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Abstract: The ultimate goal of this study is to develop a numerically effective approximation tech-
nique to acquire numerical solutions of the integer and fractional-order Bratu and the singular
Lane–Emden-type problems especially with exponential nonlinearity. Both the initial and boundary
conditions were considered and the fractional derivative being considered in the Liouville–Caputo
sense. In the direct approach, the generalized Bessel matrix method based on collocation points was
utilized to convert the model problems into a nonlinear fundamental matrix equation. Then, the
technique of quasilinearization was employed to tackle the nonlinearity that arose in our considered
model problems. Consequently, the quasilinearization method was utilized to transform the original
nonlinear problems into a sequence of linear equations, while the generalized Bessel collocation
scheme was employed to solve the resulting linear equations iteratively. In particular, to convert
the Neumann initial or boundary condition into a matrix form, a fast algorithm for computing the
derivative of the basis functions is presented. The error analysis of the quasilinear approach is
also discussed. The effectiveness of the present linearized approach is illustrated through several
simulations with some test examples. Comparisons with existing well-known schemes revealed that
the presented technique is an easy-to-implement method while being very effective and convenient
for the nonlinear Bratu and Lane–Emden equations.

Keywords: Bessel functions; Bratu’s problem; collocation method; error analysis; Lane–Emden
equation; Liouville–Caputo fractional derivative; quasilinearization technique

1. Introduction

This research deals with an effective approximative technique based on (generalized)
novel Bessel bases together with the quasilinearization technique to obtain the solution of
a class of nonlinear fractional-order differential equations of the form:

LCDβ
t u(t) = f (t, u(t), u′(t)), t ∈ [0, 1], 1 < β ≤ 2, (1)

supplemented by one of the following initial or boundary conditions:

u(0) = u0, u′(0) = u1, or

{
u(0) = u0, u(1) = u1,
u′(0) = u0, u(1) = u1,

(2)

where u0 and u1 belong to R and f is a known function. In (1), by LCDβ
t , we denote the

Liouville–Caputo fractional derivative. We refer to [1] (p. 507) or [2] for justification of

Fractal Fract. 2021, 5, 179. https://doi.org/10.3390/fractalfract5040179 https://www.mdpi.com/journal/fractalfract

https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-6116-4928
https://orcid.org/0000-0002-9277-8092
https://doi.org/10.3390/fractalfract5040179
https://doi.org/10.3390/fractalfract5040179
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fractalfract5040179
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract5040179?type=check_update&version=2


Fractal Fract. 2021, 5, 179 2 of 27

the name “Liouville–Caputo” rather than “Caputo”. Some discussions and results on the
existence and uniqueness of solutions of initial and boundary value problems (1) were
given in [3].

In particular, we are interested in two important prototypes of (1) as follows:
Model Problem (a). The fractional-order Bratu-type equation is:

LCDβ
t u(t) + λ eη u(t) = 0, 1 < β ≤ 2, (3)

where λ is a real constant and η = ±1.
Model Problem (b). The fractional-order Lane–Emden-type equation is:

LCDβ
t u(t) +

d
tβ−1 u′(t) + eη u(t) = 0, 1 < β ≤ 2, (4)

where d is a positive constant and η = ±1.
For the integer order β = 2, the model problem (3) is referred to as Bratu’s problem

in one-dimensional planar coordinates, and the second model problem (4) is known as
Lane–Emden equation of the second kind. Extensive attention has been paid to the study of
both model problems (3) and (4) due to the many applications in science and engineering
processes. Bratu equations arise in various natural chemical and physical phenomena.
Among many available models, we emphasize a model for describing the electrospinning
process [4] and electrically conducting solids [5]. On the other hand, many events in
astrophysics and theoretical physics can be demonstrated as a Lane–Emden equation.
These include the thermal history of a spherical cloud of gas, the theory of stellar structure,
thermionic currents, and isothermal gas spheres [6,7].

There has been growing interest towards fractional calculus due to its appearance in
many disciplines of physical and engineering science. Fractional differentiations provide
a valuable and powerful instrument for the description of the memory and hereditary
properties of several processes and materials, which is neglected by utilizing the models
with integer order [3,8]. The solutions of the majority of fractional differential equations
(FDEs) as the outcome of fractional modeling of real materials cannot be obtained ana-
lytically. Therefore, numerical and approximation algorithms are an indispensable tool
for the investigation of the solutions of such fractional-order equations. Numerous ap-
proximation algorithms with various merits have been proposed in the literature for the
FDEs. Among many proposed methods, we mention the Adomian decomposition method
(ADM) [9], the reproducing kernel approach [10], the local discontinuous Galerkin meth-
ods [11,12], the Adams-type predictor-corrector methods [13], and the spectral collocation
approaches [14–18], to name but a few.

The following approximative and numerical schemes have recently been proposed
for Model Problem (a) and closely related problems: the ADM and complex transform
methods [19], the factional differential transform approach [20], the Legendre reproducing
kernel method [21], the homotopy perturbation transform method [22], the Legendre spec-
tral method [23], and the Laplace decomposition method [24]. Analogously, the homotopy
perturbation method [25], the discontinuous finite-element approximation [26], the hybrid
numerical approach using both Chebyshev wavelets and a finite-difference method [27],
and Bernoulli’s operational matrix method [28] have been proposed in recent years to
approximate the solution of nonlinear Model Problem (b).

Alternatively, in this study, we aimed to approximate the solution of (3) and (4) in
terms of the series expansion of novel generalized Bessel functions, which were recently
introduced in [29,30]. In the first attempt, the present technique exploits these functions
together with some suitable collocation points to reduce the model problems (3) and (4)
to an equivalent system of nonlinear algebraic equations, which can be treated with
iterative Newton-like methods. However, solving the resultant nonlinear systems may be
inefficient when the number of bases increases. Thus, in the second and ultimate approach
to tackle this difficulty, we first employed the quasilinearization method (QLM) to the
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model problems (3) and (4). Hence, we applied the Bessel collocation approach to the
resulting sequence of linear equations.

The outline for the rest of this research work is as follows. In the next Section 2, some
basic facts about fractional calculus are introduced, and then, Bessel polynomials are briefly
reviewed. Hence, a concise introduction to the technique of quasilinearization is expressed.
The implementations of the direct Bessel matrix method applied to the aforementioned
model problems are performed in Section 3. We further propose an algorithm to compute
the derivative of the basis functions that consequently helps us convert the Neumann initial
or boundary condition into a matrix form. In Section 4, the methodology of collocation for
the corresponding quasilinear model problems is explained. Furthermore, the technique
of residual error functions is introduced. Section 5 is devoted to the error analysis of the
Bessel quasilinearization technique. In Section 6, numerical test examples that demonstrate
the relevant features of the presented methods are investigated, and discussions on both
proposed methods are provided. Finally, a summary and conclusion are drawn in Section 7.

2. Preliminary Concepts
2.1. Fractional Notations

To continue, we give some basic preliminaries and definitions on the Liouville–Caputo
fractional derivative (see also [3] and the references therein).

Definition 1. Let q(t) be an n-differentiable function. The Liouville–Caputo fractional derivative
LCDβ

t of q(t) of order β > 0 is:

LCDβ
t q(t) =

{
I (n−β)q(n)(t) if n− 1 < β < n,
q(n)(t), if β = n, n ∈ N,

(5)

where:

I (β)q(t) =
1

Γ(β)

∫ t

0
(t− s)β−1 q(s) ds, t > 0.

In Definition 1, Γ(·) denotes the well-known gamma function. The above derivative
operator owns the following properties:

LCDβ
t (c) = 0 (c is a constant), (6)

LCDβ
t tp =


Γ(p + 1)

Γ(p + 1− β)
tp−β, for p ∈ N0 and p ≥ dβe, or p /∈ N0 and p > bβc,

0, for p ∈ N0 and p < dβe.
(7)

Here, the ceiling function dβe shows the smallest integer greater than or equal to β.
Similarly, the floor function bβc denotes the largest integer less than or equal to β. Further
properties of this operator can be found in many books such as, e.g., [3].

2.2. Bessel Functions

The Bessel functions naturally appeared in the study of the classical wave equation
in [31] and have a close relation to the half-integral-order Bessel functions; see also [29].
The key feature of these functions is that their coefficients are always positive compared
to other traditional orthogonal functions, such as the Jacobi and Hermite polynomials.
The recursive relation for them is given by:{

Br+1(t) = Br−1(t) + (2r + 1)tBr(t), r = 1, 2, . . . ,
B0(t) = 1, B1(t) = 1 + t.

(8)
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On the other hand, these Bessel functions can be explicitly represented as:

Br(t) =
r

∑
`=0

(r + `)!
2` `!(r− `)!

t`, r = 0, 1, . . . . (9)

Besides the positivity of the coefficients, one may easily check that each Br(t) has the
constant term one. Following [29], we construct the fractional-order counterpart of these
functions by letting t → tα where α > 0 in (9). Let us denote them by Br,α(t). Therefore,
by using (9), we obtain the explicit form of Br,α(t) as:

Br,α(t) =
r

∑
`=0

(r + `)!
2` `!(r− `)!

t`α, r = 0, 1, . . . . (10)

Note additionally that these fractional-order polynomials are orthogonal with regard
to w(t) = tα−1e−

2
tα on the unit circle.

2.3. Quasilinearization Approach

As mentioned in the Introduction, we require solving nonlinear algebraic equations
obtained via the direct Bessel collocation approach with the help of nonlinear solvers such
as Newton iterative methods. Generally, this task may be unsuccessful or inefficient when
the number of basis functions is large. To conquer this difficulty while keeping accuracy at
an acceptable level, we may first convert the original Equations (3) and (4) into a sequence
of linear equations followed by applying the aforementioned Bessel collocation procedure
to them. To proceed, the basic ideas underlying the solutions of our model problems
via the quasilinearization method (QLM) are briefly described; see [32–35] for a more
detailed discussions.

Let us consider the general form of our model problems, i.e., the nonlinear form (1)
and the accompanied initial or boundary conditions (2). To begin with, we initially require
selecting an initial approximation u0(t) to a function u(t) as the solution of (3) or (4). Then,
the QLM iteration for (1) is defined as:

LCDβ
t us+1(t) := f (t, us(t), u′s(t)) +

(
us+1(t)− us(t)

)
fus(t, us(t), u′s(t))

+
(
u′s+1(t)− u′s(t)

)
fu′s(t, us(t), u′s(t)), s = 0, 1, . . . ,

(11)

with the same initial or boundary conditions as given in (2). Here, the functions fu = ∂ f /∂u
and fu′ = ∂ f /∂u′ denote the functional derivatives of f (t, u(t), u′(t)). After applying the
QLM technique on the nonlinear model problem (3), the following linearized model form
is obtained:

LCDβ
t us+1(t) + λ η eη us(t) us+1(t) = λ eη us(t)(η us(t)− 1), (12)

where 1 < β ≤ 2 and η = ±1. Similarly, for the model problem (4) with η = ±1, we obtain:

LCDβ
t us+1(t) +

d
tβ−1 u′s+1(t) + η eη us(t) us+1(t) = eη us(t)(η us(t)− 1), (13)

To each linearized model problem (12) or (13), one of the following initial or boundary
conditions is accompanied:

us+1(0) = u0, u′s+1(0) = u1, or

{
us+1(0) = u0, us+1(1) = u1,
u′s+1(0) = u0, us+1(1) = u1.

Consequently, we solve two quasilinear model problems (12) and (13) via the Bessel
collocation approach rather than applying it to the original Equations (3) and (4) directly.
The latter approach is referred to as the Bessel-QLM.
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3. Direct Bessel Method

The key feature of the present approach is that we express the unknown solutions
u(t) of our models (3) and (4) as a combination of the fractional-order Bessel functions (10)
given by:

uM,α(t) =
M

∑
r=0

ar Br,α(t), 0 ≤ t ≤ 1. (14)

Now, the aim is to determine the coefficients ar for r = 0, 1, . . . , M. By means of the
unknown vector AAA = [a0 a1 . . . aM]t and the vectorized form of Bessel bases:

VVVα(t) = [B0,α(t) B1,α(t) . . . BM,α(t)],

we are able to write (14) compactly as:

uM,α(t) = VVVα(t) AAA, (15)

In the next step, we may represent VVVα(t) in (15) as a product of:

χχχα(t) =
[
1 tα t2α . . . tMα

]
,

and a lower-triangular matrix LLL as:

VVVα(t) = χχχα(t) LLLt. (16)

Here, the matrix LLL has the representation:

LLL =



1 0 0 . . . 0 0
1 1 0 . . . 0 0
1 3 3 . . . 0 0
...

...
. . . . . . . . .

...
1 M!

2(M−2)! 1!
(M+1)!

22 (M−3)! 2! . . . (2M−2)!
2M−1 0! (M−1)! 0

1 (M+1)!
2(M−1)! 1!

(M+2)!
22 (M−2)! 2! . . . (2M−1)!

2M−1 1! (M−1)!
(2M)!

2M 0! M!


(M+1)×(M+1)

.

In view of Relations (15) and (16), the approximate solution uM,α(t) in (14) can be
written as:

uM,α(t) = VVVα(t) AAA = χχχα(t) LLLt AAA. (17)

Finally, we mention a result on the convergence of fractional-order Bessel functions,
a proof of which can be found in [29]. Indeed, the following theorem shows that by increas-
ing the number of basis functions M, the approximation solution uM−1,α(t) converges to
u(t) exponentially. Let us recall that:

‖ f ‖2,w :=
(∫ 1

0
| f (t)|2 w(t)dt

)1/2

.

Theorem 1. Let us assume that Bα
M = Span〈B0,α(t),B1,α(t), . . . ,BM−1,α(t)〉 and D(kα)u(t) ∈

C(0, 1] for k = 0, 1, . . . , M. If uM,α(t) = VVVα(t) AAA denotes the best approximation to u from Bα
M,

then the error bound is given by:

∥∥∥u(t)− uM,α(t)
∥∥∥

2,w
≤ e−1 Kα

Γ(Mα + 1)

√
1

(2M + 1)α
,

where Kα ≥ |D(Mα)u(t)|, t ∈ (0, 1].
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In what follows, we need a set of collocation points on [0, 1]. Depending on the partic-
ular Model Problem (a) or (b) in question, the following points are employed respectively:

tn =
n
M

, n = 0, 1, . . . , M, (18)

or:

tn = ε +
(1− ε)n

M
, n = 0, 1, . . . , M, 0 < ε < 1. (19)

Based on inserting the collocation points (18) or (19) into (17), we obtain:

UUU = XXX LLLt AAA, XXX =


χχχα(t0)
χχχα(t1)

...
χχχα(tM)

, UUU =


uM,α(t0)
uM,α(t1)

...
uM,α(tM)

. (20)

The fractional differentiation of the basis vector function χχχα(t) can be performed by
using the properties (6) and (7) and is denoted by χχχ

(β)
α (t) := LCDβ

t χχχα(t). We apply the
fractional operator LCDβ

t to both sides of (17) followed by replacing the set of collocation
points into the resulting relation to obtain:

UUU(β) = XXX(β) LLLt AAA, UUU(β) =


D(β)uM,α(t0)

D(β)uM,α(t1)
...

D(β)uM,α(tM)

, XXX(β) =


χχχ
(β)
α (t0)

χχχ
(β)
α (t1)

...
χχχ
(β)
α (tM)

. (21)

3.1. Model Problem (a)

Now, we restrict our attention to the Model Problem (a). By utilizing the collocation
points (18) and inserting them into (3), we obtain:

LCDβ
t u(tn) + λ eη u(tn) = 0, n = 0, 1, . . . , M,

where η = ±1. In a compact form, we may represent the former equations approximately as:

UUU(β) +ΛΛΛ e±UUU = ZZZ, ZZZ(M+1)×1 =
[
000 000 . . . 000

]t, (22)

where ΛΛΛ := Diag(λ, λ, . . . , λ). Putting Equations (20) and (21) into (22), we obtain the
following fundamental matrix equation:

XXX(β) LLLt AAA +ΛΛΛ e±XXX LLLt AAA︸ ︷︷ ︸
WWW

= ZZZ, or [WWW; ZZZ]. (23)

Clearly, Equation (23) is a nonlinear algebraic matrix equation, which can be solved
for the vector of unknowns AAA as the Bessel coefficients by using, e.g., Newton-type solvers.
However, the initial or boundary conditions (2) have to be take into consideration, which
is done below.

3.2. Model Problem (b)

In this case, we first find a relationship between χχχα(t) and d
dtχχχα(t) to handle the term

u′(t) in (4). It can be easily verified that:

d
dt

χχχα(t) = χχχα(t)TTT(t)QQQα, (24)
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where TTT(t) = [1/t] and:

QQQα =



0 0 0 . . . 0
0 α 0 . . . 0
...

... 2α
...

...

0 0 0
. . . 0

0 0 0 . . . Mα


(M+1)×(M+1)

.

We then differentiate the relation (17) with regard to t and utilize (24) to obtain the
following approximation for u′(t) as:

u′(t) ≈ d
dt

uM,α(t) = χχχα(t)TTT(t)QQQα LLLt AAA. (25)

Let us define TTTβ(t) := d
tβ−1 · TTT(t) = [ d

tβ ] and then put the collocation points (19)
into (25). The resulting equations can be written in the matrix representation form as:

U̇UU = XXX T̂TT QQQα LLLt AAA, (26)

where:

U̇UU =


u′M,α(t0)

u′M,α(t1)
...

u′M,α(tM)

, T̂TT =


TTTβ(t0) 0 . . . 0

0 TTTβ(t1) . . . 0
...

...
. . .

...
0 0 . . . TTTβ(tM)

.

Based on collocating the Model Problem (b) at the given points (19), we have:

LCDβ
t u(tn) +

d

tβ−1
n

u′(tn) + eη u(tn) = 0, n = 0, 1, . . . , M.

According to (26), we may write the preceding equations compactly as:

UUU(β) + U̇UU + e±UUU = ZZZ, (27)

where the zero vector ZZZ is defined in (22). Let us place Equations (20), (21), and (26) into (27)
to obtain the fundamental matrix equation:

XXX(β) LLLt AAA +XXX T̂TT QQQα LLLt AAA + e±XXX LLLt AAA︸ ︷︷ ︸
WWW

= ZZZ, or [WWW; ZZZ], (28)

It is clearly seen that the relation (28) is an algebraic nonlinear matrix equation. Based
on solving it, the vector of Bessel coefficients AAA is determined. The initial or boundary
conditions (2) are implemented in the next part.

3.3. The Initial and Boundary Conditions in the Matrix Representation Forms

The process of finding the solutions of Models (3) and (4) via solving the algebraic
matrix Equations (23) and (28) has not yet been completed until we take into account the
initial or boundary conditions (2). First, to implement u(0) = u0, we consider (17), and let
t→ 0 to obtain:

ŴWW0 := χχχα(0) LLLtAAA = u0, or [ŴWW0; u0].

Analogously, for the end condition u(1) = u1, we tend t→ 1 in (17) to obtain:

ŴWW1 := χχχα(1) LLLtAAA = u1, or [ŴWW1; u1].
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In the case of prescribing the Neumann initial condition u′(0) = u1, we cannot simply
utilize (25) and tend t → 0 to find an appropriate matrix representation. The reason is
that TTT(0) is not defined. Alternately, by inspiring the properties (6) and (7), the following
algorithm is invoked to calculate the first derivative of the basis functions χχχα(t) directly.
Indeed, Algorithm 1 takes χχχα(t) as the input and outputs χχχ

(1)
α (t) with γ = 1. For example,

in the case of α = 1/4 and M = 8, we have:

χχχ 1
4
(t) =

[
1 t1/4 t1/2 t3/4 t1 t5/4 t3/2 t7/4 t2

]
.

Now, by calling Algorithm 1, we obtain:

d
dt

χχχ 1
4
(t) =

[
0 0 0 1

5
4

t1/4 3
2

t1/2 7
4

t3/4 2t
]

.

It should be noted that one can not only compute the first-order derivative of χχχα(t),
but also any γth-order fractional derivative of χχχα(t) is calculated via calling Algorithm 1.

Algorithm 1: The calculation of the γ-derivative of χχχα(t).

procedure [χχχ
(γ)
α ] = compute_DX(M, γ, α)

χχχ
(γ)
α [1] := 0;

for ` := 1, . . . , M do
if (`α− γ < 0) then

χχχ
(γ)
α [`+ 1] := 0;

else
if ((`α < dγe) && (`α− b`αc == 0)) then

χχχ
(γ)
α [`+ 1] := 0;

else

χχχ
(γ)
α [`+ 1] :=

Γ(`α + 1)
Γ(`α + 1− γ)

t`α−γ;

end if
end if

end for
end;

Now, we are able to implement u′(0) = u1 reliably. By defining χχχ
(1)
α (t) := d

dtχχχα(t) and
differentiating the relation (14) with respect to time, we obtain:

d
dt

uM,α(t) = χχχ
(1)
α (t) LLLt AAA.

By approaching t→ 0, we conclude that:

ŴWW1 := χχχ
(1)
α (0) LLLtAAA = u1, or [ŴWW1; u1].

Similarly, the third boundary condition in (2), u′(0) = u0, u(1) = u1 can be imple-
mented. Consequently, the initial or boundary conditions (2) are entered into the funda-
mental matrix equations related to the Model Problem (a) or (b). To do so, the first and
last rows of the augmented matrix [WWW; ZZZ] in (23) or (28) are replaced by the row matrices
[ŴWW0; u0] and [ŴWW1; u1]. Therefore, in each case, the resultant modified fundamental matrix
becomes [ŴWW; ẐZZ]. Based on solving the modified matrix equation, the unknown coefficients
ar, for r = 0, 1, . . . , M are obtained, and thus, the approximate solution u(t) of our Model
problems (a) and (b) in (3) and (4) is known.
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4. Bessel-QLM

Our aim was to solve the model problems (3) and (4) approximately such that the
desired solutions are expressed in terms of the truncated Bessel series form (17). Unlike the
direct Bessel collocation approach described in the last section, this task is accomplished
for the corresponding approximated quasilinear model problems (12) and (13). For this
purpose, let us assume that an approximated solution u(s)

M,α(t) is known for the Model
Problems (a) or (b) in the iteration s = 0, 1, . . .. In the next iteration, we consider:

us+1(t) ≈ u(s+1)
M,α (t) =

M

∑
r=0

a(s)r Br,α(t), 0 ≤ t ≤ 1, (29)

where the unknown coefficients a(s)r , r = 0, 1, . . . , M have to be sought. By introducing

AAA(s) =
[

a(s)0 a(s)1 . . . a(s)M

]t
and using (17), we can rewrite the finite series (29) in a

matrix form compactly as:
u(s+1)

M,α (t) = χχχα(t) LLLt AAA(s), (30)

where the vector of basis function χχχα(t) and the matrix LLL are defined in (16). Algorithmi-
cally, the first-order derivative and the fractional derivative of order β of the vector of basis
functions χχχα(t) are known via Algorithm 1. Thus, we obtain:

d
dt

u(s+1)
M,α (t) = χχχ

(1)
α (t) LLLt AAA(s), (31)

LCDβ
t u(s+1)

M,α (t) = χχχ
(β)
α (t) LLLt AAA(s). (32)

We proceed by inserting the collocation points (18) or (19) into the relations (30)–(32)
to obtain:

UUUs+1 = XXX LLLt AAA(s), UUUs+1 =


u(s+1)

M,α (t0)

u(s+1)
M,α (t1)

...
u(s+1)

M,α (tM)

, XXX =


χχχα(t0)
χχχα(t1)

...
χχχα(tM)

, (33)

U̇UUs+1 = XXX(1) LLLt AAA(s), U̇UUs+1 =


d
dt u(s+1)

M,α (t0)
d
dt u(s+1)

M,α (t1)
...

d
dt u(s+1)

M,α (tM)

, XXX(1) =


χχχ
(1)
α (t0)

χχχ
(1)
α (t1)

...
χχχ
(1)
α (tM)

, (34)

UUU(β)
s+1 = XXX(β) LLLt AAA(s), UUU(β)

s+1 =


D(β)u(s+1)

M,α (t0)

D(β)u(s+1)
M,α (t1)
...

D(β)u(s+1)
M,α (tM)

, XXX(β) =


χχχ
(β)
α (t0)

χχχ
(β)
α (t1)

...
χχχ
(β)
α (tM)

. (35)

Below, we find an approximate solution in the form (29) for each quasilinear model
problem (12) and (13) through the Bessel collocation approach.

4.1. Quasilinear Model Problem (a)

Let us first concentrate on the Model Problem (a) via (12). Collocating this equation at
the collocation points (18) reveals that:

LCDβ
t us+1(tn) + λ η eη us(tn) us+1(tn) = λ eη us(tn)(η us(tn)− 1), n = 0, 1, . . . , M,
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where η = ±1. Following the matrix notations defined in (33) and (35), we may write the
above equations as compactly as:

UUU(β)
s+1 +KKKs UUUs+1 = GGGs, (36)

where the coefficient matrix KKKs of size (M + 1)× (M + 1) and the right-hand side vector
GGGs have the following representations:

KKKs = ±λ


e±us(t0) 0 . . . 0

0 e±us(t1) . . . 0
...

...
. . .

...
0 0 . . . e±us(tM)

, GGGs = λ


e±us(t0)(±us(t0)− 1)
e±us(t1)(±us(t1)− 1)

...
e±us(tM)(±us(tM)− 1)


(M+1)×1

.

Let us place the relations (33) and (35) into (36). This gives us the fundamental
matrix equation:

WWWs AAA(s) = GGGs, s = 0, 1, . . . , (37)

where:
WWWs := XXX(β) LLLt +KKKs LLLt.

Obviously, the fundamental matrix Equation (37) is a set of (M + 1) linear equations
in terms of (M + 1) unknown coefficients a(s)0 , a(s)1 , . . . , a(s)M to be found. In each iteration,
one requires taking into account the initial conditions us+1(0) = u0, u′s+1(0) = u1, or the
boundary conditions us+1(0) = u0, us+1(1) = u1, or u′s+1(0) = u0, us+1(1) = u1. The
implementations of the initial or boundary conditions have already been performed in the
previous section as for the nonlinear counterpart. Besides, to begin the computation, we
need to prescribe the initial guess u0(t) as an approximation for the solution.

4.2. Quasilinear Model Problem (b)

In the second part, we consider the Model Problem (b) through its linearization
model (12). By collocating Equation (12) at the collocation points (19), one obtains:

LCDβ
t us+1(tn) +

d

tβ−1
n

u′s+1(tn) + η eη us(tn) us+1(tn) = eη us(tn)(η us(tn)− 1),

for n = 0, 1, . . . , M and η = ±1. By utilizing the relations (33)–(35), the preceding equations
are represented in the matrix form as:

UUU(β)
s+1 + PPPβ

s U̇UUs+1 +KKKs UUUs+1 = GGGs. (38)

Here, the involved matrices PPPβ
s and KKKs having size (M + 1)× (M + 1) and the right-

hand side vector GGGs are taken as following forms respectively:

PPPβ
s =



d
tβ−1
0

0 . . . 0

0 d
tβ−1
1

. . . 0

...
...

. . .
...

0 0 . . . d
tβ−1
M

, KKKs = ±


e±us(t0) 0 . . . 0

0 e±us(t1) . . . 0
...

...
. . .

...
0 0 . . . e±us(tM)

,

GGGs =


e±us(t0)(±us(t0)− 1)
e±us(t1)(±us(t1)− 1)

...
e±us(tM)(±us(tM)− 1)


(M+1)×1

.
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We now substitute the unknown vectors in (38) by their equivalent representations
obtained in (33)–(35). Thus, we obtain the following fundamental matrix equation:

WWWs AAA(s) = GGGs, s = 0, 1, . . . , (39)

where:
WWWs :=

(
XXX(β) + PPPβ

s XXX(1) +KKKs XXX
)

LLLt.

In order to take into account the initial conditions us+1(0) = u0, u′s+1(0) = u1, or the
boundary conditions us+1(0) = u0, us+1(1) = u1, or u′s+1(0) = u0, us+1(1) = u1, we must
also convert them into the matrix form. To this end, the same procedure as for the nonlinear
problems in the direct Bessel collocation approach is used. Hence, we substitute the first
and last rows of the augmented matrix [WWWs; GGGs] by the row matrices [ŴWW0; u0] and [ŴWW1; u1].
The resulting algebraic system of linear equations becomes:

ŴWWs AAA = ĜGGs, (40)

which can be solved by any classical linear solver. Consequently, the desired unknown
Bessel coefficients in (29) are determined once this system of equations is solved. Note
that if rank(ŴWWs)=rank([ŴWWs; ĜGGs]) = M + 1, then the vector of unknown AAA(s) is uniquely
determined through computing the inverse (ŴWWs)−1 multiplied by ĜGGs. Otherwise, one may
find no solution or find a particular solution.

4.3. Residual Error Functions

The exact analytical solution of most fractional-order differential equations, especially
the Bratu and Lane–Emden, is not known in general for 1 < β ≤ 2. In this case, it is
important to check the accuracy of the presented collocation methods. Let us assume that
RM,α(t) andR(s+1)

M,α are the residual error functions, which are obtained by substituting the
truncated Bessel series solutions (14) and (29) into (3), (4), (12), and (13). Thus, we obtain:

RM,α(t) =


LCDβ

t uM,α(t) + λ eη uM,α(t) ≈ 0,
LCDβ

t uM,α(t) +
d

tβ−1 u′M,α(t) + eη uM,α(t) ≈ 0,
t ∈ [0, 1], (41)

R(s+1)
M,α (t) =


LCDβ

t u(s+1)
M,α (t) + λ eη u(s+1)

M,α (t) ≈ 0,
LCDβ

t u(s+1)
M,α (t) +

d
tβ−1 (u(s+1)

M,α (t))′ + eη u(s+1)
M,α (t) ≈ 0,

t ∈ [0, 1], (42)

where 1 < β ≤ 2, η = ±1, and s = 0, 1, . . .. Indeed, two foregoing residual error functions
become zero at the collocation points (18) or (19). Therefore, our expectation is thatRM,α(t)
andR(s+1)

M,α (t) tend to zero as M grows.

5. Error Analysis of Bessel-QLM

In this part, we aim to discuss the convergence and error analysis of the proposed
Bessel-QLM in the weighted L2-norm. Let us assume that u(t) is the exact solution of
Model Problem (1) with the initial or boundary conditions (2), and let us+1(t) denote the
QLM solution of (11), which is obtained after the s-th iteration. According to (14) and (29),
we know that uM,α(t) and u(s+1)

M,α (t) are the approximate solutions to u(t) and us+1(t),
respectively. Now, consider the following inequality:∥∥∥u(t)− u(s+1)

M,α (t)
∥∥∥

2,w
≤
∥∥∥u(t)− uM,α(t)

∥∥∥
2,w

+
∥∥∥uM,α(t)− u(s+1)

M,α (t)
∥∥∥

2,w
. (43)
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An upper bound for the first term ‖u(t)− uM,α(t)‖2,w is already established in The-
orem 1. It remains to obtain an upper bound for the second term in (43). In view of (17)
and (30), we have the following relation:

‖uM,α(t)− u(s+1)
M,α (t)‖

2,w
=
∥∥∥χχχα(t) LLLt AAA−χχχα(t) LLLt AAA(s)

∥∥∥
2,w

,

where AAA = [a0 a1 . . . aM]t and AAA(s) =
[

a(s)0 a(s)1 . . . a(s)M

]t
. Applying the norm’s

properties reveals that:∥∥∥uM,α(t)− u(s+1)
M,α (t)

∥∥∥
2,w
≤
∥∥∥χχχα(t)

∥∥∥
2,w

∥∥∥LLLt
∥∥∥

2

∥∥∥AAA− AAA(s)
∥∥∥

2
. (44)

For the first term in (44), we obtain:∥∥∥χχχα(t)
∥∥∥

2,w
=
∫ 1

0
|χχχα(t)|2 w(t)dt =

∫ 1

0
|χχχα(t)|2 tα−1e−

2
tα ≤ e−2

∫ 1

0
|χχχα(t)|2 tα−1,

where we have utilized the inequality e−
2
tα ≤ e−2, which is valid for all t ∈ (0, 1]. On the

other hand, we have:

|χχχα(t)|2 =
M

∑
i=0

t2iα,

which gives us:

∥∥∥χχχα(t)
∥∥∥

2,w
≤ e−2

M

∑
i=0

∫ 1

0
t2iα+α−1dt =

e−2

α
HM, HM :=

M

∑
i=0

1
2i + 1

.

Therefore, we proved the following result:

Theorem 2. Under the hypothesis of Theorem 1, let u(t) and u(s+1)
M,α (t) be the exact and QLM-

Bessel solutions to (1) and (11), respectively. Then, the following upper bound is valid:∥∥∥u(t)− u(s+1)
M,α (t)

∥∥∥
2,w
≤ Kα

e Γ(Mα + 1)
1√

(2M + 1)α
+

HM

e2α

∥∥∥LLL
∥∥∥

2

∥∥∥AAA− AAA(s)
∥∥∥

2
.

6. Numerical Simulations

The main task here is to show the utility and applicability of the proposed direct, as
well as Bessel-QLM collocation method for the nonlinear model problems (3) and (4) via
experimental computations. To testify our results, some comparisons with existing com-
putational models are made. All calculations were performed through utilizing MATLAB
software Version R2017a.

6.1. Model Problem (a)

Example 1. Let us consider the Bratu model problem on [0, 1] as:

LCDβ
t u(t)− 2eu(t) = 0, 1 < β ≤ 2,

with initial conditions u(0) = 0, u′(0) = 0. If β = 2, the exact solution is given by u(t) =
ln(1/ cos2 t).
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Let us first take β = 2 and α = 1 and utilize M = 10. The approximate solution
u10,1(t) for this test problem utilizing the Bessel basis functions via the direct approach (23)
on 0 ≤ t ≤ 1 is obtained as follows:

u10,1(t) = 0.0049849013 t10 + 0.018804181 t9 − 0.030916493 t8 + 0.045250829 t7

+ 0.018630732 t6 + 0.0088976371 t5 + 0.16478744 t4 + 0.00023753163 t3

+ 0.99998286 t2 − 5.261738× 10−12 t− 5.2614175× 10−12.

The related approximation obtained by means of the Bessel-QLM approach (28) with
iteration parameter s = 5 is:

u(6)
10,1(t) = 0.41826305 t10 − 2.0555085 t9 + 4.6237773 t8 − 6.0675115 t7

+ 5.1952627 t6 − 2.929811 t5 + 1.2925675 t4 − 0.28572479 t3

+ 1.0461091 t2 − 1.0219104× 10−107 t− 4.4708578× 10−108.

Note that the initial guess is taken as u0(t) = t2, which satisfies the initial conditions
of Example 1. The above approximations along with their absolute errors are visualized
in Figure 1. It can be observed that slightly more accurate results are obtained via the
direct Bessel collocation method. However, note that using this approach for larger M is
more time consuming, and in particular, solving the resulting nonlinear systems (23) by
Newton’s iterative formula with the help of MATLAB (Version 2017a) is not convergent.
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Figure 1. The graphs of approximated and exact solutions (left) and the related absolute errors (right) for β = 2, α = 1,
M = 10, and s = 5 in Example 1.

To further validate our approximated solutions, we mention the results obtained via
the Taylor wavelet method (TWM) [36]:

uTWM(t) = 0.0000856396− 0.00423633 t + 1.05046 t2 − 0.243953 t3 + 0.731379 t4

− 0.634516 t5 + 0.33195 t6.

Let us concentrate on the Bessel-QLM approach for Example 1 when β = 2. The nu-
merical results and absolute errors using various M = 15, 20, 25, M = 30 with s = 5 at
some t ∈ [0, 1] are reported in Table 1. In this respect, we calculate the errors as

E (s+1)
M,α (t) := |u(s+1)

M,α (t)− u(t)|. (45)

It can be observed that by increasing M, more accurate results will be obtained. In the
next experiments, we show that choosing α equal to β = 2 yields more accurate results
even with a smaller M = 5, 10. The results are reported in Table 2. A comparison with some



Fractal Fract. 2021, 5, 179 14 of 27

other existing numerical models such as the TWM [36], the reproducing kernel method
(RKM) [10], and the Legendre spectral method (LSM) [23] are also given in Table 2. Indeed,
the obtained approximative solutions u(6)

7,2 (t) and u(6)
10,2(t) are respectively:

u(6)
7,2 (t) = 0.0040467691 t12 + 0.0013512681, t10 + 0.015077883 t8 + 0.044026374 t6

+ 0.16672302 t4 + 0.99999528 t2,

u(6)
10,2(t) = 0.000285503 t18 − 0.000229264 t16 + 0.000881366 t14 + 0.00129068 t12

+ 0.00443030 t10 + 0.0134818 t8 + 0.0444455 t6 + 0.1666666 t4 + 1.0 t2 − 5.465× 10−109.

Table 1. The comparison of absolute errors using Bessel-QLM in Example 1 for β = 2, α = 1, M = 15, 20, 25, 30, and various
t ∈ [0, 1].

t E(6)
15,1(t) E(6)

20,1(t) E(6)
25,1(t) u(6)

30,1(t) E(6)
30,1(t)

0.1 2.9055× 10−6 2.5768× 10−8 1.1549× 10−10 0.010016711246980 5.0955× 10−13

0.2 6.7455× 10−6 5.6983× 10−8 2.4911× 10−10 0.040269546105905 1.0880× 10−12

0.3 1.0727× 10−5 8.9392× 10−8 3.8795× 10−10 0.091383311853805 1.6892× 10−12

0.4 1.4945× 10−5 1.2378× 10−7 5.3536× 10−10 0.164458038152439 2.3278× 10−12

0.5 1.9519× 10−5 1.6110× 10−7 6.9550× 10−10 0.261168480890467 3.0217× 10−12

0.6 2.4605× 10−5 2.0265× 10−7 8.7388× 10−10 0.383930338842670 3.7949× 10−12

0.7 3.0421× 10−5 2.5022× 10−7 1.0782× 10−9 0.536171515140543 4.6808× 10−12

0.8 3.7293× 10−5 3.0647× 10−7 1.3199× 10−9 0.722781493628416 5.7288× 10−12

0.9 4.5727× 10−5 3.7556× 10−7 1.6170× 10−9 0.950884887178646 7.0170× 10−12

1.0 5.6582× 10−5 4.6455× 10−7 1.9996× 10−9 1.231252940780713 8.6847× 10−12

Table 2. Comparison of absolute errors in Bessel-QLM for Example 1 using β = α = 2, M = 5, 10, and various t ∈ [0, 1].

Bessel-QLM (α = 2) LSM (n = 9) [23] TWM [36] RKM [10]
t

M = 7 M = 10 Method (a) Method (b) k = 1, M1 = 7 n, N = 10

0.1 4.1979× 10−8 2.0195× 10−11 1.4169× 10−5 1.7830× 10−7 2.69611× 10−5 1.6674× 10−5

0.2 1.2167× 10−7 4.6897× 10−11 3.2272× 10−5 4.5055× 10−7 2.38968× 10−5 3.1000× 10−7

0.3 1.8565× 10−7 7.4344× 10−11 5.1244× 10−5 7.1998× 10−7 1.01329× 10−5 1.1310× 10−6

0.4 2.6108× 10−7 1.0203× 10−10 7.1441× 10−5 1.0081× 10−6 2.12408× 10−5 2.1200× 10−6

0.5 3.5454× 10−7 1.3688× 10−10 9.2812× 10−5 1.3195× 10−6 1.15316× 10−5 2.9000× 10−6

0.6 4.1000× 10−7 1.5831× 10−10 1.1720× 10−4 1.6653× 10−6 1.85136× 10−5 4.1000× 10−6

0.7 5.7919× 10−7 2.6467× 10−10 1.4496× 10−4 2.0620× 10−6 1.15473× 10−5 6.5000× 10−6

0.8 6.8266× 10−7 1.8342× 10−10 1.7718× 10−4 2.2525× 10−6 2.26494× 10−5 7.5000× 10−6

0.9 3.0427× 10−7 6.5824× 10−09 2.1791× 10−4 3.1212× 10−6 1.13933× 10−5 3.3500× 10−5

1.0 3.2344× 10−5 3.9874× 10−07 2.6999× 10−4 3.6311× 10−6 8.55545× 10−5 4.3700× 10−5

From Tables 1 and 2, one observes that our result obtained by the presented linearized
Bessel-QLM method has a lower magnitude of errors compared to the TWM, the RKM,
and LSM. We now return to the fractional-order case and consider different values of
β = 2, 1.9, . . . , 1.5. Furthermore, for each value of β, we utilized α = β in the computations.
Figure 2 visualizes these approximative solutions with M = 10 and s = 5. The numerical
results obtained using α equal to β in Bessel-QLM are reported in Table 3. Comparisons
between numerical solutions obtained via Bessel-QLM and the RKM are further reported
in Table 3.
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Figure 2. The approximated Bessel-QLM series solutions for Example 1 using various β, α = 1.5,
1.6, . . . , 2 for M = 10, s = 5.

Table 3. The comparison of numerical results using Bessel-QLM in Example 1 for M = 10 and various α equal to
β = 1.5, 1.6, . . . , 1.9.

Bessel-QLM (α = β) RKM (N = 10) [10]
t

β = 1.5 β = 1.6 β = 1.7 β = 1.8 β = 1.9 β = 1.5 β = 1.6 β = 1.7 β = 1.8 β = 1.9

0.1 0.048353 0.035473 0.025993 0.018983 0.013814 0.047581 0.035141 0.025834 0.018907 0.013779
0.2 0.140366 0.109646 0.085643 0.066769 0.051926 0.14073 0.10984 0.085716 0.066792 0.051932
0.3 0.267489 0.215666 0.174210 0.140695 0.113494 0.26686 0.21547 0.17414 0.14067 0.11349
0.4 0.431675 0.354277 0.292046 0.241173 0.199225 0.43128 0.35420 0.29201 0.24116 0.19922
0.5 0.639964 0.529749 0.441962 0.370277 0.310871 0.63930 0.52957 0.44188 0.37024 0.31086
0.6 0.905877 0.750259 0.629314 0.531789 0.451331 0.90494 0.75001 0.62921 0.53175 0.45132
0.7 1.254902 1.030118 0.863049 0.731769 0.625010 1.2533 1.0297 0.86289 0.73170 0.62499
0.8 1.740090 1.395364 1.158156 0.979794 0.838525 1.7367 1.3946 1.1579 0.97970 0.83849
0.9 2.503677 1.899300 1.541363 1.291531 1.102046 2.4864 1.8967 1.5407 1.2913 1.1020
1.0 4.084549 2.674636 2.066148 1.694499 1.431961 4.0331 2.6677 2.0646 1.6941 1.4318

In order to show that our results presented in Table 3 are more accurate than the RKM,
we further compared our results with that of the fractional differential transform method
(FDTM) [20]. The three-term analytical solution obtained via FDTM is given by [20]:

uFDTM,β(t) = 2c1 tβ + 4c2 t2β + (8c3 +
4c2

1 c3

c2
) t3β + . . . ,

where cj =
1

Γ(1+jβ) for j = 1, 2, 3. The numerical solutions for diverse β = 1.5, 1.6, 1.7, 1.8,
and β = 1.9 evaluated at t = 0.1 are compared in Table 4.

Table 4. The comparison of the numerical results using Bessel-QLM in Example 1 for M = 10 and
various α equal to β = 1.5, 1.6, . . . , 1.9 at t = 0.1.

β Bessel-QLM (α = β) RKM (N = 10) [10] FDTM (N = 5) [20]

1.9 0.013814 1.3082× 10−2 1.3814× 10−2

1.8 0.018983 1.7221× 10−2 1.8983× 10−2

1.7 0.025993 2.2504× 10−2 2.5993× 10−2

1.6 0.035473 2.9221× 10−2 3.5472× 10−2

1.5 0.048353 3.7921× 10−2 4.8260× 10−2
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Example 2. In the second example, let us consider the boundary value Bratu equation:

LCDβ
t u(t) + λ eu(t) = 0, 1 < β ≤ 2, 0 < t < 1.

The boundary conditions are u(0) = 0, u(1) = 0. If β = 2, the exact solution is obtained as:

u(t) = −2 ln cosh
[
(t− 0.5)

ξ

2

]
+ 2 ln cosh

ξ

4
,

where ξ satisfies ξ =
√

2λ cosh ξ
4 . In particular, for λ = −π2, two exact solutions are given by

u(t) = − ln(1± cos(π
2 + π t)).

Let us first consider λ = −π2. In this case, we first consider β = 2 and α = 1. Using
both direct and Bessel-QLM approaches, the following approximations with M = 8 are
obtained on t ∈ [0, 1]:

u8,2(t) = 0.675328868 t8 − 2.701317397 t7 + 5.376111992 t6 − 6.67372118 t5

+ 6.402894608 t4 − 4.834459802 t3 + 4.894176844 t2 − 3.13901386 t + 1.13899× 10−13.

u(6)
8,2 (t) = 0.675332096 t8 − 2.70132839 t7 + 5.37612749 t6 − 6.67373314 t5

+ 6.40290002 t4 − 4.83446126 t3 + 4.89417706 t2 − 3.13901389 t− 9.15461× 10−108.

Note, the initial guess used in the iterative Bessel-QLM is u0(t) = t2 − t. The above
computed solutions are very close together and are convergent to the exact solution
u(t) = − ln(1 + sin(π t)). The results are depicted in Figure 3. The difference between
the approximated solutions and the corresponding exact solutions are also plotted on
semilogarithmic scale in Figure 3. In addition to M = 8, we used M = 12, 16, and M = 20
in the Bessel-QLM. The behavior of absolute errors shows the exponential decays with
respect to increasing M in the Bessel-QLM algorithm.
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Figure 3. The graphs of numerical and exact solutions for M = 8 (left) and the resulting absolute errors for M = 8, 12, 16, 20
(right) for β = 2, α = 1, λ = −π2, and s = 5 in Example 2.

We further investigated the convergence and accuracy of the presented Bessel-QLM for
β = 2 by computing the values of absolute errors on [0, 1] via (45). In Table 5, the numerical
results at some points t ∈ [0, 1] with M = 15, as well as M = 30 are shown. The results
of the TWM [36] are also reported in Table 5 for comparison purposes. Here, M1 is the
order of Taylor polynomials, and the bold numbers in Table 5 represent the correct digits
obtained by Bessel-QLM.
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Table 5. The comparison of the numerical results using Bessel-QLM in Example 2 with M = 15, 30, s = 5, and β = 2, α = 1,
λ = −π2. Numbers in bold show that the correct digits are obtained by the Bessel-QLM.

Bessel-QLM TWM [36]
t

u(6)
15,1(t) E(6)

15,1(t) u(6)
30,1(t) E(6)

30,1(t) k = 1, M1 = 11

0.1 −0.26927638478 8.4777× 10−8 −0.269276469558501 7.6043× 10−13 5.5884× 10−8

0.2 −0.46234004975 7.2374× 10−8 −0.462340122126269 2.0527× 10−13 7.4576× 10−8

0.3 −0.59278353642 6.4300× 10−8 −0.592783600717044 3.3595× 10−13 1.3357× 10−8

0.4 −0.66837096929 5.9790× 10−8 −0.668371029082459 8.9516× 10−13 8.9851× 10−8

0.5 −0.69314712222 5.8338× 10−8 −0.693147180561445 1.4998× 10−12 1.4347× 10−7

0.6 −0.66837096929 5.9790× 10−8 −0.668371029083743 2.1792× 10−12 8.9851× 10−8

0.7 −0.59278353642 6.4300× 10−8 −0.592783600719678 2.9697× 10−12 1.3357× 10−8

0.8 −0.46234004975 7.2374× 10−8 −0.462340122130420 3.9452× 10−12 7.4576× 10−8

0.9 −0.269276384782 8.4777× 10−8 −0.269276469564491 5.2293× 10−12 5.5884× 10−8

The behavior of the numerical solutions based on Bessel-QLM using integer order
β = 2 and fractional orders β = 1.9, 1.8, . . . , 1.5 was investigated in the next simulations; see
Figure 4. The results corresponding to β = 1.9, 1.7, 1.5 are provided in Table 6, which were
computed at some points t ∈ [0, 1]. We ran Bessel-QLM when M = 15, α = 1, and s = 5. It
can be observed from Figure 4 that the approximated solutions of fractional-order boundary
value problem (4) for various values of 1 < β < 2 tend continuously to the numerical and
exact solutions when β = 2.
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Figure 4. Numerical approximations in Bessel-QLM for various β = 2, 1.9, . . . , 1.5, α = 1, λ = −π2,
and M = 15 in Example 2.

Table 6. Numerical solutions in Bessel-QLM for β = 1.9, 1.7, 1.5 in Example 2 for M = 15, λ = −π2,
and α = 1.

t β = 1.5 β = 1.7 β = 1.9

0.1 −0.294195 −0.294574 −0.279940
0.2 −0.450191 −0.475380 −0.471703
0.3 −0.545938 −0.589367 −0.598037
0.4 −0.599428 −0.652366 −0.669690
0.5 −0.616646 −0.670828 −0.691846
0.6 −0.597974 −0.646235 −0.666096
0.7 −0.539612 −0.576307 −0.591041
0.8 −0.433043 −0.454769 −0.462076
0.9 −0.262495 −0.269766 −0.270311
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For the second example, we finally considered λ = 1, 2, and λ = 3. In these cases, we
considered β = 1.8 and α = 1. Utilizing M = 20, we compared our numerical solutions
with the outcomes of the Legendre reproducing kernel method (L-RKM) [21] using the
parameters m = 20 and n = 30. The results are presented in Table 7.

Table 7. The comparison of the numerical results using Bessel-QLM in Example 2 with M = 20, β = 1.8, λ = 1, 2, 3,
and α = 1.

Bessel-QLM L-RKM [21]
t

λ = 1 λ = 2 λ = 3 λ = 1 λ = 2 λ = 3

0.1 0.056413 0.131924 0.261504 0.056405 0.131612 0.260654
0.2 0.097782 0.231011 0.465679 0.097789 0.230471 0.464144
0.3 0.125742 0.298753 0.608060 0.125778 0.298048 0.606020
0.4 0.141008 0.335519 0.684421 0.141075 0.334699 0.682068
0.5 0.144146 0.342145 0.694381 0.144246 0.341257 0.691916
0.6 0.135734 0.320218 0.642257 0.135863 0.319304 0.639866
0.7 0.116398 0.272047 0.536290 0.116553 0.271144 0.534126
0.8 0.086829 0.200491 0.386913 0.087005 0.199631 0.385081
0.9 0.047770 0.108725 0.204897 0.047961 0.107936 0.203461

6.2. Model Problem (b)

For the collocation points (19), we take ε = 0.1.

Example 3. For the second problem type, the following initial value Lane–Emden equation is considered:

LCDβ
t u(t) +

2
tβ−1 u(t) + eη u(t) = 0, 1 < β ≤ 2, 0 < t < 1,

with initial conditions u(0) = 0, u′(0) = 0. For η = ±1 and β = 2, the series solutions obtained
via the Adomian decompositions method (ADM) [9] are calculated as follows:

u±ADM(t) ≈ − t2

6
± t4

5 · 4!
− 8 t6

21 · 6!
± 122 t8

81 · 8!
− 61 · 67 t10

495 · 10!
± . . . .

We use them for comparisons, below.

We begin with β = 2 and α = 1. Using M = 8, the resulting approximate solutions
obtained via direct Bessel collocation take the following forms on t ∈ [0, 1] for η = ±1
respectively as:

u+
8,1(t) = −1.1891× 10−17 − 1.3793× 10−17 t− 0.1666676405 t2 + 7.65349× 10−6 t3

+ 0.008303949361 t4 + 6.63278× 10−5 t5 − 0.0006203345731 t6

+ 7.33078× 10−5 t7 + 9.04876× 10−6 t8,

u−8,1(t) = −1.9683× 10−18 − 8.7921× 10−18 t− 0.1666689616 t2 + 1.76893× 10−5 t3

− 0.008399660792 t4 + 1.44771× 10−4 t5 − 0.0007189563923 t6

+ 1.42282× 10−4 t7 − 8.66915× 10−5 t8,
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which are very close to the solutions u±ADM(t). The corresponding numerical approxima-
tions by the Bessel-QLM approach with s = 5 and u0(t) = t2 are:

u(6),+
8,1 (t) = 8.7435× 10−110 + 1.7010× 10−109 t− 0.1666676398 t2 + 7.64838× 10−6 t3

+ 0.008303967598 t4 + 6.62906× 10−5 t5 − 0.0006202902396 t6

+ 7.32790× 10−5 t7 + 9.05666× 10−6 t8,

u(6),−
8,1 (t) = 4.16087× 10−110 − 2.0526× 10−109 t− 0.1666679598 t2 + 1.00426× 10−5 t3

− 0.008371154811 t4 + 8.32129× 10−5 t5 − 0.0006395436956 t6

+ 8.42614× 10−5 t7 − 6.74028× 10−5 t8.

A comparison between the above solutions indicates that the approximate solutions
obtained via the Bessel-QLM are also accurate and are close to those obtained by the
ADM. To see the discrepancy between solutions more visibly, we plot the graphs of er-
rors |u±ADM(t)− uM,α(t)| and |u±ADM(t)− u(s+1)

M,α (t)| for t ∈ [0, 1] in Figure 5. Moreover,
the estimated residual error functions obtained via (41) and (42) are also visualized in
Figure 5.
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Figure 5. The graphs of of errors (left) and the resulting residual errors (right) for β = 2, α = 1, M = 8, and s = 5 in
Example 3.

Let us show further the benefits of our presented Bessel-QLM for β = 2. In this
respect, we compared our numerical results for Example 3 in terms of the accuracy and
magnitude of errors computed at some t in [0, 1]. The following numerical models were
used: the ADM [9], the Lagrange operational matrix methods (LOMMs) [34], and the Jacobi
operational matrix methods (JOMMs) [37]. The numerical results obtained via (28) using
M = 9, η = +1, and α = 1, 2 are shown in Table 8. Furthermore, Table 8 reports the
comparison of residual error functions achieved via (42) with M = 12, η = ±1, and α = 1, 2.
By looking at the results presented in Tables 8 and 9, we find that our proposed approach
gives clearly more accurate outcomes in comparison with the ADM, LOMMs, and JOMMs.
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Table 8. The comparison of various numerical results with Bessel-QLM for Example 3 for M = 9, β = 2, η = +1,
and α = 1, 2.

Bessel-QLM (η = +1) ADM [9] LOMMs (M = 8) [34]
t

α = 1 α = 2 Scheme-I Scheme-II

0.0 0.00000000000 0.00000000000 0.00000000000 −2.0346× 10−10 −5.194068× 10−8

0.1 −0.0016658338 −0.0016658339 −0.0016658339 −0.0016658339 −0.00166586155
0.2 −0.0066533670 −0.0066533671 −0.0066533671 −0.0066533671 −0.00665336928
0.5 −0.0411539571 −0.0411539573 −0.0411539568 −0.0411539978 −0.041154078892
1.0 −0.1588276774 −0.1588276775 −0.1588273537 −0.1588370919 −0.15883515641

Table 9. The comparison of (residual) error functions using Bessel-QLM in Example 3 with M = 12, β = 2 and α = 1, 2.

Bessel-QLM (η = +1) LOMMs [34] Bessel-QLM (η = −1) JOMMs [37]
t

α = 1 α = 2 Scheme-I Scheme-II α = 1 α = 2 η = +1 η = −1

0.0 0.0000× 10+00 0.0000× 10+00 2.04× 10−10 5.19× 10−8 0.0000× 10+00 0.0000× 10+00 − −
0.1 2.7488× 10−13 3.0158× 10−22 1.88× 10−11 5.49× 10−9 6.8148× 10−13 5.6265× 10−16 1.98× 10−12 4.66× 10−11

0.2 1.2099× 10−13 2.8196× 10−20 2.48× 10−11 1.73× 10−8 4.4922× 10−13 1.1621× 10−13 1.66× 10−12 4.02× 10−11

0.5 4.4965× 10−15 6.7454× 10−19 8.70× 10−8 1.00× 10−8 2.9402× 10−9 2.9388× 10−9 4.64× 10−10 5.21× 10−10

1.0 3.6953× 10−10 9.4919× 10−14 2.53× 10−5 2.72× 10−5 7.4859× 10−6 7.4850× 10−6 3.23× 10−7 7.63× 10−7

We next utilized the Bessel-QLM to acquire the approximate solutions of this problem
when β is a fractional number. In Figure 6, the graphs of numerical solutions corresponding
to β = 1.9, 1.8, . . . , 1.5 are depicted. Besides, when β = 2, we plot the numerical solution
and its corresponding approximation obtained via AMD [9]. Both cases η = ±1 in Model
Problem 3 were considered with M = 10 and α = 1. Moreover, numerical results with
M = 10 and β equal to α = 1.9, 1.7, 1.5 at some points t ∈ [0, 1] are tabulated in Table 10.
For η = +1, a comparison with the outcomes of the method based on the homotopy pertur-
bation method and the Adomian decomposition method (HPMADM) [25] are presented in
Table 10. Indeed, the following analytical solution via HPMADM was obtained in [25]:

uH,β(t) =
−tβ

Γ(1 + β) + 2β
+

−c1 Γ(1 + β) t2β

Γ(1 + 2β) + 4βΓ(1 + β)
+
−( 1

2 c2
1 + c2) Γ(1 + 2β) t3β

Γ(1 + 3β) + 6βΓ(1 + 2β)
+ . . . ,

where c1 = −1
Γ(1+β)+2β

and c2 = −c1 Γ(1+β)
Γ(1+2β)+4βΓ(1+β)

. Note that for β = 2, the former solution

coincides with that of u+
ADM(t) obtained in [9].
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Figure 6. Approximated solutions with η = +1 (left) and η = −1 (right) in Bessel-QLM for M = 10, α = 1, s = 5,
and various β = 1.9, 1.8, . . . , 1.5 in Example 3.
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Table 10. Comparison of numerical results in Bessel-QLM for M = 10 and β, α = 1.5, 1.7, 19 in Example 3.

η = +1 η = −1

Bessel-QLM HPMADM [25] Bessel-QLMt
β = 1.5 β = 1.7 β = 1.9 β = 1.5 β = 1.7 β = 1.9 β = 1.5 β = 1.7 β = 1.9

0.1 −0.0072824 −0.0040292 −0.0022355 −0.0072824 −0.0040292 −0.0022355 −0.0073264 −0.0040412 −0.0022388
0.2 −0.0204858 −0.0130471 −0.0083268 −0.0204861 −0.0130471 −0.0083268 −0.0208374 −0.0131743 −0.0083720
0.3 −0.0373729 −0.0258703 −0.0179349 −0.0373745 −0.0258707 −0.0179350 −0.0385599 −0.0263753 −0.0181458
0.4 −0.0570711 −0.0419374 −0.0308502 −0.0570774 −0.0419393 −0.0308506 −0.0598865 −0.0432809 −0.0314797
0.5 −0.0790339 −0.0608534 −0.0468938 −0.0790524 −0.0608596 −0.0468956 −0.0845384 −0.0637239 −0.0483641
0.6 −0.1028640 −0.0823017 −0.0658965 −0.1029100 −0.0823186 −0.0659020 −0.1123910 −0.0876416 −0.0688375
0.7 −0.1282516 −0.1060115 −0.0876918 −0.1283516 −0.1060515 −0.0877059 −0.1434138 −0.1150420 −0.0929785
0.8 −0.1549433 −0.1317434 −0.1121130 −0.1551409 −0.1318286 −0.1121454 −0.1776437 −0.1459885 −0.1209032
0.9 −0.1827273 −0.1592811 −0.1389929 −0.1830894 −0.1594484 −0.1390612 −0.2151732 −0.1805938 −0.1527654
1.0 −0.2114227 −0.1884270 −0.1681640 −0.2120480 −0.1887346 −0.1682981 −0.2561452 −0.2190184 −0.1887588

Example 4. In the fourth example, the subsequent boundary value Lane–Emden problem is consid-
ered [38]:

LCDβ
t u(t) +

1
tβ−1 u(t) + eu(t) = 0, 1 < β ≤ 2, 0 < t < 1.

The supplemented boundary conditions were u′(0) = 0, u(1) = 0. The exact solution of this
test example for β = 2 is given by u(t) = 2 ln C+1

C t2+1 , where C = 3− 2
√

2.

As before, we first considered β = 2 and α = 1. The initial guess was taken as
u0(t) = 0. Utilizing the Bessel-QLM with M = 10 and s = 5, the approximate solution
u(s+1)

M,α (t) for 0 ≤ t ≤ 1 takes the form:

u(6)
10,1(t) = 0.3166943535 + 8.5159× 10−109 t− 0.343145025 t2 − 6.7576× 10−6 t3

+ 0.02947158853 t4 − 1.1225× 10−4 t5 − 0.003118318089 t6 − 3.7858× 10−4 t7

+ 8.2207× 10−4 t8 − 2.5302× 10−4 t9 + 2.5935× 10−5 t10.

The approximative solution uM,α(t) obtained via the direct approach is:

u10,1(t) = 0.3166945657− 2.3377× 10−16 t− 0.3431475933 t2 − 1.5154× 10−5 t3

+ 0.02936926925 t4 + 1.8821× 10−4 t5 − 0.003698759586 t6 + 3.6075× 10−4 t7

+ 2.2245× 10−4 t8 + 2.8746× 10−5 t9 − 3.2641× 10−5 t10,

which clearly indicates that both solutions coincide. In order to show that the two obtained
solutions are very near the exact solution, we plot their graphs in Figure 7. The correspond-
ing absolute errors can be seen on the right plot. Additionally, we depict the absolute errors
in the Bessel-QLM using M = 5, 15 and M = 20 to indicate that the proposed method has
an appropriate convergence rate.
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Figure 7. The graphs of numerical and exact solutions for M = 10 (left) and the resulting absolute errors for M = 5, 10, 15, 20
(right) for β = 2, α = 1, and s = 5 in Example 4.

For β = 2, α = 1, we further compared our numerical results with regard to the
achieved absolute errors (45) in Bessel-QLM. The selected method for comparison is the
Laguerre wavelets operational matrix method (LWOMM) [38]. The results using M = 10
and M = 15 are presented in Table 11. As clearly seen, our numerical results are comparably
more accurate while needing less computational effort. Additionally, the graph of u(6)

10,1(t)
for various values of β = 2, 1.9, . . . , 1.5 with M = 10 for Example 4 is visualized in Figure 8.
Note that for β = 2, we also plot the corresponding exact solution, which is known.
Finally, in Table 12, the values of the numerical solutions for various fractional values of
β = α = 1.9, 1.7, 1.5 at different points t ∈ [0, 1] are reported.

Table 11. The comparison of numerical solutions using Bessel-QLM with M = 10, 15, s = 5, and β = 2, α = 1 in Example 3.
Numbers in bold show that the correct digits are obtained by the Bessel-QLM.

Bessel-QLM LWOMM [36]
t

u(6)
10,1(t) E(6)

10,1(t) u(6)
15,1(t) E(6)

15,1(t) k = 3, M1 = 7

0.1 0.313265839363106 1.1135× 10−8 0.313265850495719 2.3444× 10−12 1.12567× 10−11

0.2 0.303015414602317 8.2300× 10−9 0.303015422830577 1.7229× 10−12 1.06202× 10−11

0.3 0.286047258937613 6.3672× 10−9 0.286047265303516 1.3380× 10−12 9.71828× 10−12

0.4 0.262531122482223 4.9738× 10−9 0.262531127454984 1.0495× 10−12 8.57608× 10−12

0.5 0.232696780038309 3.8355× 10−9 0.232696783873021 8.1360× 10−13 7.28159× 10−12

0.6 0.196826802831837 2.8611× 10−9 0.196826805692342 6.1151× 10−13 5.78329× 10−12

0.7 0.155248104677472 2.0053× 10−9 0.155248106682323 4.3376× 10−13 4.31280× 10−12

0.8 0.108322762202615 1.2419× 10−9 0.108322763444190 2.7506× 10−13 2.82023× 10−12

0.9 0.056438601915112 5.5412× 10−10 0.056438602469104 1.3218× 10−13 1.33990× 10−12

Table 12. Numerical solutions in Bessel-QLM for β = 1.9, 1.7, 1.5 in Example 4 for M = 10 and α = β.

t β, α = 1.5 β, α = 1.7 β, α = 1.9

0.1 0.4538007 0.3940449 0.3389203
0.2 0.4218743 0.3736066 0.3259879
0.3 0.3816409 0.3447748 0.3056717
0.4 0.3355231 0.3090216 0.2785187
0.5 0.2850841 0.2674419 0.2450333
0.6 0.2314604 0.2209409 0.2057129
0.7 0.1755228 0.1702998 0.1610556
0.8 0.1179554 0.1162043 0.1115587
0.9 0.0593026 0.0592595 0.0577135
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Figure 8. Numerical approximations in Bessel-QLM for various β = 2, 1.9, . . . , 1.5, α = 1, and M = 10
in Example 4.

Now, we calculate the weighted L2 error norms of the approximated solutions using
the Bessel-QLM as stated in Theorem 1 and used in Theorem 2 for Examples 1–4. Thus,
we compute:

LM,α :=

√∫ 1

0
[E (s+1)

M,α (t)]2 w(t)dt, E (s+1)
M,α (t) = |u(s+1)

M,α (t)− u(t)|.

When the exact solution is not available, we replace E (s+1)
M,α (t) with the residual error

functions defined in (41) or (42). To confirm our theoretical analysis, the estimated order of
convergence is further computed through defining:

EOC :=
LM,α −L2M,α

ln 2
.

The results for β = 2, α = 1, and various values of M = 2j, j = 0, 1, 2, 3, 4 are presented
in Table 13. It should be emphasized that for Examples 1 and 4, we calculate the norms of
the corresponding residuals rather than the norms of E (s+1)

M,α (t). It can be obviously seen
that the exponential convergence rate is obtainable if one increases the number of basis
functions in Bessel-QLM.

Table 13. The weighted L2 error norms and the related EOCs in Bessel-QLM for Examples 1–4 for β = 2, α = 1, and diverse M.

Example 1 Example 2 Example 3 Example 4
M

LM,α EOC LM,α EOC LM,α EOC LM,α EOC

1 1.5958× 10−1 − 8.5933× 10−2 − 8.5933× 10−1 − 1.1185× 10−1 −
2 3.5672× 10−2 2.16 7.9098× 10−3 3.44 7.9098× 10−3 4.14 1.5476× 10−2 2.85
4 6.3893× 10−3 2.48 7.2809× 10−4 3.44 7.2809× 10−4 5.94 4.4277× 10−4 5.13
8 1.3504× 10−4 5.56 9.6224× 10−6 6.24 9.6224× 10−8 12.79 1.4858× 10−7 11.54
16 4.5362× 10−8 11.54 2.8868× 10−8 8.38 2.8868× 10−11 8.10 6.1046× 10−11 11.25

Finally, we considered an example for the model problem (1) with nonzero initial
conditions. This example was taken from [25], which also showed the advantages of using
fractional-order basis functions over the integer-order ones with α = 1.
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Example 5. The last example is devoted to the following fractional Lane–Emden model problem:

LCDβ
t u(t) +

2
tβ−1 u′(t) = −u(t), 1 < β ≤ 2, 0 < t < 1.

where is submissive to the initial conditions u(0) = 1, u′(0) = 0. For β = 2, the exact solution is
obtained as u(t) = sin t

t .

We first set β = 2. Utilizing M = 5 and α = 1, the following approximation is obtained
via Bessel-QLM (with s = 5) as

u(6)
5,1 (t) = 1.0 + 6.6531× 10−111 t− 0.1665796697 t2 − 3.7424× 10−4 t3 + 9.0154× 10−3 t4

− 5.8780× 10−4 t5.

More accurate results are obtained using the same M = 5, but with α = 2. The approx-
imate solution is:

u(6)
5,2 (t) = 1.0− 0.1666666646 t2 + 0.008333320007 t4 − 1.9837× 10−4 t6 + 2.7037× 10−6 t8.

In order to highlight better the difference between the above approximate solutions,
we plot the graphs of the corresponding absolute errors E (s+1)

M,α (t) in Figure 9. In addition
to M = 5, the results for M = 10, 20 are also depicted in Figure 9.
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Figure 9. Absolute errors in Bessel-QLM for β = 2, α = 1, 2 and various M = 5, 10, 20 in Example 5.

We now turn to the fractional-order cases 1 < β < 2. In these cases, we utilize
the technique HPMADM proposed in [25] to acquire the exact analytical solution with
three terms as:

uH,β(t) = 1− c1 tβ + c1
Γ(1 + β)

Γ(1 + 2β) + 4βΓ(1 + β)
t2β + . . . ,

where c1 = 1
Γ(1+β)+2β

. We exploited this solution as a reference below. To proceed, we
considered different values of β = 1.1, 1.3, 1.5, 1.7, and β = 1.9. In all cases, we set α equal
to β. By using M = 10, the numerical solutions along with the related solutions uH,β(t) are
depicted in Figure 10. Note, we also plot the numerical and exact solutions for β = 2 to
indicate that other solutions for 1 < β < 2 tend continuously to this case as β approaches
two. Obviously, a good agreement between our solutions with that of HPMADM is visible
in particular in the first half of the domain.
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Figure 10. A comparison of numerical solutions in Bessel-QLM for M = 10 and various
1 < β = α < 2 in Example 5.

Next, we show that our numerical solutions u(6)
10,α(t) with ten terms in Bessel-QLM are

more accurate than the corresponding three-term solutions uH,β(t) obtained via HPMADM.
For this purpose, we compute the residual error function related to this model problem as:

R(s+1)
M,α (t) = LCDβ

t u(s+1)
M,α (t) +

2
tβ−1 (u(s+1)

M,α (t))′ + u(s+1)
M,α (t) ≈ 0, t ∈ [0, 1],

The results of error functions using M = 10 and diverse values of β = 1.1, 1.3, 1.5, 1.7,
1.9, 2 equal to α are presented in Table 14.

Table 14. Residual errors in Bessel-QLM for β = 1.1, 1.3, 1.5, 1.7, 1.9 in Example 5 for M = 10 and α = β.

t β, α = 1.1 β, α = 1.3 β, α = 1.5 β, α = 1.7 β, α = 1.9 β, α = 2.0

0.1 1.0364× 10−12 2.0468× 10−14 3.6172× 10−16 4.6938× 10−17 3.4314× 10−17 2.9295× 10−19

0.2 1.0825× 10−11 4.0085× 10−13 1.1342× 10−14 4.7141× 10−16 4.4964× 10−17 5.6627× 10−21

0.3 4.2966× 10−11 2.2006× 10−12 8.6122× 10−14 4.7959× 10−15 8.1274× 10−16 6.2154× 10−20

0.4 1.1427× 10−10 7.3667× 10−12 3.6292× 10−13 2.5459× 10−14 5.4271× 10−15 2.0139× 10−19

0.5 2.4401× 10−10 1.8806× 10−11 1.1075× 10−12 9.2932× 10−14 2.3579× 10−14 8.3624× 10−20

0.6 4.5356× 10−10 4.0444× 10−11 2.7559× 10−12 2.6760× 10−13 7.8496× 10−14 1.2112× 10−19

0.7 7.6604× 10−10 7.7274× 10−11 5.9566× 10−12 6.5436× 10−13 2.1732× 10−13 4.7674× 10−19

0.8 1.2062× 10−9 1.3539× 10−10 1.1613× 10−11 1.4194× 10−12 5.2448× 10−13 1.2044× 10−18

0.9 1.8003× 10−9 2.2204× 10−10 2.0928× 10−11 2.8112× 10−12 1.1418× 10−12 8.8587× 10−18

The exponential order of convergence for Example 5 was examined in the last experi-
ments. As for Examples 1–4, we calculated the weighted L2 error norms and the related
EOCs in Bessel-QLM for Example 5. The results for β, α = 1.01, 1.25, 1.50, 1.75, 1.99 and
different values of M = 1, 2, 4, 8 are summarized in Table 15.

Table 15. The weighted L2 error norms and the related EOCs in Bessel-QLM for Example 5 for β, α = 1.01, 1.25, 1.50, 1.75, 1.99,
and diverse M.

β, α = 1.01 β, α = 1.25 β, α = 1.50 β, α = 1.75 β, α = 1.99
M

LM,α EOC LM,α EOC LM,α EOC LM,α EOC LM,α EOC

1 1.9232× 10−1 − 1.6545× 10−1 − 1.4671× 10−1 − 1.3314× 10−1 − 1.2312× 10−1 −
2 1.5972× 10−2 3.59 1.4895× 10−2 3.47 1.3526× 10−2 3.43 1.2065× 10−2 3.46 1.0666× 10−2 3.53
4 2.7591× 10−5 9.17 2.0311× 10−5 9.52 1.2836× 10−5 10.04 6.9934× 10−6 10.75 3.3538× 10−6 11.64
8 4.1872× 10−12 22.65 1.2170× 10−12 23.99 1.9693× 10−13 25.96 1.8278× 10−14 28.51 9.7566× 10−16 31.68
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7. Conclusions

A novel matrix method in terms of generalized Bessel functions, which is based
on some suitable collocation points, was developed for the approximate solutions of
integer- and fractional-order nonlinear Bratu and Lane–Emden-type differential equations.
By applying the direct Bessel collocation method, the governing equations are transformed
into a nonlinear fundamental matrix equation, which may be solved ineffectively for a
large number of Bessel functions. To get rid of the nonlinearity, a variant of this algorithm
based on the quasilinearization technique, i.e., the Bessel-QLM, was then presented to solve
the Bratu and Lane–Emden of arbitrary order with various initial and boundary conditions
efficiently. The error and convergence analysis of the Bessel-QLM was also established.
Several numerical test examples were presented to describe the applicability and validity
of the combined collocation and quasilinearization techniques, and comparisons were
made with available well-known numerical model results. On the basis of the numerical
calculation together with their comparative results provided in the last part, one can
conclude that the integer- and noninteger-order Bratu and the singular Lane–Emden
equations can be solved effectively by using the generalized Bessel-QLM. A main advantage
of the presented approach is that the solutions of these model problems are obtained very
easily ad straightforwardly by means of today’s modern mathematical software.
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