Multiweighted-Type Fractional Fourier Transform: Unitarity
Abstract
:1. Introduction
2. Reformulation of M-WFRFT
3. Unitarity
3.1. 4-WFRFT as the Basis Function
3.2. Fractional-Order Matrix as the Basis Function
3.3. Eigendecomposition-Type FRFT as the Basis Function
3.4. Other Types of FRFTs
- (a)
- Chirp multiplication
- (b)
- Chirp convolution
- (c)
- Chirp multiplication
4. Discussion
Code 1. The program of Equation (10). |
|
Code 2. The program of Equation (36). |
|
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
|
References
- Zhao, T.; Yuan, L.; Li, M.; Chi, Y. A reformulation of weighted fractional Fourier transform. Digit. Signal Process. 2020, 104, 102807. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, S.; Ran, Q. Optical image encryption based on multifractional Fourier transforms. Opt. Lett. 2000, 25, 1159–1161. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.C. Fractionalization of Fourier transform. Opt. Commun. 1995, 118, 495–498. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, J.; Zhang, Y.; Zhang, J. Generalized fractional Fourier transforms. J. Phys. A Math. Gen. 1997, 30, 973. [Google Scholar] [CrossRef]
- Liu, S.T.; Zhang, J.D.; Zhang, Y. Properties of the fractionalization of a Fourier transform. Opt. Commun. 1997, 133, 50–54. [Google Scholar] [CrossRef]
- Ran, Q.; Yeung, D.S.; Tsang, E.C.; Wang, Q. General multifractional Fourier transform method based on the generalized permutation matrix group. IEEE Trans. Signal Process. 2004, 53, 83–98. [Google Scholar]
- Zhao, T.Y.; Ran, Q.W. The Weighted Fractional Fourier Transform and Its Application in Image Encryption. Math. Probl. Eng. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Tao, R.; Lang, J.; Wang, Y. Optical image encryption based on the multiple-parameter fractional Fourier transform. Opt. Lett. 2008, 33, 581–583. [Google Scholar] [CrossRef]
- Ran, Q.W.; Zhang, H.Y.; Zhang, J.; Tan, L.Y.; Ma, J. Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform. Opt. Lett. 2009, 34, 1729–1731. [Google Scholar] [CrossRef]
- Ran, Q.W.; Zhao, T.Y.; Yuan, L.; Wang, J.; Xu, L. Vector power multiple-parameter fractional Fourier transform of image encryption algorithm. Opt. Laser Eng. 2014, 62, 80–86. [Google Scholar] [CrossRef]
- Zhao, T.; Ran, Q.; Yuan, L.; Chi, Y.; Ma, J. Security of image encryption scheme based on multi-parameter fractional Fourier transform. Opt. Commun. 2016, 376, 47–51. [Google Scholar] [CrossRef]
- Santhanam, B.; McClellan, J.H. The discrete rotational Fourier transform. IEEE Trans. Signal Process. 1996, 44, 994–998. [Google Scholar] [CrossRef]
- Saxsena, R.; Singh, K. Fractional Fourier Transform: A novel tool for signal processing. J. Indian Inst. Sci. 2005, 85, 11–26. [Google Scholar]
- Tao, R.; Zhang, F.; Wang, Y. Research progress on discretization of fractional Fourier transform. Sci. China Ser. F Inf. Sci. 2008, 51, 859. [Google Scholar] [CrossRef]
- Kang, X.; Tao, R.; Zhang, F. Multiple-parameter discrete fractional transform and its applications. IEEE Trans. Signal Process. 2016, 64, 3402–3417. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Yang, J.F.; Zhang, Z.; Phillips, P.; Sun, P.; Yan, J. A comprehensive survey on fractional Fourier transform. Fund. Inf. 2017, 151, 1–48. [Google Scholar] [CrossRef]
- Zayed, A. Two-dimensional fractional Fourier transform and some of its properties. Integral Transforms Spec. Funct. 2018, 29, 553–570. [Google Scholar] [CrossRef]
- Gómez-Echavarría, A.; Ugarte, J.P.; Tobón, C. The Fractional Fourier transform as a biomedical signal and image processing tool: A review. Biocybern. Biomed. Eng. 2020, 40, 1081–1093. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, F.; Miao, H.; Tao, R. The hopping discrete fractional Fourier transform. Signal Process. 2021, 178, 7763. [Google Scholar] [CrossRef]
- Hosny, K.M.; Darwish, M.M.; Aboelenen, T. New fractional-order Legendre-Fourier moments for pattern recognition applications. Commun. Comput. Inf. Sci. 2020, 103, 7324. [Google Scholar] [CrossRef]
- Li, Y.; Song, Z.Q.; Sha, X.J. The multi-weighted type fractional fourier transform scheme and its application over wireless communications. EURASIP J. Wirel. Commun. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Zhang, N.; Zhang, S.; Chen, D.; Sha, X.; Shen, X. On physical layer security: Weighted fractional Fourier transform based user cooperation. IEEE Trans. Wirel. Commun. 2017, 16, 5498–5510. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Chen, S.; Wang, S.H.; Yang, J.F.; Phillips, P. Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine. Int. J. Imaging Syst. Technol. 2015, 25, 317–327. [Google Scholar]
- Liang, Y.; Da, X.; Wang, S. On narrowband interference suppression in OFDM-based systems with CDMA and weighted-type fractional Fourier transform domain preprocessing. KSII Trans. Internet Inf. Syst. (TIIS) 2017, 11, 5377–5391. [Google Scholar]
- Sha, X.j.; Qiu, X.; Mei, L. Hybrid carrier CDMA communication system based on weighted-type fractional Fourier transform. IEEE Commun. Lett. 2012, 16, 432–435. [Google Scholar]
- McClellan, J.; Parks, T. Eigenvalue and eigenvector decomposition of the discrete Fourier transform. IEEE Trans. Audio Electroacoust. 1972, 20, 66–74. [Google Scholar] [CrossRef]
- Dickinson, B.; Steiglitz, K. Eigenvectors and functions of the discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 1982, 30, 25–31. [Google Scholar]
- Bose, N. Eigenvectors and eigenvalues of 1-D and nD DFT matrices. AEU-Int. J. Electron. Commun. 2001, 55, 131–133. [Google Scholar]
- Candan, C.; Kutay, M.A.; Ozaktas, H.M. The discrete fractional Fourier transform. IEEE Trans. Signal Process. 2000, 48, 1329–1337. [Google Scholar]
- Ozaktas, H.M.; Arikan, O.; Kutay, M.A.; Bozdagt, G. Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 1996, 44, 2141–2150. [Google Scholar]
N | 1 | −1 | −i | i |
---|---|---|---|---|
4n | n + 1 | n | n | n − 1 |
4n + 1 | n + 1 | n | n | n |
4n + 2 | n + 1 | n + 1 | n | n |
4n + 3 | n + 1 | n + 1 | n + 1 | n |
Linear Weighted Type | Eigendecomposition Type | Sampling Type | |
---|---|---|---|
Unitarity | √ | √ | × |
Additivity | √ | √ | × |
Approximation | × | √ | √ |
Closed-form | √ | × | √ |
Complexity | O(NlogN) | O(N2) | O(NlogN) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Chi, Y. Multiweighted-Type Fractional Fourier Transform: Unitarity. Fractal Fract. 2021, 5, 205. https://doi.org/10.3390/fractalfract5040205
Zhao T, Chi Y. Multiweighted-Type Fractional Fourier Transform: Unitarity. Fractal and Fractional. 2021; 5(4):205. https://doi.org/10.3390/fractalfract5040205
Chicago/Turabian StyleZhao, Tieyu, and Yingying Chi. 2021. "Multiweighted-Type Fractional Fourier Transform: Unitarity" Fractal and Fractional 5, no. 4: 205. https://doi.org/10.3390/fractalfract5040205
APA StyleZhao, T., & Chi, Y. (2021). Multiweighted-Type Fractional Fourier Transform: Unitarity. Fractal and Fractional, 5(4), 205. https://doi.org/10.3390/fractalfract5040205