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Abstract: First-passage processes on fractals are of particular importance since fractals are ubiquitous
in nature, and first-passage processes are fundamental dynamic processes that have wide applications.
The global mean first-passage time (GMFPT), which is the expected time for a walker (or a particle)
to first reach the given target site while the probability distribution for the position of target site
is uniform, is a useful indicator for the transport efficiency of the whole network. The smaller the
GMFPT, the faster the mass is transported on the network. In this work, we consider the first-passage
process on a class of fractal scale-free trees (FSTs), aiming at speeding up the first-passage process on
the FSTs. Firstly, we analyze the global mean first-passage time (GMFPT) for unbiased random walks
on the FSTs. Then we introduce proper weight, dominated by a parameter w (w > 0), to each edge of
the FSTs and construct a biased random walks strategy based on these weights. Next, we analytically
evaluated the GMFPT for biased random walks on the FSTs. The exact results of the GMFPT for
unbiased and biased random walks on the FSTs are both obtained. Finally, we view the GMFPT as a
function of parameter w and find the point where the GMFPT achieves its minimum. The exact result
is obtained and a way to optimize and speed up the first-passage process on the FSTs is presented.

Keywords: the global mean first-passage time; fractal scale-free trees; random walks on fractals

1. Introduction

Many real-life networks, such as hyperlinks in the World Wide Web, protein—protein
interaction networks and cellular networks [1-3], exhibit fractal and scale-free characters,
and models for fractal scale-free networks have been a research hotpot [3-9]. The self-
similar structures of these networks make it possible for us to analytically evaluate the
topological and dynamic properties of these networks. Among a plethora of dynamic
processes, the first-passage process is of particular important since many other dynamic
processes can be analyzed and understood in terms of a first-passage process [10-12].
Typical examples include fluorescence quenching, where light emission stops when it
reacts with a quencher; the stopping of the searching process for a wandering forager
when it first reaches the target; and gene expression where the cell division event occurs
when the copy number of the time-keeper protein hits a threshold for the first time [13,14].
An important quantity related to the first-passage process is the mean first-passage time
(MFPT), referred to as T;_,;, which is the expected time for a walker starting from site i
to reach the target j for the first time. Averaging the MFPT over all the possible source
and target sites, one can obtain the global mean first-passage time (GMFPT), referred to as
(GFPT) and defined by
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where N is the total number of nodes of the underling networks.

In the past several decades, the first-passage properties have attracted lots of atten-
tion [15-18], and the mean first-passage time has been extensively studied. Some of them
focus on disclosing the effects of the topology on the MFPT (or GMFPT), and lots of results
have been obtained for unbiased random walks on different networks, such as Sierpinski
gaskets [19,20], pseudofractal scale-free web [21,22], scale-free Koch networks [9,23], (1, v)
flowers [24], and many fractal scale-free trees [9,21,25-27]. The MFPT and GMFPT are
useful indicators for the transport efficiency of the network. These works uncovered the
effects of the topology on the transport efficiency. There are also many works devoted to
improving the transport efficiency by designing appropriate biased random walk strate-
gies [28-30]. By introducing the proper weight to each edge of the network and designing a
proper biased random walk strategy, one can shorten the MFPT to obtain higher transport
efficiency on the underling networks [31-35]. One can also shorten the GMFPT for random
walks on some networks [36].

In this work, we extend the networks studied in Refs. [25,36] to a kind of general fractal
scale-free trees, which are controlled by two integer parameters: u and v (u > 1,v > 1).
The networks in the case u = 1 (or u = 2) are just the networks studied in Refs. [25,36].
Here, we study unbiased and biased random walks on the general fractal scale-free trees
(FSTs), aiming at shortening the GMFPT and optimizing the transport efficiency of the
networks. Firstly, we analyze the GMFPT for classical unbiased random walks on the FSTs.
Then, we introduce the proper weight to each edge of the FSTs and design a proper biased
random walk strategy, then evaluate the GMFPT analytically for biased random walks on
the FSTs. Finally, we compare the results of the GMFPT for unbiased random walks and
those for biased random walks and find the effects of the weights on the GFMPT. The way
to shorten and minimize the GMFPT is found. Therefore, we obtain a way to optimize the
first-passage process for random walks on the general fractal scale-free trees.

This paper is organized as follows. In Section 2, we describe the typologies of the
fractal scale-free trees and the weighted fractal scale-free trees. Next, in Section 3, we
evaluate the GMFPT for classical unbiased random walks on the FSTs. In Section 4, we
analyze the GMFPT for biased random walks on the FSTs. In Section 5, we compare
the GMFPT for unbiased random walks and the GMFPT for biased random walks on
the FSTs and present the optimal parameters where the GMFPT achieves its minimum.
Finally, conclusions and discussions are provided in Section 6, and detailed derivations are
collected in the Appendixes.

2. Fractal Scale-Free Trees and the Weighted Fractal Scale-Free Trees

The networks considered here are deterministic networks that can be built in an
iterative way. Let G(n) denote the network of generation n (n > 0). The construction starts
from two nodes connected by an edge, which corresponds to G(0). For n > 1, G(n) can
be obtained from G(n — 1) in the following way. For each edge of G(n — 1), we replace it
with a path of length u (1 > 1) firstly, and then 2v new nodes are added; half of them are
connected to one endpoint of the path and half of them are connected to another endpoint
of the path. For convenience, we call the 2v new nodes with degree 1 as external nodes
and the u — 1 new nodes in the path with length u as internal nodes. In other words, G(n)
can be obtained from G(n — 1) by replacing each edge of G(n — 1) with the cluster on
the right-hand side of Figure 1. The networks for the particular case ¥ = 1 and u = 2
are just the networks studied in Refs. [25,36]. The construction process for the first three
generations of the network in the particular case of u = 3, v = 2 are shown in Figure 2.
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Figure 1. Iterative construction method of networks. G(#) are obtained from G(n — 1) by replacing
each edge of G(n — 1) with a cluster on the right-hand side of the arrow. The 2v blue nodes are called
external nodes, and the u — 1 red nodes are called internal nodes, while the two black nodes are the
original two nodes of the path.

n=2

Figure 2. The first three generations of the particular network in the case of u = 3,v = 2. The black
nodes are the hub nodes (the highest degree); the red circles are new nodes added at generation
n = 1; the blue circles are new nodes added in generation n = 2.

According to the construction, we can easily know the total number of edges E,; of
G(n)is
E, = (2u+u)", ()

and the total number of nodes N, is
Ny, =1+ 2o+u)". 3)

One can also find that, in the case u = 1, these kinds of networks are non-fractal,
which means that they have infinite fractal dimension; and in the case of u > 2, they
are fractals with the fractal dimension dy = In(20 + u)/ Inu [7] . Further more, they are

scale-free trees with the distribution P(k) ~ k=7, where v = 1+ IEI(?;:S) [7]. Therefore,

in the case u > 2, we can call them fractal scale-free trees (FSTs).

Note that the first-passage properties for the networks with # = 1 and u = 2 were
studied in Refs. [25,36]. In this paper, we just study the networks while u > 2. We study
the tree-like networks because of their inherent interests and their correlation with real
systems, where the so-called boundary tree is well known [37,38].

It is worth mentioning that the networks considered here have an equivalent construc-
tion method that highlights their self-similarity. As shown in Figure 3, the network with
generation n + 1, referred to as G(n + 1), is composed of 2v + u sub-units that are copies
of G(n), labeled by Gx(n),k =1,2,--- ,2v + u, and connected to one another by their hubs
(i.e., nodes with highest degree).

In order to construct the biased random walk strategy, we introduce weight to each
edge of the fractal scale-free trees and obtain the weighted fractal scale-free trees in the
following recursive way. For n = 0, the weight for the only edge of G(0) is 1. Forn > 1, it
is known that G(n) is obtained from G(n — 1) by replacing each edge of G(n — 1) with a
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path of length u firstly, and then 2v new nodes are added; half of them are connected to
one endpoint of the path and half of them are connected to another endpoint of the path.
The weights for edges of G(n) can be also obtained from the weights for edges of G(n — 1).
The weights for the u new edges in the path with length u are the same as the weights
for the original edge of G(n — 1), and the weights for the edges between the endpoints of
the path and the 2v new nodes are set to be w (w > 0) times the weight of the original
edge. Therefore, w is an important parameter that controls the weights for the edges of the
networks. The weights for edges of the particular fractal scale-free trees in Figure 2 are
shown in Figure 4.

Figure 3. Alternative construction of the fractal scale-free trees, which highlights self-similarity.
The network with generation # + 1, denoted by G(n + 1), is composed of 2v + u sub-units, which are
copies of G(n), labeled as Gy (1), Gy(n), - - -, Gop4y (1), and connected to one another at their hubs.

JA 0 0,

n=2

Figure 4. The weights for the edges of the particular fractal scale-free trees shown in Figure 2.

3. GMFPT for Unbiased Random Walk on the Fractal Scale-Free Trees

In this section, we analyze the GMFPT for classical unbiased random walks on fractal
scale-free trees (FSTs). At any step, the walker at the current site i steps to any of its
neighbors j with the same probability. This is to say, the transition probability from node i
to node j can be written as

1 . .
= 1~
Py = { i @

0 otherwise

where d; is the degree of node i, and i ~ j means there is an edge between nodes i and j.
In order to show the evolution of the global mean first-passage time with the increase
in the network size, here, (GFPT), represents (GFPT) for network G(n). By exploring
the connection between the MFPT and the effective resistance and the relation between
the effective resistance and the shortest path length, the global mean first-passage time
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(GMFPT), defined by Equation (1), for unbiased random walks on network G(#n) can be
rewritten as [25]

1 Ny
GFPT = — T
< >n Nn(anl) ];; ](7’1)
N 2Lsum (”)
- Zowlt) ©
where
1 N
Lsum(”) = E 2 ZLij(n) (6)
=t

and L;j(n) denotes the shortest path length between nodes i to node j on network G(n).

Note that G(0) is just two nodes connected by an edge. It is easy to know Lg,, (0) =
1. For n > 0, recalling the self-similar structure of fractal scale-free trees, as shown in
Figure 4, the G(n + 1) is composed by 2v + 1 subunits, which are copies of G(n), labeled
by G¢(n), k=1, 2, ---, 2v+ u and connected to one another by their hubs. We have

1

Laum(n+1) = = Y L
i,j€G(n+1),i#]
12v+u 1
= 3L L L LoL
k=1 i,j€Gy(n),i#j ki#ky i€Gy, (n)
JEGry (n)
= (2u+u)Lsym(n) + Ay, (7)

where A, = % Yy Y. Ljis the sum of shortest path between any two nodes that
k1#kz i€Gy, (n)
jE€Gk, (1)
belong to the different subunits of G(n +1).
Using the Equation (7) recursively, for n > 0, we obtain

Lsum (n) = (ZU + ”)Lsum(n — 1) + A, 1
= 20+ u) Loym(n —2) + 20+ u)Ay_2 + Ay_1

= (204 )" Loun (0) + Yy (20 +u)" 1Ay ®)

For A, as derived in Appendix A,

Ap = (2o+u)* 20 +u—1)+ [uv® + uo(u —1)
+ —u(u—16)(u—2)]un(u+20)2n

+ u4u)"" 20 +u—1)[uv+ @]

u"(2o+u)" — 20+ u)"

u(2v+u) — (2v+u) ©)
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Inserting Equation (9) into Equation (8), we obtain

o+ w)"! Buv +3uto+ud —u
Loun(n) = u(20+u)—1[ 3
[u(u —1) +2(u —2)v](2uv + u? — 1)
2(u—1)
u(u+1)[602 +6(u —1)v+ (1 —1)?]
6(u—1)

+

(v +u)"

+ u" (2v 4 u)"]. (10)

Replacing Ly (n) from Equation (10) in Equation (5), we obtain

(204 u)""! 6uv? + 6u?v + 2u® — 2u
[u(20+ u) —1][(Zv+u)"+1]{ 3
w(u +1)[602 + 6(u —1)o + (u—1)?]
3(u—1)
[u(u —1) +2(u —2)v](2uv + u? — 1)
u—1

(GFPT),

(2uv + u?)"

+

(20 + u)"}. (11)

Noticing that N, = (20 + u)" + 1 and u" = (N, — 1)/ In(20+1) we can rewrite
Equation (11) as

= L No— 1 u(u+1)[60* + 6(u — Do+ (u—1)%
<GFPT>n - [1,[(27]4—1/{) _1](20+M) N, { 3(M—1)
X (Ny — 1)+nu/In@otu) [(u—1) +2(u — 2)0](2uv + u2 — 1)
n o 1
2 2 3
% (Np—1)+ 6uv” + 6u z;—i— 2u® —2u 1. )

Therefore, for large networks, i.e., n — oo,
<GFPT>H ~ (Nn)1+lnu/1n(20+u)' (13)

4. GMFPT for Biased Random Walk on the Weighted Fractal Scale-Free Trees

In this section, we analytically evaluate the GMFPT for biased random walks on the
weighted fractal scale-free trees. At any step, the transition probability from node i to j is

Wi . .
L ]wij b~
Pij =19 jeld) , (14)

0 otherwise

where v(i) is the set of neighbors of node i, and w;; is the weight of the edge between nodes
iand j.

If we view the weighted fractal scale-free trees as electrical networks by considering
any edge (i, j) between two adjacent nodes i and j to be a resistor with resistance 1/w;;. We
find, for any n > 0, the GMFPT for biased random walks on the weighted fractal scale-free
trees G(n) can be expressed as [36]

(GFPT), = m (15)

where F, =} (;.j) wi; is the sum of weights for all edges of the weighted fractal scale-free

trees G(n), and Rgym(n) =3 ¥ Rjj, with R;j is the the resistances between nodes i
ijeG(n)i#]
and j on G(n). In order to derive (GFPT),, we should calculate Rsy;,; (1) and F,.
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Firstly, we calculate Ry, (7). It is easy to know Ry, (0) = 1. For any n > 0, as shown
in Figure 4, the G(n + 1) is composed by 2v + u subunits, which are copies of G(n), labeled
by Gk(n), k =1, 2, ---, 2v+ u. Furthermore, the edge weights for subunits Gy (n)
k=2v+1,20+2,---,2v+ u are the same as those of G(n), whereas the weight for each
edge of subunits Gi(n) (k =1, 2,---, 2v) is w times the weight for the corresponding
edge of G(n). We obtain

1

Rsum(”+1) = 2 Z Rij
i,jeG(n+1),i#j
1 204u 1 20
= 5 L X Rj+zr) ) Ry
k=20+1ij€Gy (n),i%] k=1ij€Gy(n),i%]

1
2 X Ry

k1 #kz ic le (71)

jE€Gr (n)
= (2ur +u)Reym(n) + Qy, (16)
where r = %, and ), = % Y Y Rjjis the sum of the effective resistance between
k] #kz iEle (71)
j€Gk, (n)

any two nodes that belong to the different subunits of G(n + 1).
Using Equation (16) recursively, we obtain

Roum(n) = (2or+u)Rsym(n —1) +Q,4
= (207 4+ u)?Reym(n — 2) 4+ (2or + u)Qy_2 + Q4

= (207 +u)"Rgym(0) + ZZ;& (20r +u)" "1k (17)
For Q,,, we find
Qn = Qor4u)""12u+u)"2v+u—1)
2 u(u—l)(u—Z) n 2n
+ [uv"+uv(u—1)+ 7@ (u+2v)
+ Qour+u)2v4u—1)2v+u)"uv+ @]
u"(2v+u)" — (2or + u) , (18)

u(2v+u) — (2ur +u)

where the detailed derivation of Equation (18) is presented in Appendix B.
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Therefore, inserting Equation (18) into Equation (17), we obtain

u(u? + 3uv +30% — 1)
3u(20 + u)* — 3(20r + u)

u? 4+ 2uv — u — 4or
2u(2v 4 u) —2(20r+u)]
(u—r)2or —u(u+2v—1)] +ur(u—1)

2(u —r)[20r — u(u +2v —1)]

1 u? + 6or — u
togt 2407—12u(u—|—20—1)(u+20—|—1)}
_ (2—U+u " u(u2+3u§+302—1) ]
w 3u(20+u)” —3(2 +u)
uw(u+2v—1)—4v
2uw(u+2v—1) — 40]

2uvw[2u? + 6v(v — 1) + u(6v — 3)]

[uw(u +2v — 1) — 20] [uw(u? + 4uv + 402 — 1) — 20]
w?w?[(u + 20 — 1) (u? + 6uv + 60 — 1)] \ 19)
6[uw(u+2v —1) — 20| [uw(u? + 4uv + 40> — 1) — 20] °

Roum(n) = (2or+u)"|

+ (2u+u)"(2ur+u)"|

+ w20+ u)2 ]

+ (ZU—I—u)”(%) +u)"|

+ u"(2v+ u)2”{6

Then, we calculate the F,, which is the sum of weights for all edges of G(n). Forn =1,
we find F; = 2(2vw + u). For n > 1, we find

F, = (2vw +u)F,_1. (20)

Thus, forany n > 1,
Fy = 2(2vw + u)". (21)
Replacing F, and Rgy, (1) from Equations (19) and (21), respectively, we obtain
FuRsum (n)
Nu(N, — 1)
220w +u)" (& +u)"  u(u? + 3uv +30% — 1)

(20 +u)"[(20 +u)" +1] '3u(20 + u)* — 3(2 +u)
220w+ u)" (2 +u)"  ww(u+20—1) — 40

(GFPT),

]

* (2o+u)" +1 2uw(u+20—1)—4v]
2(2ow + u)"u (20 + u)"
+ o
2u+u)"+1
" 2uow2u® + 6v(v — 1) + u(6v — 3)]

{6[uw(u + 20— 1) — 20][uw(u? + 4uv + 40> — 1) — 20|
w?w?[(u+ 20 — 1) (u? + 6uv + 6v% — 1)]

6[uw(u + 20 — 1) — 20| [uw (U2 + 4uv + 402 — 1) — 20] }. (22)

Let w = 1 in Equation (22), then we can recover the result, as shown in Equation (11),
which is the GMFPT for the unbiased random walk on G(#n). Let u = 2 in Equation (22),
then we can recover the result obtained in Ref. [36]. They all confirm the correctness of
our results.

5. Optimizing the First-Passage Process by Using the GMFPT as the Measure

In this section, we analyze the effect of weight parameter w on (GFPT),, and then
find the optimal w where (GFPT),, achieves its minimum. Therefore, we obtain a random
walk strategy to speed up the first-passage process on the FSTs.
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Recalling the exact result of the GMFPT, as shown in Equation (22), for a biased
random walk on the weighted networks, we find for a network that is big enough, i.e,
n — oo, Equation (22) can be rewritten as

(2ow +u)" uw(u+2v—1)—4v 20
(20+u)"+1{uw(u+20—1) —20(;
2uvw[2u? + 6v(v — 1) + u(6v — 3)]
Bluw(u +2v — 1) — 20] [uw(u? + 4uv + 402 — 1) — 20]
w?w?[(u + 20 — 1) (u? + 6uv + 60> — 1)] . 23)
Bluw(u +2v —1) — 20| [uw(u? + 4uv + 402 — 1) — 20] °

(GFPT), +u)"

+  (uo +u?)"{

Therefore, if 0 < w <

2uv+u2—u

_ (2ow+ u)" (2 4 u)"

GFPT
< I (2v+u)"+1

, (24)

and if w > m
(2ow + u)" 2uv 4 u?)"
(2o+u)" +1

Noticing that N,, = (20 + u)" + 1, we can rewrite (GFPT),, as

(GFPT), (25)

In(20w+u)+In( %—g +u) 1

N, In(20+u) - 0< 2717
(GEPT), " WS B (26)

ln(2uvw+u2)
Nn In(20+u) w > 2v

2uv+uZ—u
Figures 5 and 6 show the double logarithmic plots of (GFPT),, versus N, for different
choices of winthecaseu = 5,v =2, u = 10,v =2, u = 5,v =5, u = 10,and v = 5,
respectively. They all confirm the asymptotic behavior in Equation (26).

10%° 102

——w=0.15
—*—w=0.45

» w=075
10°°L 4 w=10 w4 10"

w=15

10"

GMFPT

10

(b)

10° 107 10 1(;

Nn

Figure 5. Double logarithmic plots of (GFPT),, versus N, for different choices of weight parameters

w and structure parameter # and v: (a) u =5, v = 2 and (b) u = 10, v = 2. Data for (GFPT), are
obtained by evaluating Equation (22).
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Figure 6. Double logarithmic plots of (GFPT),, versus N, for different choices of weight parameters
w and structure parameter # and v: (a) u = 5,0 = 5 and (b) u = 10,v = 5. Data for (GFPT),, are
obtained by evaluating Equation (22).

Considering the power exponent of N;;, as shown in Equation (26), one can find that

In(20w-+u)+In( 22 +u) In(2uvw-+u?)
In(2v+u) , whereas In(2v-+u)

increases monotonically in w if w >

as w increases if0 < w< —20—
2uv+us—u

w > m Therefore, (GFPT),, reaches its minimum at w = m Figures 7 and 8

shows the plots of (GFPT),, versus w for different v in the case that u = 3 (u = 5) and
n =60, 70.In all the cases, (GFPT), reaches its minimum at w = 5—2°

— 1 decreases monotomcally nwif0 <w <

2uv+u2 u

m Thus, (GFPT),, decreases monotonically

, whereas (GFPT),, increases monotonically in w if

2uv+ul—u’
. o 20 . . . . .
Letting w = 5—=-— in Equation (26), we obtained the optimal (GFPT),,, which
scales as
2
ln(u2+u+42v 1)
In(2:
(GFPT)q, ~ N, "™ 27)
10160 10180
(a) (b)
10140 10160 -
T gt 7
102 //
E 10120 / /// -
= _—
© 100 | //
10 t/ / L
10" 4\. // //
N/, 7
- ¢ v
1080 | /( V=29
¢« v=10
© o =t
60 -
1 0 1 2 3 4 5 " 0 1 2 3 4 5
w w

Figure 7. Plots of (GFPT),, versus w for different v in the case u = 3 and (a)n = 60 and (b) n = 70.
Data for (GFPT),, are obtained by evaluating Equation (22).
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180 200

10 10
(a) (b)
10160 1018ﬂ
10™ ] 0 //
>
= - s
& - p yd
s / / Py )
® » 7 — 140 - —
10 e P / _—
| // e =
V// e v=2 E / s - v=2
100 / e 120 /
10 4“./ / v=5 10 V/ / v=5
4 = A e =10
r/ v=10 ﬁ // v
o W= / o w= R
10% . . 10'% @ . . : :
0 1 2 3 4 5 0 1 2 3 4 5
w w

Figure 8. Plots of (GFPT),, versus w for different v in the case u = 5: (a) n = 60 and (b) n = 70. Data
for (GFPT),, are obtained by evaluating Equation (22).

In order to show the improvement on the GMFPT of our optimal solution obtained
here, the ratio between the optimal GMFPT (GF PT)OP and the GMFPT for an unbiased
random walk, as obtained in Section 3 and referred to as (GFPT);,5, is evaluated, and it
scales with the size of the network as

uZJr 4v
u+2v—1
R (GFPT)o, N, @ ( m: (28)
atio = —————— ~ n(20-+u .
(GFPT) 1,8 !
Note that
402 20(u—1 2
u? 4 2uv — (u® + u+Zvv—1) = U(L;_i_z)v(bi—; 0) >20(u—1) > 20> 0.
W2y 22 .
We have red In <L,2f22;v1) < 0, and for large networks, i.e., N; — oo,
(GEPT),,
Ratio = ———F 29
= (GFPT) 5 *)

Therefore, the optimal biased random walk strategy presented here shortens the
GMFPT in comparison to the classical unbiased random walk strategy.

6. Conclusions

In this work, we considered a class of recursively grown networks, whose topology is
controlled by two integral parameters u and v (u > 2, v > 1). These kinds of networks
provide an interesting model for self-similar and scale-free networks in real life. They
can also be used as a candidate structure for the artificial polymer material that has a
self-similar structure with a different fractal dimension. In particular, networks in the cases
of u = 1 and u = 2 constitute the formal models studied in Ref. [25].

Here, we have analytically evaluated the GMFPT for unbiased (and biased) random
walks on these networks. The exact results of the GMFPT for unbiased and biased random
walks are both obtained. The results show, in both cases, the GMFPTs are power functions
in network size N,,.

For an unbiased random walk strategy, (GEPT), ~ (N,)!tnu/In2otu) jf 4 > 2,
For the biased random walk strategy, it is controlled by a weight parameter w (w > 0),
and for big networks, (GFPT), can be looked upon as a convex function of w, which has

an inflection point at w = 227”2 Therefore, for big networks, (GFPT),, achieves its
uotuc—u n
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minimum at w = Mz;f%’ and we obtain a way to speed up the first-passage process on
fractal scale-free trees. The main reason is as follows. (GFPT),, is proportional to the sum
of effective resistances for the paths between all pairs of nodes in the network. For two
arbitrary nodes, the path can be divided into two types: the first type must pass through
at least one internal part, denoted by sub — pathl, the other type does not pass through
any internal parts, denoted by sub — path2. Then R.,,, is relevant to sub — path1, which
is independent of w, and R?,,, is subject to parameter w. As found in Appendix B, RL,,,,
scales with n as (20 + u)"(2uv + u?)", whereas R2,,, scales with n as (20 + u)" (2 + u)".
In the asymptotic limit (i.e. n — o), only Rl or R?,,, is dominant in Rgy,(n). If (20 +

u)" (2 +u)" < (204 u)"(2uv + u?)", equivalently, w > mﬁ%’ we have Ry (n) ~

(20 4+ u)"(2uv + u?)", and Equation (25) holds. On the contrary, if w < mtz;f%' we have
Rsum(n) ~ (20 +u)" (2 + u)", and Equation (24) holds. Therefore, w = yuo Ty is just

the inflection point of (GFPT), with respect to w.

The results obtained here provide interesting hints for the design of a polymer em-
bedding diffusion process. First, one can construct a class of polymers with different
fractal dimensions and different transport efficiencies. The bigger the fractal dimension,
the slower the transport on the networks. One can also improve the transport efficiency of
the polymer by properly adjusting the weights of each edge.

In future research, we can also set the weight which is related to the node degree,
for example, wij = d% + dlj, where d; and dj is the degree of node 7, j. How we to optimize

the first-passage process in this case is an interesting problem.
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Appendix A. Derivation of Equation (9)

In this appendix, we present the detailed derivation of A,, which is the sum of the
shortest path length for any two nodes that belong to the different subunits of G(n + 1).
As shown in Figure 3, the fractal scale-free trees of generation n + 1, denoted by G(n + 1), is
composed of 2v + u subunits, labeled by Gi(n) (k =1,2,-- - ,2v + u), which are connected
to one another by their hubs (i.e.,, nodes A, Band O;,m = 1,2, - - - ,u — 1). For convenience,
we call the subunits Gi(n) (k=1,2,---,20v) as the exterior subunits of G(n + 1) and sub-
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units Gx(n) (k=2v+1, 2v+2,---,2v 4+ u) as the internal subunits of G(n + 1). For any
ki # ko (kl, kr=1,2,---,20+ M), let

A=Y L (A1)
iGle(Tl)

JEGk, (1)

denote the sum of the shortest path between any node in subunit G, (1) and any node in
subunit Gy, (n). We have

1

A = 5 ) X L
ki#ka i€Gy, (n)
JEGk, (n)
v v o k 2v 20 o k
— 2 AV 4 Z 2 A2
k1=1ky=k1+1 ki=v+1ky=k;+1
v 2v4-u o k 20 2v+4-u e k
_I_ Z Z Anll 2 _|_ Z Z Anll 2
kl =1 k2:2‘0+1 k1:U+1 k2:2U+1
20+u 2v0+u o k 4 20 o k
+ 2 2 Anlz 2 4 2 Z Anl’ 2 (AZ)
k1 =2v+1 kzik] +1 k1:1 k2:U+l

Noticing the symmetry of network topology, we have

4 v 20 20

Yoart= Y ) A

k1:1 k2:k1+1 k1:’()+1 k2:k1+1

and

4 4

Z A’:l] ko

k1=1ky=k;+1

v —v
ICETNE
UZ—U
= ! 3 ) Y. Lij(n)
iEG1(1’l),j€Gz(l’l)
ij£A

2 _
= B0 Y ) + L)
i€Gy(n),jeGy(n)
ij£A

- O T -1 T L

i€Gy(n),i£A i€Gy(n),j£A
= (0® —0)(N, —1)S,, (A3)

where N, is the total number of nodes of G(n) and

Su= Y. L. (A4)
i€G(n),i£A
Thus,
v 4 ok 2v 20 ok
YN Ay Y Y AR =20 — 0)(Ny —1)S,. (A5)

k1:1 k2:k1+1 k1:U+1 k2:k1+1
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Similarly,
4 2v4-u
Aﬁpkz
k1 =1 k2 =2v+1
20+u

v 2 A}{b

k2:20+1
— ,U<A%,2’U+1 + A}[,ZZFFZ 4+t A%,Z'U‘H/l)’ (A6)

and foranym=1,2, ---, u,

AP = Y Lij(n)
i€Gy (n),iZA
J€G2p4m(n),j#O0m—1

= ) [Lia(n) + Lao,,_,(n) + Ljo,,_, ()]
i€Gy (n),i£A
jEGZW+n1 (n),jyéom,]

= 2(Ny—1)S,+ (m—1)u"(N, — 1), (A7)

where node O,,_; represents node A, while m = 1. Thus,

4 2v4-u

Z Z A];llzkz — Z)(A;’ZU'H + A;,Zv-&-z I A}[,Zv-&-u)
k1=1ky=20+1

= 9[2(N;, —1)S, +2(Ny, —1)S, + u" (N, —1)?

+ o+ 2(Ny —1)Sy + (1 — 1)u" (N, — 1)?]

= 02u(Ny —1)Sy + u"(Ny —1)?(1+2+ - +u —1)]

= 2up(Ny —1)Sy + wu”(m — 1), (A8)

By symmetry,
v 20+u 20 2v4u
Z Aﬁlsz + Z Z A’;lhkz
k1:1 kziZU“rl k1:U+l k2:2'0+1
= 4uv(N, —1)S, + uo(u — 1)u" (N, — 1) (A9)
Similarly,
AT = ) Lij(n)

iGG]( ),
j€Gu1a(n )]#B

= ) [Lia(n) + Lap(n) + Lip(n)]
IEGl( )rl5‘é
j€Gy11(n),j#B

= 2(Ny —1)S, +u""Y(N, —1)%, (A10)

and
Azlerl,Zerm 2 Lij (Tl)
i€Gyp11(n),i#0;

j€G20+m n)/j%onlfl

[
g

[Lioy (1) + L0y, (1) + Lio,,, (n)]
i€Gpyr1(n),i#0;
J€Gop4+m(n),j#Om—1

= 2(N,—1)S, 4 (m —2)u"(N, —1)?, (A11)

N
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where m = 2,3, - - ,u. Therefore, we have

v 20
Z Aﬁl'kz — ,{)ZA}l,v-‘rl
k1=1ky=0v+1
= 20%(N, —1)S, +v*u" (N, — 1), (A12)
and
2u+u 2v+u u
Aﬁl,kz _ Z U—m4+ 1 A2v+l 20+m
k1=2v+1ky=k;+1 m=2
— (u )A%v+1,20+2 + (u o Z)A%v+1,21}+3 RN Aglv+l,27)+u
= 2(Ny—DSu[(u—1)+(u—2)+---+1]
+ [(u—=2)+2u—3)+ -+ (u—2)]u" (N, — 1)
= u(u—1)(Ny —1)S + wu”(m ~1)2% (A13)
Inserting Equations (A5), (A9), (A12) and (A13) into Equation (A2), we obtain
An = (2u4u)v+u—1)(N,—1)S,
o [uo? +uo(u—1) + W]u”mﬂ —1)2. (A14)
For S, for any n > 1, S, satisfies the following recursion relation:
u—1
Si = (+1)Sy14 Y [Su—1+mu" NNy —1)] +0[Sy_1 + " (Ny_q — 1)]
m=1
M(M — 1) n—1 n—1
= n_l 7
(20 +u)S,—1 + [uv + 5 Ju" (20 + u) (A15)

with the initial condition Sy = 1. By solving the recursion relation, we obtain

u(u — 1)] L W2o )" — (20 +u)"

_ n
Sn=(2o+u)" +[uo+ 2 u(2v+u) — (20 +u)

(A16)

Plugging Equations (3) and (A16) into Equation (A14), we obtain Equation (9).

Appendix B. Derivation of Equation (18)

In this part, we present the detailed derivation of €, which is the sum of the effective
resistance between For any ky # ky (k1, ko =1,2,--- ,204u), let

o=y Ry (A17)
i€Gy, (n)
jE€Gk, ()
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denote the sum of resistance between any node i of subunit G, (7) and any node j of
subunit Gy, (n). We have

1

0, - 3L T w
k1 ko i€Gy, (n)
JEGk, (n)
4 4 o k 20 2v o k
— Z Z Qn1/2+ Z Z infz
k1=1ky=k;+1 ky=v+1ky=k+1
v 20+u ok 2v 20+u o k
SED DD N ¢ S WD WA O e
k1:1 k2:2’0+1 kl =v+1 k2:2‘()+1
2v+4u 2v+4u o k v 20 o k
+ Z 2 Qn1r2_|_ Z Z in;Z' (A18)
k1:221+1 k2:k1+l k1:1 k2:U+1
Similar to the derivation of Equation (9), we find
v 4 20 2v
Yoy obte y ) ok
k1:1 k2:k1+1 kl =v+1 kz:k1+l
= @ -0)0}?
(v* —v) ) Rij(n)
ieGl(n),jEGZ(n)
ij£A
= (v®*—0) ) [Ria(n) + Rja(n)]
i€Gy(n),jeGy(n)
ij#A

= @-0)|(Na—1) Y, Ru+(N.—1) Y R
i€Gy(n),i£A j€Ga(n),j#A

= 2r(v* —0) (N, — )Ry, (A19)

where N, is the total number of nodes of G(n) and

Ro= ). R (A20)
i€G(n),i#A
Similarly,
4 204u 2v 204-u
Yoy ot poy ot
k1:1 k2:2?}+1 k1:U+1 k2:2’()+1
20+4u r
= 20 Z Qbk
k2:20+1
= 20(Qy7H + Q24+ O, (A21)
and
Q7 = Y Rij(n)
i€Gy(n),i#A
jEGZUer(n)/j?éOmfl
= Y. [Ria(n) + Rao,,_, (n) + Rjo,,_, (n)]
i€Gy(n),i£A

j€G2v+m(n)/j?éOmfl
= (r+1)(Ny— 1R, + (m—1)u" (N, —1)%. (A22)
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Thus, we obtain

v 20+u ok 2v 20+4u e k
LY bt poY bt
k1:1 k2:2’0+1 k1:U+1 k2:2‘0+1

_ 20(01,2%1 + Ol 4y Q1,2v+u)
n n n
= 20[(r+1)(Ny — D)%y + (r + 1) (Ny — )Ry, + u" (N, — 1)?
+ o P+ DNy — DRy + (1 — D (N, — 1)
= 20[u(r+1)(Ny — DRy +u"(Ny —1)2(1+---+u—1)]
= 2uv(r+1)(Ny, — )Ry + uo(u — 1)u" (N, — 1) (A23)
We also find
20+u 20+u

kq,k
Qfke (u ])QZU+1,20+2 (u 2)02v+1,20+3 L. 02v+l,20+u
kl =2v+1 k2:k1 +1

2(Ny — DR [(u—1) + (u—2) +--- +1]
+ [(u=2)+2u=3)+ -+ (u—2)]u"(N, —1)2

u(it = 1) (N — )%y + DO =D g 92 (ang)

6
and
Ql,erl — R
n 2 z;(”)
i€Gy(n),i£A
j€Gyy1(n),j#B
= ) [Ria(n) + Rap(n) + Rjp(n)]
i€Gy(n),i£A
j€Gy11(n),j#B
= 2r(N, — )%, +u" (N, —1)% (A25)
Thus,
v 20
Z 07;11,k2 _ UZQ}l,U+1
k1=1ky=0v+1
= 20%r(N, — )R, + 0*u" (N, —1)2 (A26)

Inserting Equations (A19), (A23), (A24) and (A26) into Equation (A2), we obtain

Q, = Qur+u)2v+u—1)(N,— 1R,
u(u—1)(u—2)

< Ju™ (N, —1)2. (A27)

4+ [uo® +uo(u—1) +

Similarly, for R, for any n > 0, R, satisfies the following recursion relation:

u
Ry = R+ Z [Ry—1+ (m— 1)”n_1 (N1 —1)]

m=1
+ U[”mn—l + un(Nn—l - 1)]

= (ur+u)R,_1+ [uv+ wu=1)

Ju" 1 (20 +u)" 1, (A28)
with the initial condition 93y = 1. By solving the Equation (A28), we obtain

(u—1), u"(2o+u)" — 2or +u)"
2 I u(2v+u) — (2or + u)

R, = Qour+u)" + [uv+ i ]. (A29)
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Plugging Equations (A29) and (3) into Equation (A27), we get Equation (18).
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