A Deep Learning BiLSTM Encoding-Decoding Model for COVID-19 Pandemic Spread Forecasting
Abstract
:1. Introduction
2. Review of Predictions Models
3. Material and Methods
3.1. Material
3.2. Methods
3.2.1. Data Pre-Processing
3.2.2. Our Proposed Approach
3.2.3. Prediction Results Evaluation Criteria
4. Results
4.1. Experiment 1
4.2. Experiment 2
4.3. Experiment 3
4.4. Experiment 4
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arden, M.A.; Chilcot, J. Health psychology and the coronavirus (COVID-19) global pandemic: A call for research. Br. J. Health Psychol. 2020, 25, 231–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manderson, L.; Levine, S. COVID-19, risk, fear, and fall-out. Med. Anthropol. 2020, 39, 367–370. [Google Scholar] [CrossRef]
- Sornette, D.; Mearns, E.; Schatz, M.; Wu, K.; Darcet, D. Interpreting, analysing and modelling COVID-19 mortality data. Nonlinear Dyn. 2020, 101, 1751–1776. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Padappayil, R.P.; Garg, C.; Singal, A.; Gupta, M.; Klein, A. Utility of artificial intelligence amidst the COVID 19 pandemic: A review. J. Med. Syst. 2020, 44, 1–6. [Google Scholar] [CrossRef]
- Chen, J.; See, K.C. Artificial Intelligence for COVID-19: Rapid Review. J. Med. Internet Res. 2020, 22, e21476. [Google Scholar] [CrossRef]
- Jamshidi, M.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Hadjilooei, F.; Lalbakhsh, P.; Jamshidi, M.; La Spada, L.; Mirmozafari, M.; Dehghani, M.; et al. Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access 2020, 8, 109581–109595. [Google Scholar] [CrossRef] [PubMed]
- Pham, Q.V.; Nguyen, D.C.; Hwang, W.J.; Pathirana, P.N. Artificial intelligence (AI) and big data for coronavirus (COVID-19) pandemic: A survey on the state-of-the-arts. IEEE Access 2020, 8, 130820–130839. [Google Scholar] [CrossRef]
- Desai, S.B.; Pareek, A.; Lungren, M.P. Deep learning and its role in COVID-19 medical imaging. Intell.-Based Med. 2020, 3, 100013. [Google Scholar] [CrossRef] [PubMed]
- Jakhar, D.; Kaur, I. Current applications of artificial intelligence for COVID-19. Dermatol. Ther. 2020. [Google Scholar] [CrossRef]
- Lalmuanawma, S.; Hussain, J.; Chhakchhuak, L. Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos Solitons Fractals 2020, 139, 110059. [Google Scholar] [CrossRef] [PubMed]
- Tayarani-N, M.H. Applications of artificial intelligence in battling against Covid-19: A literature review. Chaos Solitons Fractals 2020, 142, 110338. [Google Scholar] [CrossRef] [PubMed]
- Vaishya, R.; Javaid, M.; Khan, I.H.; Haleem, A. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 337–339. [Google Scholar] [CrossRef]
- Srinivasa Rao, A.S.; Vazquez, J.A. Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone-based survey when cities and towns are under quarantine. Infect. Control. Hosp. Epidemiol. 2020, 41, 826–830. [Google Scholar] [CrossRef] [Green Version]
- Mbunge, E. Integrating emerging technologies into COVID-19 contact tracing: Opportunities, challenges and pitfalls. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1631–1636. [Google Scholar] [CrossRef]
- Shi, F.; Wang, J.; Shi, J.; Wu, Z.; Wang, Q.; Tang, Z.; He, K.; Shi, Y.; Shen, D. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for covid-19. IEEE Rev. Biomed. Eng. 2020, 14, 4–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, Y.Y.; Peng, T.T.; Yeh, T.K.; Huang, W.Z.; Chang, S.E.; Wu, S.H.; Hung, H.C.; Hsu, T.A.; Lee, S.J.; Song, J.S.; et al. Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed. J. 2020, 43, 355–362. [Google Scholar] [CrossRef]
- Loey, M.; Manogaran, G.; Taha, M.H.N.; Khalifa, N.E.M. A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement 2021, 167, 108288. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Azarmi, M. Deepsocial: Social distancing monitoring and infection risk assessment in covid-19 pandemic. Appl. Sci. 2020, 10, 7514. [Google Scholar] [CrossRef]
- Car, Z.; Baressi Šegota, S.; Anđelić, N.; Lorencin, I.; Mrzljak, V. Modeling the spread of COVID-19 infection using a multilayer perceptron. Comput. Math. Methods Med. 2020, 2020, 5714714. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Shahin, A.I.; Almotairi, S. An accurate and fast cardio-views classification system based on fused deep features and LSTM. IEEE Access 2020, 8, 135184–135194. [Google Scholar] [CrossRef]
- Aslan, M.F.; Unlersen, M.F.; Sabanci, K.; Durdu, A. CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection. Appl. Soft Comput. 2021, 98, 106912. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Gupta, P.K.; Srivastava, A. A review of modern technologies for tackling COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 569–573. [Google Scholar] [CrossRef]
- Ceylan, Z. Estimation of COVID-19 prevalence in Italy, Spain, and France. Sci. Total. Environ. 2020, 729, 138817. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, D.; Piazza, F. Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos Solitons Fractals 2020, 134, 109761. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Pal, S.K. Trend Analysis and Forecasting of COVID-19 outbreak in India. MedRxiv 2020. [Google Scholar]
- Abuhasel, K.A.; Khadr, M.; Alquraish, M.M. Analyzing and forecasting COVID-19 pandemic in the Kingdom of Saudi Arabia using ARIMA and SIR models. Comput. Intell. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; da Silva, R.G.; Mariani, V.C.; dos Santos Coelho, L. Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos Solitons Fractals 2020, 135, 109853. [Google Scholar] [CrossRef] [PubMed]
- Atangana, A.; Araz, S.İ. Mathematical model of COVID-19 spread in Turkey and South Africa: Theory, methods, and applications. Adv. Differ. Equations 2020, 2020, 1–89. [Google Scholar] [CrossRef] [PubMed]
- Shastri, S.; Singh, K.; Kumar, S.; Kour, P.; Mansotra, V. Time series forecasting of COVID-19 using deep learning models: India-USA comparative case study. Chaos Solitons Fractals 2020, 140, 110227. [Google Scholar] [CrossRef] [PubMed]
- Zeroual, A.; Harrou, F.; Dairi, A.; Sun, Y. Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study. Chaos Solitons Fractals 2020, 140, 110121. [Google Scholar] [CrossRef] [PubMed]
- Shahid, F.; Zameer, A.; Muneeb, M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos Solitons Fractals 2020, 140, 110212. [Google Scholar] [CrossRef] [PubMed]
- Karaçuha, E.; Önal, N.Ö.; Ergün, E.; Tabatadze, V.; Alkaş, H.; Karaçuha, K.; Tontuş, H.Ö.; Nu, N.V.N. Modeling and Prediction of the COVID-19 Cases With Deep Assessment Methodology and Fractional Calculus. IEEE Access 2020, 8, 164012–164034. [Google Scholar] [CrossRef]
- Rustam, F.; Reshi, A.A.; Mehmood, A.; Ullah, S.; On, B.W.; Aslam, W.; Choi, G.S. COVID-19 future forecasting using supervised machine learning models. IEEE Access 2020, 8, 101489–101499. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Al-Najafi, A. Modeling, Control, and Prediction of the Spread of COVID-19 Using Compartmental, Logistic, and Gauss Models: A Case Study in Iraq and Egypt. Processes 2020, 8, 1400. [Google Scholar] [CrossRef]
- Amar, L.A.; Taha, A.A.; Mohamed, M.Y. Prediction of the final size for COVID-19 epidemic using machine learning: A case study of Egypt. Infect. Dis. Model. 2020, 5, 622–634. [Google Scholar] [CrossRef]
- Prasanth, S.; Singh, U.; Kumar, A.; Tikkiwal, V.A.; Chong, P.H. Forecasting spread of COVID-19 using Google Trends: A hybrid GWO-Deep learning approach. Chaos Solitons Fractals 2021, 142, 110336. [Google Scholar] [CrossRef]
- Petropoulos, F.; Makridakis, S.; Stylianou, N. COVID-19: Forecasting confirmed cases and deaths with a simple time series model. Int. J. Forecast. 2020. [Google Scholar] [CrossRef] [PubMed]
- Abbasimehr, H.; Paki, R. Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization. Chaos Solitons Fractals 2021, 142, 110511. [Google Scholar] [CrossRef]
- Middle, I. Regional variations in the prevalence of consanguinity in Saudi Arabia. Saudi. Med. J. 2007, 28, 1881–1884. [Google Scholar]
- Alzahrani, S.I.; Aljamaan, I.A.; Al-Fakih, E.A. Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under current public health interventions. J. Infect. Public Health 2020, 13, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Elsheikh, A.H.; Saba, A.I.; Abd Elaziz, M.; Lu, S.; Shanmugan, S.; Muthuramalingam, T.; Kumar, R.; Mosleh, A.O.; Essa, F.; Shehabeldeen, T.A. Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia. Process. Saf. Environ. Prot. 2021, 149, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, S.A.; Kamruzzaman, M.; Alruwaili, M.; Alshammari, N.; Alqahtani, S.A.; Karime, A. Measuring and preventing COVID-19 using the SIR model and machine learning in smart health care. J. Healthc. Eng. 2020, 2020, 8857346. [Google Scholar] [CrossRef] [PubMed]
- Jeelani, M.B.; Alnahdi, A.S.; Abdo, M.S.; Abdulwasaa, M.A.; Shah, K.; Wahash, H.A. Mathematical Modeling and Forecasting of COVID-19 in Saudi Arabia under Fractal-Fractional Derivative in Caputo Sense with Power-Law. Axioms 2021, 10, 228. [Google Scholar] [CrossRef]
- Kartono, A.; Karimah, S.V.; Wahyudi, S.T.; Setiawan, A.A.; Sofian, I. Forecasting the Long-Term Trends of Coronavirus Disease 2019 (COVID-19) Epidemic Using the Susceptible-Infectious-Recovered (SIR) Model. Infect. Dis. Rep. 2021, 13, 668–684. [Google Scholar] [CrossRef] [PubMed]
- Melin, P.; Castillo, O. Spatial and Temporal Spread of the COVID-19 Pandemic Using Self Organizing Neural Networks and a Fuzzy Fractal Approach. Sustainability 2021, 13, 8295. [Google Scholar] [CrossRef]
- Hussein, T.; Hammad, M.H.; Fung, P.L.; Al-Kloub, M.; Odeh, I.; Zaidan, M.A.; Wraith, D. COVID-19 Pandemic Development in Jordan—Short-Term and Long-Term Forecasting. Vaccines 2021, 9, 728. [Google Scholar] [CrossRef]
- Ma, N.; Ma, W.; Li, Z. Multi-Model Selection and Analysis for COVID-19. Fractal Fract. 2021, 5, 120. [Google Scholar] [CrossRef]
- Marzouk, M.; Elshaboury, N.; Abdel-Latif, A.; Azab, S. Deep learning model for forecasting COVID-19 outbreak in Egypt. Process. Saf. Environ. Prot. 2021, 153, 363–375. [Google Scholar] [CrossRef]
- Wang, T.; Chen, P.; Rochford, J.; Qiang, J. Text simplification using neural machine translation. In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30. [Google Scholar]
- Du, S.; Li, T.; Yang, Y.; Horng, S.J. Multivariate time series forecasting via attention-based encoder–decoder framework. Neurocomputing 2020, 388, 269–279. [Google Scholar] [CrossRef]
- Laubscher, R. Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks. Energy 2019, 189, 116187. [Google Scholar] [CrossRef]
- Zhang, B.; Zou, G.; Qin, D.; Lu, Y.; Jin, Y.; Wang, H. A novel Encoder–Decoder model based on read-first LSTM for air pollutant prediction. Sci. Total Environ. 2021, 765, 144507. [Google Scholar] [CrossRef] [PubMed]
- Zerkouk, M.; Chikhaoui, B. Spatio-temporal abnormal behavior prediction in elderly persons using deep learning models. Sensors 2020, 20, 2359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, P.; Chen, N.; Mao, S.; Li, M. LSTM based encoder-decoder for short-term predictions of gas concentration using multi-sensor fusion. Process. Saf. Environ. Prot. 2020, 137, 93–105. [Google Scholar] [CrossRef]
- Katris, C. A time series-based statistical approach for outbreak spread forecasting: Application of COVID-19 in Greece. Expert Syst. Appl. 2021, 166, 114077. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Tang, X.; Liu, B.; Wang, J.; Zhou, Y.; Zheng, G.; Zou, Q.; Lu, Y.; Tu, W. An improved method of COVID-19 case fitting and prediction based on LSTM. arXiv 2020, arXiv:2005.03446. [Google Scholar]
- Al-Jabery, K.; Obafemi-Ajayi, T.; Olbricht, G.; Wunsch, D. Computational Learning Approaches to Data Analytics in Biomedical Applications; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Elhassan, T.; Gaafar, A. Mathematical modeling of the COVID-19 prevalence in Saudi Arabia. medRxiv 2020. [Google Scholar]
- Schmidhuber, J. System Modeling and Optimization. Habilitation Thesis, The Technical University of Munich (TUM), Munich, Germany, 1993. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580. [Google Scholar]
- Stefanakos, C.; Schinas, O. Fuzzy time series forecasting of bunker prices. WMU J. Marit. Aff. 2015, 14, 177–199. [Google Scholar] [CrossRef]
- Kolozsvári, L.R.; Bérczes, T.; Hajdu, A.; Gesztelyi, R.; Tiba, A.; Varga, I.; Alaà, B.; Szőllősi, G.J.; Harsànyi, S.; Garbóczy, S.; et al. Predicting the epidemic curve of the coronavirus (SARS-CoV-2) disease (COVID-19) using artificial intelligence: An application on the first and second waves. Informatics Med. Unlocked 2021, 25, 100691. [Google Scholar] [CrossRef]
- Alshammari, T.M.; Altebainawi, A.F.; Alenzi, K.A. Importance of early precautionary actions in avoiding the spread of COVID-19: Saudi Arabia as an Example. Saudi Pharm. J. 2020, 28, 898–902. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Elbarkouky, R.A.; Omar, O.A.; Ragusa, M.A. Models for COVID-19 Daily Confirmed Cases in Different Countries. Mathematics 2021, 9, 659. [Google Scholar] [CrossRef]
- Alqahtani, A.S.; Alrasheed, M.M.; Alqunaibet, A.M. Public Response, Anxiety and Behaviour during the First Wave of COVID-19 Pandemic in Saudi Arabia. Int. J. Environ. Res. Public Health 2021, 18, 4628. [Google Scholar] [CrossRef]
- ben Khedher, N.; Kolsi, L.; Alsaif, H. A multi-stage SEIR model to predict the potential of a new COVID-19 wave in KSA after lifting all travel restrictions. Alex. Eng. J. 2021, 60, 3965–3974. [Google Scholar] [CrossRef]
- Khayyat, M.; Laabidi, K.; Almalki, N.; Al-zahrani, M. Time Series Facebook Prophet Model and Python for COVID-19 Outbreak Prediction. CMC-Comput. Mater. Contin. 2021, 67, 3781–3793. [Google Scholar] [CrossRef]
- Devaraj, J.; Elavarasan, R.M.; Pugazhendhi, R.; Shafiullah, G.; Ganesan, S.; Jeysree, A.K.; Khan, I.A.; Hossain, E. Forecasting of COVID-19 cases using deep learning models: Is it reliable and practically significant? Results Phys. 2021, 21, 103817. [Google Scholar] [CrossRef] [PubMed]
COVID-19 First Wave Starting | COVID-19 First Wave Ending | |||||||
---|---|---|---|---|---|---|---|---|
Forecasting Model | MSE | MAE | RMSE | R-squared | MSE | MAE | RMSE | R-squared |
Prophet Model | 4.721 × 109 | 6.761 × 104 | 6.871 × 104 | −31.8956 | 1.271 × 1011 | 3.561 × 105 | 3.561 × 105 | −6090.89 |
ARIMA_Model1 | 1.301 × 107 | 3.251 × 103 | 3.611 × 103 | 0.909 | 4.711 × 106 | 1.541 × 103 | 2.171 × 103 | 0.7733 |
ARIMA_Model2 | 1.251 × 107 | 3.181 × 103 | 3.541 × 103 | 0.9126 | 3.131 × 106 | 1.301 × 103 | 1.771 × 103 | 0.8493 |
ARIMA_Model3 | 1.231 × 107 | 3.141 × 103 | 3.501 × 103 | 0.9143 | 7.141 × 106 | 1.851 × 103 | 2.671 × 103 | 0.6566 |
Lasso | 2.831 × 109 | 4.671 × 104 | 5.321 × 104 | −70.9598 | 2.121 × 1010 | 1.451 × 105 | 1.451 × 105 | −1578.24 |
RANSACRegressor | 5.581 × 109 | 6.741 × 104 | 7.471 × 104 | −140.6868 | 8.111 × 108 | 2.841 × 104 | 2.851 × 104 | −59.5539 |
HuberRegressor | 4.771 × 109 | 6.191 × 104 | 6.901 × 104 | −120.0091 | 5.351 × 108 | 2.311 × 104 | 2.311 × 104 | −38.9581 |
LinearRegression | 4.211 × 109 | 5.791 × 104 | 6.491 × 104 | −105.8295 | 8.111 × 108 | 2.841 × 104 | 2.851 × 104 | −59.5539 |
SVR_linear | 4.991 × 109 | 6.361 × 104 | 7.071 × 104 | −125.7476 | 3.391 × 108 | 1.831 × 104 | 1.841 × 104 | −24.336 |
ElasticNet | 5.871 × 108 | 1.941 × 104 | 2.421 × 104 | −13.9027 | 8.611 × 109 | 9.281 × 104 | 9.281 × 104 | −641.912 |
TheilSenRegressor | 8.431 × 109 | 8.411 × 104 | 9.181 × 104 | −212.9676 | 1.411 × 109 | 3.761 × 104 | 3.761 × 104 | −104.638 |
GRU | 6.661 × 106 | 2.041 × 103 | 2.581 × 103 | 0.9497 | 6.381 × 107 | 7.961 × 103 | 7.991 × 103 | −2.1222 |
BiLSTM | 3.631 × 107 | 5.791 × 103 | 6.031 × 103 | 0.726 | 2.321 × 105 | 4.511 × 102 | 4.821 × 102 | 0.9886 |
LSTM | 2.951 × 107 | 4.711 × 103 | 5.431 × 103 | 0.5619 | 1.261 × 107 | 3.401 × 103 | 3.551 × 103 | 0.3164 |
Encoder–Decoder-LSTM | 2.501 × 106 | 1.531 × 103 | 1.581 × 103 | 0.9812 | 8.921 × 106 | 2.981 × 103 | 2.991 × 103 | 0.5636 |
Our Proposed Model | 9.371 × 105 | 8.031 × 102 | 9.681 × 102 | 0.9929 | 3.981 × 104 | 1.711 × 102 | 2.001 × 102 | 0.9981 |
Country | Cases | Period | MSE | MAE | RMSE | MASE | R_Squared |
---|---|---|---|---|---|---|---|
Germany | Death Cases | Period 1 | 5.701 × 102 | 2.081 × 101 | 2.391 × 101 | 12.2 | 0.9881 |
Period 2 | 9.891 × 105 | 8.151 × 102 | 9.941 × 102 | 83.27 | 0.9723 | ||
Confirmed Cases | Period 1 | 2.931 × 105 | 4.541 × 102 | 5.411 × 102 | 8.79 | 0.9633 | |
Period 2 | 4.701 × 109 | 6.821 × 104 | 6.851 × 104 | 45.3 | 0.9595 | ||
Italy | Death Cases | Period 1 | 4.091 × 103 | 4.931 × 101 | 6.391 × 101 | 0.2 | 0.9904 |
Period 2 | 1.541 × 105 | 3.021 × 102 | 3.921 × 102 | 4.87 | 0.9987 | ||
Confirmed Cases | Period 1 | 2.581 × 105 | 4.581 × 102 | 5.081 × 102 | 0.06 | 0.9742 | |
Period 2 | 3.951 × 109 | 6.181 × 104 | 6.281 × 104 | 33.09 | 0.9797 | ||
Turkey | Death Cases | Period 1 | 3.651 × 102 | 1.601 × 101 | 1.911 × 101 | 2.57 | 0.9864 |
Period 2 | 9.601 × 104 | 2.271 × 102 | 3.101 × 102 | 0.69 | 0.9884 | ||
Confirmed Cases | Period 1 | 8.221 × 105 | 7.531 × 102 | 9.071 × 102 | 0.87 | 0.976 | |
Period 2 | 1.221 × 1010 | 6.591 × 104 | 1.101 × 105 | 47.88 | 0.9731 | ||
Spain | Death Cases | Period 1 | 3.321 × 103 | 4.911 × 101 | 5.761 × 101 | 0.96 | 0.9898 |
Period 2 | 5.721 × 105 | 5.801 × 102 | 7.561 × 102 | 3.47 | 0.9707 | ||
Confirmed Cases | Period 1 | 8.461 × 105 | 8.381 × 102 | 9.201 × 102 | 0.71 | 0.9141 | |
Period 2 | 2.421 × 109 | 4.871 × 104 | 4.921 × 104 | 7.93 | 0.9418 |
COVID-19 First Wave Starting | COVID-19 First Wave Ending | |||||||
---|---|---|---|---|---|---|---|---|
Forecasting Model | MSE | MAE | RMSE | R-squared | MSE | MAE | RMSE | R-squared |
Prophet Model | 1.771 × 109 | 4.001 × 104 | 4.211 × 104 | −9.3176 | 1.191 × 1011 | 3.451 × 105 | 3.451 × 105 | −3067.49 |
ARIMA_Model1 | 5.541 × 107 | 5.951 × 103 | 7.441 × 103 | 0.6777 | 3.141 × 107 | 4.271 × 103 | 5.611 × 103 | 0.1881 |
ARIMA_Model2 | 3.681 × 107 | 4.731 × 103 | 6.061 × 103 | 0.7862 | 6.811 × 107 | 6.401 × 103 | 8.251 × 103 | −0.7588 |
ARIMA_Model3 | 3.041 × 107 | 4.341 × 103 | 5.511 × 103 | 0.8234 | 1.111 × 108 | 8.541 × 103 | 1.051 × 104 | −1.8675 |
Lasso | 1.541 × 107 | 3.271 × 103 | 3.921 × 103 | 0.7733 | 2.681 × 1010 | 1.641 × 105 | 1.641 × 105 | −976.727 |
RANSACRegressor | 1.811 × 108 | 1.341 × 104 | 1.351 × 104 | −1.6702 | 1.381 × 109 | 3.711 × 104 | 3.711 × 104 | −49.2069 |
HuberRegressor | 2.051 × 107 | 3.731 × 103 | 4.531 × 103 | 0.6984 | 1.051 × 109 | 3.231 × 104 | 3.231 × 104 | −37.0974 |
LinearRegression | 2.381 × 107 | 3.991 × 103 | 4.881 × 103 | 0.649 | 1.381 × 109 | 3.711 × 104 | 3.711 × 104 | −49.2069 |
SVR_linear | 3.831 × 107 | 4.961 × 103 | 6.191 × 103 | 0.4357 | 6.911 × 108 | 2.631 × 104 | 2.631 × 104 | −24.1915 |
ElasticNet | 1.591 × 108 | 1.261 × 104 | 1.261 × 104 | −1.3486 | 9.541 × 109 | 9.761 × 104 | 9.771 × 104 | −346.681 |
TheilSenRegressor | 4.141 × 107 | 5.191 × 103 | 6.431 × 103 | 0.3905 | 5.421 × 109 | 7.361 × 104 | 7.361 × 104 | −196.374 |
GRU | 1.941 × 107 | 4.361 × 103 | 4.411 × 103 | 0.8713 | 1.951 × 107 | 4.401 × 103 | 4.421 × 103 | 0.4877 |
BiLSTM | 1.211 × 108 | 1.011 × 104 | 1.101 × 104 | 0.197 | 8.571 × 104 | 2.471 × 102 | 2.931 × 102 | 0.9978 |
LSTM | 9.451 × 107 | 7.871 × 103 | 9.721 × 103 | −0.553 | 9.401 × 106 | 2.781 × 103 | 3.071 × 103 | 0.7271 |
Encoder–Decoder-LSTM | 2.031 × 107 | 3.871 × 103 | 4.511 × 103 | 0.8653 | 5.311 × 106 | 2.281 × 103 | 2.301 × 103 | 0.8608 |
Our Proposed Model | 5.171 × 106 | 2.081 × 103 | 2.271 × 103 | 0.9657 | 6.021 × 104 | 2.141 × 102 | 2.451 × 102 | 0.9984 |
COVID-19 First Wave Starting | COVID-19 First Wave Ending | |||||||
---|---|---|---|---|---|---|---|---|
Forecasting Model | MSE | MAE | RMSE | R-squared | MSE | MAE | RMSE | R-squared |
Prophet Model | 80,698 | 276.6609 | 284.0755 | −18.3656 | 3.281 × 107 | 5725.99 | 5731.193 | −549.971 |
ARIMA_Model1 | 165.524 | 8.139 | 12.8656 | 0.9603 | 1.361 × 104 | 85.9144 | 116.7805 | 0.7712 |
ARIMA_Model2 | 155.3177 | 7.9651 | 12.4627 | 0.9627 | 1.111 × 104 | 73.9975 | 105.474 | 0.8134 |
ARIMA_Model3 | 137.216 | 7.1448 | 11.7139 | 0.9671 | 4.911 × 104 | 167.2461 | 221.6259 | 0.1761 |
Lasso | 1150.8528 | 32.9337 | 33.9242 | 0.4582 | 8.651 × 106 | 2936.2 | 2941.442 | −202.413 |
RANSACRegressor | 2396.0025 | 47.5562 | 48.949 | −0.128 | 5.061 × 105 | 703.9295 | 711.3375 | −10.8963 |
HuberRegressor | 3396.2835 | 56.6015 | 58.2776 | −0.5989 | 5.091 × 105 | 705.7586 | 713.593 | −10.9718 |
LinearRegression | 4308.111 | 63.7156 | 65.6362 | −1.0281 | 5.061 × 105 | 703.9295 | 711.3375 | −10.8963 |
SVR_linear | 4769.5801 | 67.4808 | 69.0621 | −1.2454 | 5.501 × 105 | 734.0821 | 741.8875 | −11.94 |
ElasticNet | 5292.7366 | 71.4414 | 72.7512 | −1.4916 | 3.461 × 106 | 1858.153 | 1860.545 | −80.384 |
TheilSenRegressor | 5913.6893 | 75.4037 | 76.9005 | −1.784 | 8.541 × 105 | 919.0879 | 923.8529 | −19.0662 |
GRU | 32.7193 | 4.8849 | 5.7201 | 0.9904 | 5.921 × 104 | 240.6431 | 243.2687 | −0.0133 |
BiLSTM | 677.8149 | 24.9696 | 26.0349 | 0.8016 | 4.241 × 101 | 5.7041 | 6.512 | 0.9993 |
LSTM | 1030.9777 | 30.1047 | 32.1088 | 0.0894 | 4.121 × 103 | 52.8893 | 64.1746 | 0.9192 |
Encoder–Decoder-LSTM | 87.7449 | 9.3539 | 9.3672 | 0.97 | 1.431 × 104 | 119.71 | 119.73 | 0.754 |
Our Proposed Model | 16.1006 | 3.1147 | 4.0126 | 0.9953 | 6.391 × 101 | 6.5497 | 7.9967 | 0.999 |
Country | Cases | Period | MSE | MAE | RMSE | MASE | R_Squared |
---|---|---|---|---|---|---|---|
Brazil | Death Cases | Period 1 | 9.581 × 105 | 9.691 × 102 | 9.791 × 102 | 0.96 | 0.9581 |
Period 2 | 1.271 × 106 | 1.111 × 103 | 1.131 × 103 | 3.47 | 0.9863 | ||
Confirmed Cases | Period 1 | 4.341 × 107 | 5.881 × 103 | 6.591 × 103 | 0.71 | 0.9942 | |
Period 2 | 1.211 × 1010 | 1.101 × 105 | 1.101 × 105 | 7.93 | 0.9677 | ||
India | Death Cases | Period 1 | 4.911 × 103 | 6.281 × 101 | 7.011 × 101 | 3.8 | 0.9922 |
Period 2 | 8.071 × 105 | 8.671 × 102 | 8.981 × 102 | 2.63 | 0.9879 | ||
Confirmed Cases | Period 1 | 1.501 × 108 | 9.661 × 103 | 1.231 × 104 | 3.72 | 0.8662 | |
Period 2 | 1.841 × 1010 | 1.141 × 105 | 1.361 × 105 | 3.59 | 0.9551 | ||
South Africa | Death Cases | Period 1 | 1.211 × 103 | 2.331 × 101 | 3.471 × 101 | 4.15 | 0.9334 |
Period 2 | 4.851 × 104 | 2.041 × 102 | 2.201 × 102 | 16.04 | 0.9878 | ||
Confirmed Cases | Period 1 | 2.411 × 106 | 1.501 × 103 | 1.551 × 103 | 2.31 | 0.9237 | |
Period 2 | 1.711 × 108 | 1.201 × 104 | 1.311 × 104 | 5.56 | 0.9691 | ||
Saudi Arabia | Death Cases | Period 1 | 6.391 × 101 | 6.551 × 100 | 8.001 × 100 | 1.78 | 0.9989 |
Period 2 | 1.561 × 101 | 3.401 × 100 | 3.961 × 100 | 0.46 | 0.9954 | ||
Confirmed Cases | Period 1 | 9.371 × 105 | 8.031 × 102 | 9.681 × 102 | 2.24 | 0.9929 | |
Period 2 | 3.981 × 104 | 1.711 × 102 | 2.001 × 102 | 0.18 | 0.9981 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahin, A.I.; Almotairi, S. A Deep Learning BiLSTM Encoding-Decoding Model for COVID-19 Pandemic Spread Forecasting. Fractal Fract. 2021, 5, 175. https://doi.org/10.3390/fractalfract5040175
Shahin AI, Almotairi S. A Deep Learning BiLSTM Encoding-Decoding Model for COVID-19 Pandemic Spread Forecasting. Fractal and Fractional. 2021; 5(4):175. https://doi.org/10.3390/fractalfract5040175
Chicago/Turabian StyleShahin, Ahmed I., and Sultan Almotairi. 2021. "A Deep Learning BiLSTM Encoding-Decoding Model for COVID-19 Pandemic Spread Forecasting" Fractal and Fractional 5, no. 4: 175. https://doi.org/10.3390/fractalfract5040175
APA StyleShahin, A. I., & Almotairi, S. (2021). A Deep Learning BiLSTM Encoding-Decoding Model for COVID-19 Pandemic Spread Forecasting. Fractal and Fractional, 5(4), 175. https://doi.org/10.3390/fractalfract5040175