characterizing the linear viscoelastic
response at De = ωτc � 1 sets the rate of shear thinning. However, for a weaker choice
of the damping function (i.e., m < 1− β), the rate-thinning in the shear viscosity is in fact
determined by the damping parameter m. For the case of very weak (insufficient) damping
(i.e., m < 1− α ), we can not obtain a meaningful value for the steady shear viscosity (i.e.,
unbounded stress growth in time is expected during start up of a steady shear flow, and no
steady shear viscosity is reached).

Similar arguments can be extended to the FML case (corresponding to α = 1), and the
results are tabulated in Table 3. For α = 1, one of the spring-pots becomes a purely viscous
dashpot (i.e., V→ η0), and we observe a plateau in the shear viscosity equal to η0 at low
shear rates (irrespective of the form of the damping function). At high shear rates, the shear
thinning index is set by either the FML parameter β (for the case of strong damping with
(m > 1− β) or by the exponent m for weak damping with (m < 1− β).
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Table 2. Asymptotic forms of the steady shear viscosity predicted by the FMM (0 < β < α < 1) for various values of the
damping exponent (m) relative to the FML parameters α and β, that characterize the linear viscoelastic response of complex

multiscale materials. The function f (m) in the table is given by: f (m) =
∫ ∞

0 −x−β−mEα−β,−β

(
−xα−β

)
dx.

η
/
(Gcτc) Wi

/
γ∗ � 1 Wi

/
γ∗ � 1

1− α < 1− β < m πα

Γ(1− α) sin
[

π(1− α)

m

](Wi
γ∗

)α−1
πβ

Γ(1− β) sin
[

π(1− β)

m

](Wi
γ∗

)β−1

(strong damping)

1− α < m ≤ 1− β πα

Γ(1− α) sin
[

π(1− α)

m

](Wi
γ∗

)α−1

f (m)

(
Wi
γ∗

)−m

(weak damping)

1− α < m ≤ 1− β
Unbounded stress growth Unbounded stress growth

(v. weak damping)

Table 3. Asymptotic forms of the dimensionless shear viscosity η(γ̇)/V for the FML model (α = 1)
for various values of the damping exponent (m) relative to the parameter β that characterizes the
high frequency linear viscoelastic moduli. The function f (m) in the table is given by: f (m) =∫ ∞

0 −x−β−mEα−β,−β

(
−xα−β

)
dx.

η
/
(Gcτc) Wi

/
γ∗ � 1 Wi

/
γ∗ � 1

1− β < m
1

πβ

Γ(1− β) sin
[

π(1− β)

m

](Wi
γ∗

)β−1

(strong damping)

m < 1− β
1 f (m)

(
Wi
γ∗

)−m

(weak damping)

This asymptotic behavior of the steady shear viscosity and its dependence on the
strength of the non-linear damping is illustrated visually for the FMM and FML models in
Figure 5. The rate of shear thinning at high shear rates is independent of m for all cases
when m > 1− β. It is also very close to the result obtained for exponential damping (shown
by the black dashed line). This suggests that as long as the non-linear strain damping
described by Equation (42) is sufficently strong ( m > 1− β), the rate of shear thinning in
the steady shear viscosity is set by the linear viscoelastic properties (α, β) of the material.
This analysis provides a rationalization for why a variety of different functional forms for
the damping functions used in the literature are all able to provide a good prediction of the
rate-dependent viscosity.

Our approach of incorporating non-linearities into a fractional description of viscoelas-
tic behavior using an FMM linear kernel in the Wagner constitutive equation can be further
extended to an even wider class of materials such as non-soft materials or viscoelastic
solids by replacing the FMM kernel with a Fractional Zener kernel, Fractional Kelvin–
Voigt [26], or the more generalized Modified Fractional Maxwell (MFM) introduced by
Xu et al. [69,70]. The MFM has been shown to accurately describe the linear viscoelastic
properties of complex liquids, rubber-like materials, and glassy viscoelastic solids across a
wide range of frequencies.
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Figure 5. The solid lines show the rate-dependent viscosity evaluated numerically from Equation (31)
for the linear kernels of (a) the Fractional Maxwell Liquid (FML) and (b) the Fractional Maxwell
Model (FMM) with a non-linear damping function given by Equation (42). Results for various
damping exponents (m) are illustrated in (a,b). The dashed line in (a) represents the rate-dependent
viscosity for the exponential damping exp(−γ/γ∗). At low shear rates Wi/γ∗ � 1, the viscosity
approaches a zero shear-rate limit for the FML (α = 1) and a power-law behavior characterized by the
exponent 1− α for the FMM, regardless of the value of the damping exponent m. However, for strong
flows with Wi/γ∗ � 1, the power-law exponent is dependent on the strength of the damping and
is characterized by damping exponent m for weak damping (m < 1− β) and by 1− β for strong
damping (m > 1− β).

4. Approximate Form of the Steady Shear Viscosity

The zero shear viscosity of the FMM diverges when α 6= 1 [21] as seen from Figure 5b.
However, most complex fluids, such as biopolymer solutions or polymer melts, exhibit a
distinct, measurable finite value of the shear viscosity in the limit of small shear-rates and
are, thus, best described by fractional models in the FML limit (α = 1). The full viscosity
for the non-linear formulation of the FML curve can be determined from the integral
expression (Equation (32)) or from the series expansions given in Equations (41) and (45).
However, for regression to data and the fitting of material constants, it is helpful to
have a simpler closed-form expression for the flow curve. Thus, we propose a compact
analytical approximation for the rate-dependent viscosity based on the results we obtained
in Section 3 with an FML kernel. We express the rate-dependent viscosity in terms of a four
parameter function:

η

η0
=

1
1 + (1/B)(Wi/γ∗)s (48)

where Wi = τcγ̇ and τc = (V/G)1/(1−β), and the constants B and s are power-law parame-
ters that remain to be determined. This general functional form is motivated by commonly
used empirical expressions such as the Carreau model or Cross model [1,71–73] used in the
rheology literature for describing experimentally measured flow curves of η(γ̇). For strong
damping with m > 1− β, the two adjustable parameters in Equation (48) are given by:

s = 1− β (49a)

B =
πβ

Γ(1− β) sin
[
π
(

1−β
m

)] (49b)
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Whereas, for weak damping with m < 1− β, the parameters were:

s = m (50a)

B = f (m) =
∫ ∞

0
−x−β−mE1−β,−β

(
−x1−β

)
dx (50b)

To evaluate the rate-dependent viscosity from Equation (48), we require the values of
the three parameters in the FML model that describe the linear rheological properties of the
complex fluid (G, β,V ≡ η0) and the damping exponent m for describing the strain depen-
dence of the relaxation modulus G(t, γ). In Figure 6a, we compare the compact expression
for the rate-dependent viscosity given in Equation (48) with a numerical evaluation of
Equation (31) for two different values of m: a strong damping case, m = 2; and a weak
damping case, m = 0.2(< (1− β)). It can be seen that Equations (48)–(50) capture the
correct asymptotic limits at high and low shear rates, but do not precisely capture the grad-
ual transition in the shear viscosity around Wi/γ∗ ∼ O(1). A contour plot comparing the
proposed viscosity approximation given in Equation (48) with the numerical integration of
Equation (31) using the generalized damping function of Equation (42) is presented in
Figure 6b. The error is only substantial for the unlikely condition where m = 1 − β,
i.e., when the damping parameter and the FML power-law exponents (1− β) are equal to
each other. By contrast, for strong damping cases with m ≥ 2, the error incurred in using
the viscosity form given by Equations (48) and (49) is always less than 7.5% across the
whole range of shear rates.

m

10-5 10-3 10-1 101 103 105

10-2

10-1

100

m= 0.2
m= 2

Approx. Expression 

m=1−β

(a) (b)

Approx. Expression 

log ηapprox.
η

Figure 6. (a) Comparison of the proposed viscosity approximation in Equation (48) with the integral
calculation of Equation (31) using the generalized damping function given by Equation (42) for
two distinct damping exponents m = 0.2 and 2, and FML exponent β = 0.6. (b) Discrepancy
between the proposed viscosity approximation Equation (48) and the numerical solution for different
values of m and Wi/γ∗; the black line shows the contour line corresponding to zero error when
ηapprox = ηnumerical.

5. Conclusions

In this contribution, we have sought to extend fractional calculus descriptions of
soft matter to the non-linear domain that is important for modeling the real flows of soft
shear-sensitive complex fluids. To do this, we made use of the close connection between the
Caputo definition of the fractional derivative and the general Rivlin–Sawyers hereditary
integral form of a viscoelastic material. The steps of our analysis may be summarized
as follows:

• We considered a general model known as the Fractional Maxwell Model (FMM) as
well as two important limits studied in the fractional viscoelasticity literature (the
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Fractional Maxwell Liquid and the Fractional Maxwell Gel). The limiting frequency
responses of the linear viscoelastic moduli for these models are summarized in Table 1.

• By considering measurements of the strain-dependent relaxation moduli for a 0.5 wt.%
aqueous solution of xanthan gum, we illustrated the time-strain separability in G(t, γ)
observed in many complex fluids. This motivated the use of a damping function
h(γ) and the time-strain separable Wagner model in conjunction with a fractional
relaxation modulus described by the Mittag-Leffler Function (MLF) to capture the
strain softening that arises at large deformations in complex fluids.

• Using the FMM as the linear kernel together with the Wagner integral framework,
we derived analytical expressions for the rate-dependent viscosity in a steady simple
shear flow for an exponential damping function given by Equation (41), as well as a
more general damping function given by Equation (45). From this rate-dependent
viscosity expression, we concluded that for weak shear flows (i.e., low shear rates with
Wi� 1), the rate-dependence of the viscosity is always set by the FMM parameter α
and approaches a constant plateau value V→ η0 for the FML model when α = 1.

• For strong shear flows (i.e., high shear rates with Wi� 1), the power-law exponent of
the rate-dependent viscosity is set by the other fractional Maxwell exponent β and
scales as γ̇β−1 for strong damping (m > 1− β), whereas it depends on the damping
exponent m and scales as γ̇−m for weak damping (m < 1− β). For sufficiently weak
strain damping (m < 1− α), when combined with the FMM kernel, the shear stress
following the inception of steady shear flow grows unbounded with time and a
bounded shear stress is never attained.

• Finally, we developed an approximate, closed-form expression given by Equations (48)–(50)
for the steady shear viscosity that incorporates the three parameters of the linear vis-
coelastic Fractional Maxwell Liquid model (η0 = V,G, β) with a non-linear damping
function specified by two non-linear parameters (m and γ∗).

Our analysis, thus, provides a compact analytical formulation that enabled the ver-
satility provided by fractional calculus descriptions of soft matter and fractal media to be
more broadly adopted by rheologists in the industry and beyond.
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Appendix A

For the Tanner–Simmons damping function that is defined by:

h(γ) = H(1− γ/γ∗), (A1)

we follow a similar procedure outlined in Section 3.1 and obtain the shear viscosity as:
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η(γ̇)

Vτ1−α
c

=H(1−Wi/γ∗)

(
Wi
γ∗

)α−1 ∞

∑
k=1

(−1)k+1 p
(

Wi
γ∗

)(k−1)(α−β) 1
Γ(1− p)

∫ 1

0
x−pdx

+H(Wi/γ∗ − 1)
(

Wi
γ∗

)β−1 ∞

∑
k=1

(−1)k+1q
(

Wi
γ∗

)−(k−1)(α−β) 1
Γ(1− q)

∫ 1

0
x−qdx

(A2)

where p = β+ k(α− β), q = α− k(α− β) and x = γ/γ∗. Solving the integrals in Equation (A2),
we can write a series expansion for the steady shear viscosity predicted by the Wagner inte-
gral model with the Tanner–Simmons damping function and the FMM memory function
in the form:

η(γ̇)

Vτ1−α
c

=H(1−Wi/γ∗)

(
Wi
γ∗

)α−1 ∞

∑
k=1

(−1)k+1 (β + k(α− β))

Γ(2− β− k(α− β))

(
Wi
γ∗

)(k−1)(α−β)

+H(Wi/γ∗ − 1)
(

Wi
γ∗

)β−1 ∞

∑
k=1

(−1)k+1 (α− k(α− β))

Γ(2− α + k(α− β))

(
Wi
γ∗

)−(k−1)(α−β)
(A3)

The low and high shear rates asymptotes are set by the FMM parameters α and β,
similar to the results obtained with the exponential damping function and the generalized
damping function (in the strong damping limit).

Appendix B

The rate-dependent steady shear viscosity predicted by the Wagner integral model from
Equation (31) can be written as:

σ

γ̇
≡ η(γ̇) = −Vτ

β−α
c

∫ ∞

0
u−βEα−β,−β

(
−(u/τc)

α−β
)

h(γ̇u)du (A4)

Note that u is a time variable equal to (t − t′) as noted in Section 3. In order to
find the asymptotic expressions for the rate-dependent viscosity with damping function
h(γ) = 1/

(
1 + (γ/γ∗)m), one can approximate Equation (A4) in terms of asymptotes of

the damping function (h(γ) ≈ 1 for γ/γ∗ � 1 and h(γ) ≈ (γ/γ∗)−m for γ̇u/γ∗ � 1) as:

η(γ̇)

Vτ1−α
c
≈ −

[∫ γ∗/Wi

0
x−βEα−β,−β

(
xα−β

)
dx +

∫ ∞

γ∗/Wi
x−βEα−β,−β

(
xα−β

)
(γ̇τcx/γ∗)−mdx

]
(A5)

where x = u/τc = γ/(γ̇τc). For the case of strong shear flows or high shear rates
(Wi/γ∗ � 1 or γ∗/Wi→ 0), the rate-dependent viscosity asymptote can be expressed as:

η(Wi/γ∗ � 1)
Vτ1−α

c
= −

(
Wi
γ∗

)−m ∫ ∞

γ∗/Wi→0
x−β−mEα−β,−β

(
xα−β

)
dx (A6)

One can rewrite Equation (A6) into two integrals by splitting the upper limit:

η(Wi/γ∗ � 1)
Vτ1−α

c
= −

(
Wi
γ∗

)−m
[ ∫ 1

γ∗/Wi→0
x−β−mEα−β,−β

(
xα−β

)
dx

+
∫ ∞

1
x−β−mEα−β,−β

(
xα−β

)
dx

] (A7)

Since Eα−β,−β(z) ≈ constant for z � 1 and Eα−β,−β(z) ≈ z−1 for z � 1, we clearly
see that the first term of Equation (A7) for viscosity scales as ∼ (Wi/γ∗)β−1 and the second
term follows the scaling η ∼ (Wi/γ∗)−m for m > 1− α. Therefore, for weak damping
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(1− α) < m ≤ (1− β), the asymptote of the rate-dependent shear viscosity for strong
shear flows or high shear rate (Wi/γ∗ � 1) is given by:

η(Wi/γ∗ � 1)
Vτ1−α

c
= f (m)

(
Wi
γ∗

)−m
(A8)

where,

f (m) =
∫ ∞

0
−x−β−mEα−β,−β

(
−xα−β

)
dx (A9)

However, in the limit of very weak damping m ≤ (1− α) < (1− β), the stress grows
without bound, and the steady shear viscosity is undefined at both high and low shear
rates since the second integral in Equations (A5) and (A7) diverges to infinity.

For the special limit of the Fractional Maxwell Liquid (FML, α = 1), in the case of
weak shear flows or small shear rates (i.e., Wi/γ∗ � 1), the viscosity asymptote from
Equation (A5) can be written as:

η(Wi/γ∗ � 1)
V = −

∫ γ∗/Wi→∞

0
x−βEα−β,−β

(
xα−β

)
dx = 1 (A10)

At high shear rates corresponding to strong shear flows with Wi/γ∗ � 1, we follow
similar arguments used in Equations (A6) and (A7) with α = 1, and find that the steady
shear viscosity for m ≤ 1− β can be written as:

η(Wi/γ∗ � 1)
V = f (m)

(
Wi
γ∗

)−m
(A11)

where V→ η0 and, again, we find:

f (m) =
∫ ∞

0
−x−β−mEα−β,−β

(
−xα−β

)
dx. (A12)
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