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Abstract: The definition of the discrete fractional Fourier transform (DFRFT) varies, and the multiweighted-
type fractional Fourier transform (M-WFRFT) is its extended definition. It is not easy to prove
its unitarity. We use the weighted-type fractional Fourier transform, fractional-order matrix and
eigendecomposition-type fractional Fourier transform as basic functions to prove and discuss the
unitarity. Thanks to the growing body of research, we found that the effective weighting term of the
M-WFRFT is only four terms, none of which are extended to M terms, as described in the definition.
Furthermore, the program code is analyzed, and the result shows that the previous work (Digit
Signal Process 2020: 104: 18) based on MATLAB for unitary verification is inaccurate.

Keywords: fractional fourier transform; weighted-type fractional Fourier transform; multiweighted-type
fractional fourier transform; unitarity

1. Introduction

The multiweighted-type fractional Fourier transform (M-WFRFT) is the extended
definition of the weighted-type fractional Fourier transform (WFRFT), and its application
has been described in detail in our previous research [1]. Here, we focus on summarizing
and analyzing the theory of the M-WFRFT. In [2], Zhu et al. proposed the definition of
the multifraction Fourier transform, i.e., the M-WFRFT. Researchers have applied this
definition to image encryption but have not discussed the properties of the definition itself.
Early research work [3–5] laid a solid foundation for the proposal of the M-WFRFT. In
1995, Shih proposed a new type of fractional-order Fourier transform (FRFT), which is
called WFRFT because it is a linear summation [3]. This definition has period 4, so it is
also called the 4-WFRFT. Subsequently, Liu et al. extended the definition of the WFRFT,
and the generalized definition has period M = 4l, where l = 1,2, ... [4,5]. Zhu’s M-WFRFT is
proposed on this basis, and its period is any integer M > 4 [2]. However, little is known
about the properties of these definitions. Ran et al. sought to present a unified framework
with the help of a generalized permutation matrix group and discussed its properties [6].
This research greatly promotes the theoretical development of WFRFTs. Unfortunately,
there is no proof of unitarity, and the focus of the previous studies has been the generality
of weighted coefficients. Recently, some new definitions based on the M-WFRFT have
been proposed [7–11]. For example, Tao et al. proposed multiple-parameter fractional
Fourier transforms (MPFRFTs) [8], Ran et al. proposed modified multiple-parameter
fractional Fourier transforms (m-MPFRFTs) [9], and Zhao et al. proposed vector power
multiple-parameter fractional Fourier transforms (VPMPFRFTs) [10,11]. Unfortunately, the
properties of these definitions have not been discussed.

First, Santhanam et al. demonstrated the properties of the WFRFT and proved its
unitarity using weighted coefficients [12]. However, this work ignores that the basis
function is also a part of the definition. For the M-WFRFT, its basis function is the fractional
power of the Fourier transform, so it is not easy to prove its properties. Some recent research
results have also failed to prove its properties [13–18]. We proposed a new reformulation
of the M-WFRFT to prove its periodicity, additivity and boundary [1]. Unfortunately,
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unitarity is only discussed by means of numerical simulation. This paper is a follow-up
of previous research work and mainly seeks to prove and discuss the unitarity of the
M-WFRFT. However, the most recent studies have also enlightened our research [19,20].

The remainder of this paper is organized as follows. Section 2 proposes a new reformu-
lation of the M-WFRFT. The unitarity of the M-WFRFT is proven in Section 3. The deviation
caused by the numerical simulation is discussed in Section 4. Finally, the conclusions are
presented in Section 5.

2. Reformulation of M-WFRFT

Shih proposed the WFRFT [3], and its definition can be expressed as

Fα[ f (t)] =
3

∑
l=0

Aα
l fl(t), (1)

with

Aα
l = cos

(
(α− l)π

4

)
cos
(

2(α− l)π
4

)
exp

(
3(α− l)iπ

4

)
, (2)

where fl(t) = Fl [ f (t)]; l = 0, 1, 2, 3, (F denotes Fourier transform). Shih’s WFRFT with
period 4 is also called the 4-weighted-type fractional Fourier transform (4-WFRFT).

We further improve the weighted coefficient Aα
l , as shown in Equation (3).

Aα
l = cos

(
(α−l)π

4

)
cos
(

2(α−l)π
4

)
exp

(
3(α−l)iπ

4

)
= 1

2 ×
[
exp

(
(α−l)πi

4

)
+ exp

(
−(α−l)πi

4

)]
× 1

2 ×
[
exp

(
2(α−l)πi

4

)
+ exp

(
−2(α−l)πi

4

)]
× exp

(
3(α−l)iπ

4

)
= 1

4

(
1 + exp

(
2(α−l)πi

4

)
+ exp

(
4(α−l)πi

4

)
+ exp

(
6(α−l)πi

4

))
= 1

4

3
∑

k=0
exp

(
2πik(α−l)

4

)
.

(3)

Then, we can obtain Equation (4) as
Aα

0
Aα

1
Aα

2
Aα

3

 =
1
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




Bα
0

Bα
1

Bα
2

Bα
3

, (4)

where Bα
k = exp

(
2πikα

4

)
, k = 0, 1, 2, 3. Equation (4) provides ideas for expanding the

definition in the future.
Liu et al., generalize Shih’s definition, and the generalized definition is shown to have

M-periodic eigenvalues with respect to the order of Hermite–Gaussian functions (M = 4l,
where l = 1,2,3, ...) [4,5].

Subsequently, Zhu et al. proposed a multifractional Fourier transform whose period can
be any integer (M > 4), so this definition is also called the M-WFRFT [2]. Zhu et al., extended
the weighting coefficient Aα

l , which is more general; the result is shown in Equation (5).
Aα

0
Aα

1
...

Aα
M−1

 =
1
M


u0×0 u0×1 · · · u0×(M−1)

u1×0 u1×1 · · · u1×(M−1)

...
...

. . .
...

u(M−1)×0 u(M−1)×1 · · · u(M−1)×(M−1)




Bα
0

Bα
1
...

Bα
M−1

, (5)
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where u = exp(−2πi/M) and Bα
k = exp

(
2πikα

M

)
, k = 0, 1, · · · , M− 1. Then,

Aα
l = 1

M

M−1
∑

k=0
exp

[
2πik(α−l)

M

]
;

l = 0, 1, · · · , M− 1.
(6)

The M-WFRFT is defined as

Fα
M[ f (t)] =

M−1

∑
l=0

Aα
l fl(t), (7)

where the basic functions are fl(t) = F4l/M[ f (t)]; l = 0, 1, · · · , M − 1 (F denotes the
Fourier transform).

At present, the M-WFRFT is widely used in image encryption and signal process-
ing [7–11,21–25]. Unfortunately, few researchers have discussed its properties, and the
proponents of the definition have not explained the properties. We find that it is not easy
to prove the properties of the M-WFRFT (Equation (7)). Some researchers have discussed
the properties using the weighted coefficient Aα

l but ignore that the basis function is also a
part of the definition [6,12]. Therefore, we present a new reformulation of the M-WFRFT.
As such, Equation (7) can be expressed as

Fα
M[ f (t)] = Aα

0 f0(t) + Aα
1 f1(t) + · · ·+ Aα

M−1 fM−1(t)

= Aα
0 F

0
M [ f (t)] + Aα

1 F
4
M [ f (t)] + · · ·+ Aα

M−1F
4(M−1)

M [ f (t)]

=

(
Aα

0 I + Aα
1 F

4
M + · · ·+ Aα

M−1F
4(M−1)

M

)
f (t)

=

(
I, F

4
M , · · · , F

4(M−1)
M

)
Aα

0
Aα

1
...

Aα
M−1

 f (t).

(8)

By Equations (5) and (8), Equation (9) is obtained as

Fα
M[ f (t)] = 1

M

(
I, F

4
M , · · · , F

4(M−1)
M

)
u0×0 u0×1 · · · u0×(M−1)

u1×0 u1×1 · · · u1×(M−1)

...
...

. . .
...

u(M−1)×0 u(M−1)×1 · · · u(M−1)×(M−1)




Bα
0

Bα
1
...

Bα
M−1

 f (t), (9)

where u = exp(−2πi/M), Bα
k = exp

(
2πikα

M

)
, k = 0, 1, . . . , M− 1 and F denotes the Fourier

transform. Here, let

Y0 = u0×0 I + u1×0F
4
M + · · ·+ u(M−1)×0F

4(M−1)
M ,

Y1 = u0×1 I + u1×1F
4
M + · · ·+ u(M−1)×1F

4(M−1)
M ,

Y2 = u0×2 I + u1×2F
4
M + · · ·+ u(M−1)×2F

4(M−1)
M ,

...

YM−1 = u0×(M−1) I + u1×(M−1)F
4
M + · · ·+ u(M−1)×(M−1)F

4(M−1)
M .

(10)
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Definition 1. A new reformulation of the M-WFRFT as

Tα
MW [ f (t)] = 1

M (Y0, Y1, · · · , YM−1)


Bα

0
Bα

1
...

Bα
M−1

 f (t)

= 1
M

M−1
∑

k=0
YkBα

k f (t),

(11)

where Bα
k = exp

(
2πikα

M

)
; k = 0, 1, · · · , M− 1.

Remark 1. Our previous work [1] discussed that the new reformulation helps to prove the properties.
Unitarity is often used in signal processing. Unfortunately, previous research work only presents
simulation verification. This paper will seek to prove and discuss the unitarity.

3. Unitarity

A complex matrix U satisfies

UUH = UHU = I, (12)

where H denotes the conjugate transpose and I is the identity matrix. Then, U is called
a unitary matrix. The greatest difficulty in proving the unitarity of the M-WFRFT is
considering the basis function F4l/M, l = 0, 1, · · · , M− 1. The basis function is related to
the discrete fractional Fourier transform (DFRFT), and the definition of the DFRFT varies.
Therefore, we seek to use different types of DFRFT as the basis function to verify the
unitarity of M-WFRFT.

3.1. 4-WFRFT as the Basis Function

Proposition 1. 4-WFRFT is used as the basis function, so the M-WFRFT has unitarity.

Proof. The definition of the 4-WFRFT is shown in Equation (1), and Equation (13) can be
obtained as

Fα[ f (t)] =
(

Aα
0 · I + Aα

1 · F + Aα
2 · F2 + Aα

3 · F3) f (t)

=
(

I, F, F2, F3)


Aα
0

Aα
1

Aα
2

Aα
3

 f (t).
(13)

From Equations (4) and (13), we obtain

Fα[ f (t)] =
1
4

(
I, F, F2, F3

)
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




Bα
0

Bα
1

Bα
2

Bα
3

 f (t), (14)

where Bα
k = exp

(
2πikα

4

)
, k = 0, 1, 2, 3. Here, let


P0 = I + F + F2 + F3

P1 = I − F ∗ i− F2 + F3 ∗ i
P2 = I − F + F2 − F3

P3 = I + F ∗ i− F2 − F3 ∗ i.

(15)
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Then, the 4-WFRFT can be re-expressed as

Tα
4W [ f (t)] =

1
4
(P0, P1, P2, P3)


Bα

0
Bα

1
Bα

2
Bα

3

 f (t). (16)

Thus, the discrete 4-WFRFT can be expressed as

Tα
4W =

1
4
(P0, P1, P2, P3)


Bα

0
Bα

1
Bα

2
Bα

3

. (17)

From Equation (10), Yk can be expressed as

Yk = u0×k × I + u1×k × F
4
M + · · ·+ u(M−1)×k × F

4(M−1)
M ;

k = 0, 1, · · · , M− 1,
(18)

The 4-WFRFT as the basis function is

Yk = u0×k × T0
4M + u1×k × T

4
M

4M + · · ·+ u(M−1)×k × T
4(M−1)

M
4M . (19)

From Equations (17) and (19), we can obtain

Yk = 1
4 (P0, P1, P2, P3)

u0×k ×


B0

0
B0

1
B0

2
B0

3

+ u1×k ×


B

4
M
0

B
4
M
1

B
4
M
2

B
4
M
3

+ · · ·+ u(M−1)×k ×


B

4(M−1)
M

0

B
4(M−1)

M
1

B
4(M−1)

M
2

B
4(M−1)

M
3





= 1
4 (P0, P1, P2, P3)


u0×k × B0

0 + u1×k × B
4
M
0 + · · ·+ u(M−1)×k × B

4(M−1)
M

0

u0×k × B0
1 + u1×k × B

4
M
1 + · · ·+ u(M−1)×k × B

4(M−1)
M

1

u0×k × B0
2 + u1×k × B

4
M
2 + · · ·+ u(M−1)×k × B

4(M−1)
M

2

u0×k × B0
3 + u1×k × B

4
M
3 + · · ·+ u(M−1)×k × B

4(M−1)
M

3

,

(20)

where k = 0, 1, · · · , M− 1 and u = exp(−2πi/M). Therefore, we obtain

Yk = 1
4 (P0, P1, P2, P3)



1 + exp
(
−2πi1k

M

)
+ exp

(
−2πi2k

M

)
+ · · ·+ exp

(
−2πi(M−1)k

M

)
1 + exp

(
−2πi1(k−1)

M

)
+ exp

(
−2πi2(k−1)

M

)
+ · · ·+ exp

(
−2πi(M−1)(k−1)

M

)
1 + exp

(
−2πi1(k−2)

M

)
+ exp

(
−2πi2(k−2)

M

)
+ · · ·+ exp

(
−2πi(M−1)(k−2)

M

)
1 + exp

(
−2πi1(k−3)

M

)
+ exp

(
−2πi2(k−3)

M

)
+ · · ·+ exp

(
−2πi(M−1)(k−3)

M

)



= 1
4 (P0, P1, P2, P3)


S0(k)
S1(k)
S2(k)
S3(k)

.

(21)

For sequence S0(k), it can be expressed as

S0(k) =
a1
(
1− qM)
1− q

=
1− exp

(
−2πik

M

)M

1− exp
(
−2πik

M

) . (22)
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where a1 = 1. Then, we obtain

S0(k) =
{

M, k ≡ 0 mod M
0, k
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1, , 1,

, , ,

= , , ,

, , , .

r

n i n i n in i

n i i n i i n i i n i i

i i i i

i i

e e e e

e e e e e e e e

e e e e

π π ππ

π π π π π π π π

π π π π

λ
+ + +

= − −

=

=

  (38)
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( ) ( ) ( )1 4 10 0 1 4 .M k M Mk k M
r r r rQ k u u uλ λ λ− × −× ×= + + +  (39)

When the eigenvalues 0 2 1i
r e πλ = =  and 2 i Mu e π−= , ( ) ( )1

rQ k  can be expressed using 
Equation (39), as 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )( )
( )

1 1 4 10 0 1 4

2 1 0 2 2 0 2 1 0

2 0

2 0

1+

1
= .

1

M k M Mk k M
r r r r

i k M i k M i M k M

Mi k M

i k M

Q k u u u

e e e

e

e

π π π

π

π

λ λ λ− × −× ×

− − − − − − −

− −

− −

= + + +

= + + +

−

−



  
(40)

Therefore, we obtain 

( ) ( )1 0,         0 mod
,       0 mod .r

k M
Q k

M k M
≡=  ≡

 (41)

When the eigenvalue 2i
r e iπλ = = , ( ) ( )i

rQ k  can be expressed using Equation (39), 
as 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )( )
( )

1 4 10 0 1 4

2 1 1 2 2 1 2 1 1

2 1

2 1

=1+

1
= .

1

i M k M Mk k M
r r r r

i k M i k M i M k M

Mi k M

i k M

Q k u u u

e e e

e

e

π π π

π

π

λ λ λ− × −× ×

− − − − − − −

− −

− −

= + + +

+ + +

−

−



  
(42)

Therefore, there is 

( ) ( ) 0,         1mod
,       1mod .

i
r

k M
Q k

M k M
≡=  ≡

 (43)

When the eigenvalue 2 2 1i
r e πλ = = − , ( ) ( )1

rQ k−  can be expressed using Equation 
(39), as  ≢   0 mod M.

(23)

For sequence S1(k),

S1(k) =
1−

(
e−2πi(k−1)/M

)M

1− e−2πi(k−1)/M
, (24)

we obtain

S1(k) =
{

M, k ≡ 1 mod M
0, k
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M k M
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 (43)

When the eigenvalue 2 2 1i
r e πλ = = − , ( ) ( )1

rQ k−  can be expressed using Equation 
(39), as  ≢   mod M.

(25)

For sequence S2(k),

S2(k) =
1−

(
e−2πi(k−2)/M

)M

1− e−2πi(k−2)/M
, (26)

we obtain

S2(k) =
{

M, k ≡ 2 mod M
0, k
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When the eigenvalues 0 2 1i
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Equation (39), as 

( ) ( ) ( ) ( )
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( )

1 1 4 10 0 1 4
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2 0
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1
= .

1

M k M Mk k M
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−
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Therefore, we obtain 

( ) ( )1 0,         0 mod
,       0 mod .r

k M
Q k

M k M
≡=  ≡

 (41)

When the eigenvalue 2i
r e iπλ = = , ( ) ( )i

rQ k  can be expressed using Equation (39), 
as 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )( )
( )

1 4 10 0 1 4

2 1 1 2 2 1 2 1 1

2 1

2 1

=1+

1
= .

1

i M k M Mk k M
r r r r

i k M i k M i M k M

Mi k M

i k M

Q k u u u

e e e

e

e

π π π

π

π

λ λ λ− × −× ×

− − − − − − −

− −

− −

= + + +

+ + +

−

−



  
(42)

Therefore, there is 

( ) ( ) 0,         1mod
,       1mod .

i
r

k M
Q k

M k M
≡=  ≡

 (43)

When the eigenvalue 2 2 1i
r e πλ = = − , ( ) ( )1

rQ k−  can be expressed using Equation 
(39), as  ≢   2 mod M.

(27)

For sequence S3(k),

S3(k) =
1−

(
e−2πi(k−3)/M

)M

1− e−2πi(k−3)/M
, (28)

we obtain

S3(k) =
{

M, k ≡ 3 mod M
0, k
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rQ k  can be expressed using Equation (39), 
as 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )( )
( )

1 4 10 0 1 4

2 1 1 2 2 1 2 1 1

2 1

2 1

=1+

1
= .

1

i M k M Mk k M
r r r r

i k M i k M i M k M

Mi k M

i k M

Q k u u u

e e e

e

e

π π π

π

π

λ λ λ− × −× ×

− − − − − − −

− −

− −

= + + +

+ + +

−

−



  
(42)

Therefore, there is 

( ) ( ) 0,         1mod
,       1mod .

i
r

k M
Q k

M k M
≡=  ≡

 (43)

When the eigenvalue 2 2 1i
r e πλ = = − , ( ) ( )1

rQ k−  can be expressed using Equation 
(39), as  ≢   3 mod M.

(29)

Then, Equation (21) can be expressed as

Yk =

{
M
4 Pk, k = 0, 1, 2, 3

0, k = 4, 5, · · · , M− 1.
(30)

Therefore, the M-WFRFT Equation (11) is written as

Tα
MW = 1

M (Y0, Y1, · · · , YM−1)


Bα

0
Bα

1
...

Bα
M−1



= 1
4 (P0, P1, P2, P3, 0, · · · , 0)


Bα

0
Bα

1
...

Bα
M−1



= 1
4 (P0, P1, P2, P3)


Bα

0
Bα

1
Bα

2
Bα

3

.

(31)

From the expressions, we notice that Equations (17) and (31) are the same, but
in fact they are different. The difference is that for Equation (31), Bα

k = exp
(

2πikα
M

)
;

k = 0, 1, · · · , M− 1. However, this does not affect the proof of unitarity. �
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Remark 2. In our previous work [1], we proved the unitarity of Equation (17). When the 4-WFRFT
is selected as the basis function, the M-WFRFT has unitarity. From Equation (31), we notice that
the weighted sum of the M-WFRFT is only four terms.

3.2. Fractional-Order Matrix as the Basis Function

In our previous numerical simulation, a fractional-order matrix was used to verify
the unitarity of the M-WFRFT [1]. In this section, we present the theoretical analysis to
improve the previous work.

Proposition 2. Fractional-order matrix is used as the basis function, so the M-WFRFT has unitarity.

Proof. The calculation of the fractional power of the matrix is applied to the eigenvalues,
so eigenvalue decomposition of the matrix is required. Therefore, the eigendecomposition
of the matrix can be expressed as

F = VDVH , (32)

where F is the DFT matrix, V is the eigenvector, and D is the eigenvalue matrix.
In [26,27], the eigenvalues of the DFT can be expressed as λn = enπi/2. Then, the

possible values of the eigenvalue are λr = {1,−1, i,−i}; r = 1, 2, · · · , n. In this way, the
eigenvalue matrix D can be expressed as

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

. (33)

Then, the fractional power operation of matrix F can be expressed as

F4l/M = VD4l/MVH . (34)

where l = 0, 1, · · · , M− 1. For Equation (10), Yk can be expressed as

Yk = u0×k I + u1×k × F
4
M + · · ·+ u(M−1)×k × F

4(M−1)
M

= u0×kVD0VH + u1×kVD4/MVH + · · ·+ u(M−1)×kVD4(M−1)/MVH .
(35)

where k = 0, 1, · · · , M− 1.Therefore, we can obtain

Yk = V
(

u0×k × D0 + u1×k × D4/M + · · ·+ u(M−1)×k × D4(M−1)/M
)

VH

= V


u0×kλ0

1 + u1×kλ4/M
1 + · · ·+ u(M−1)×kλ

4(M−1)/M
1 0 · · · 0

0 u0×kλ0
2 + u1×kλ4/M

2 + · · ·+ u(M−1)×kλ
4(M−1)/M
2 · · · 0

...
...

. . .
...

0 0 · · · u0×kλ0
n + u1×kλ4/M

n + · · ·+ u(M−1)×kλ
4(M−1)/M
n

VH

= V


Q1(k) 0 · · · 0

0 Q2(k) · · · 0
...

...
. . .

...
0 0 0 Qn(k)

VH .

(36)

Here, let

Q1(k) = u0×kλ0
1 + u1×kλ4/M

1 + · · ·+ u(M−1)×kλ
4(M−1)/M
1

Q2(k) = u0×kλ0
2 + u1×kλ4/M

2 + · · ·+ u(M−1)×kλ
4(M−1)/M
2

...
Qn(k) = u0×kλ0

n + u1×kλ4/M
n + · · ·+ u(M−1)×kλ

4(M−1)/M
n .

(37)
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The multiplicities of the DFT eigenvalues [26,27] are shown in Table 1. Therefore,
there is

λr = {1, i,−1,−i}

=
{

e4nπi/2, e(4n+1)πi/2, e(4n+2)πi/2, e(4n+3)πi/2
}

=
{

e2nπie0πi/2, e2nπieπi/2, e2nπie2πi/2, e2nπie3πi/2
}

=
{

e0πi/2, eπi/2, e2πi/2, e3πi/2
}

.

(38)

Table 1. Multiplicities of the DFT eigenvalues.

N 1 −1 −i i

4n n + 1 n n n − 1
4n + 1 n + 1 n n n
4n + 2 n + 1 n + 1 n n
4n + 3 n + 1 n + 1 n + 1 n

For Equation (37), Qr(k),r = 1, 2, · · · , n can be expressed as

Qr(k) = u0×kλ0
r + u1×kλ4/M

r + · · ·+ u(M−1)×kλ
4(M−1)/M
r . (39)

When the eigenvalues λr = e0πi/2 = 1 and u = e−2πi/M, Q(1)
r (k) can be expressed

using Equation (39), as

Q(1)
r (k) = u0×kλ0

r + u1×kλ4/M
r + · · ·+ u(M−1)×kλ

4(M−1)/M
r

= 1 + e−2πi1(k−0)/M + e−2πi2(k−0)/M + · · ·+ e−2πi(M−1)(k−0)/M

=
1−(e−2πi(k−0)/M)

M

1−e−2πi(k−0)/M .

(40)

Therefore, we obtain

Q(1)
r (k) =

{
0, k ≡ 0 mod M
M, k

Fractal Fract. 2021, 5, x FOR PEER REVIEW 9 of 25 
 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 4 10 0 1 4
1 1 1 1

1 4 10 0 1 4
2 2 2 2

1 4 10 0 1 4 .

M k M Mk k M

M k M Mk k M

M k M Mk k M
n n n n

Q k u u u

Q k u u u

Q k u u u

λ λ λ
λ λ λ

λ λ λ

− × −× ×

− × −× ×

− × −× ×

 = + + +


= + + +


 = + + +








 (37)

The multiplicities of the DFT eigenvalues [26,27] are shown in Table 1. Therefore, 
there is 

{ }
( ) ( ) ( ){ }

{ }
{ }

4 1 2 4 2 2 4 3 24 2

2 0 2 2 2 2 2 2 2 3 2

0 2 2 2 2 3 2

1, , 1,

, , ,

= , , ,

, , , .

r

n i n i n in i

n i i n i i n i i n i i

i i i i

i i

e e e e

e e e e e e e e

e e e e

π π ππ

π π π π π π π π

π π π π

λ
+ + +

= − −

=

=

  (38)

For Equation (37), ( )rQ k , 1, 2, ,r n=   can be expressed as 

( ) ( ) ( )1 4 10 0 1 4 .M k M Mk k M
r r r rQ k u u uλ λ λ− × −× ×= + + +  (39)

When the eigenvalues 0 2 1i
r e πλ = =  and 2 i Mu e π−= , ( ) ( )1

rQ k  can be expressed using 
Equation (39), as 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )( )
( )

1 1 4 10 0 1 4

2 1 0 2 2 0 2 1 0

2 0

2 0

1+

1
= .

1

M k M Mk k M
r r r r

i k M i k M i M k M

Mi k M

i k M

Q k u u u

e e e

e

e

π π π

π

π

λ λ λ− × −× ×

− − − − − − −

− −

− −

= + + +

= + + +

−

−



  
(40)

Therefore, we obtain 
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k M
Q k
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≡=  ≡
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When the eigenvalue 2i
r e iπλ = = , ( ) ( )i

rQ k  can be expressed using Equation (39), 
as 
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( )

1 4 10 0 1 4

2 1 1 2 2 1 2 1 1

2 1

2 1

=1+

1
= .

1

i M k M Mk k M
r r r r

i k M i k M i M k M

Mi k M

i k M

Q k u u u

e e e

e

e

π π π

π

π

λ λ λ− × −× ×

− − − − − − −

− −

− −

= + + +

+ + +

−

−



  
(42)

Therefore, there is 

( ) ( ) 0,         1mod
,       1mod .

i
r

k M
Q k

M k M
≡=  ≡

 (43)

When the eigenvalue 2 2 1i
r e πλ = = − , ( ) ( )1

rQ k−  can be expressed using Equation 
(39), as  ≢   0 mod M.

(41)

When the eigenvalue λr = eπi/2 = i, Q(i)
r (k) can be expressed using Equation (39), as

Q(i)
r (k) = u0×kλ0

r + u1×kλ4/M
r + · · ·+ u(M−1)×kλ

4(M−1)/M
r

= 1 + e−2πi1(k−1)/M + e−2πi2(k−1)/M + · · ·+ e−2πi(M−1)(k−1)/M

=
1−(e−2πi(k−1)/M)

M

1−e−2πi(k−1)/M .

(42)

Therefore, there is

Q(i)
r (k) =

{
0, k ≡ 1 mod M
M, k
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Therefore, there is 

( ) ( ) 0,         1mod
,       1mod .

i
r

k M
Q k

M k M
≡=  ≡

 (43)

When the eigenvalue 2 2 1i
r e πλ = = − , ( ) ( )1

rQ k−  can be expressed using Equation 
(39), as  ≢   1 mod M.

(43)

When the eigenvalue λr = e2πi/2 = −1, Q(−1)
r (k) can be expressed using Equation (39), as

Q(−1)
r (k) = u0×kλ0

r + u1×kλ4/M
r + · · ·+ u(M−1)×kλ

4(M−1)/M
r

= 1 + e−2πi1(k−2)/M + e−2πi2(k−2)/M + · · ·+ e−2πi(M−1)(k−2)/M

=
1−(e−2πi(k−2)/M)

M

1−e−2πi(k−2)/M .

(44)
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Then, we can obtain

Q(−1)
r (k) =

{
0, k ≡ 2 mod M
M, k
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Therefore, there is 

( ) ( ) 0,         1mod
,       1mod .

i
r

k M
Q k

M k M
≡=  ≡

 (43)

When the eigenvalue 2 2 1i
r e πλ = = − , ( ) ( )1

rQ k−  can be expressed using Equation 
(39), as  ≢   2 mod M.

(45)

When the eigenvalue λr = e3πi/2 = −i, Q(−i)
r (k) can be expressed using Equation (39), as

Q(−i)
r (k) = u0×kλ0

r + u1×kλ4/M
r + · · ·+ u(M−1)×kλ

4(M−1)/M
r

= 1 + e−2πi1(k−3)/M + e−2πi2(k−3)/M + · · ·+ e−2πi(M−1)(k−3)/M

=
1−(e−2πi(k−3)/M)

M

1−e−2πi(k−3)/M .

(46)

Therefore, there is

Q(−i)
r (k) =

{
0, k ≡ 3 mod M
M, k
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When the eigenvalue 2i
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Therefore, there is 

( ) ( ) 0,         1mod
,       1mod .

i
r

k M
Q k

M k M
≡=  ≡

 (43)

When the eigenvalue 2 2 1i
r e πλ = = − , ( ) ( )1

rQ k−  can be expressed using Equation 
(39), as  ≢   3 mod M.

(47)

Using Equations (41), (43), (45) and (47), we can formulate Equation (36) as

Yk =

{
Yk, k = 0, 1, 2, 3
0, k = 4, 5, · · · , M− 1.

(48)

In this way, the M-WFRFT of Equation (11) can also be expressed as Equation (49).

Tα
MW = 1

M (Y0, Y1, · · · , YM−1)


Bα

0
Bα

1
...

Bα
M−1



= 1
M (Y0, Y1, Y2, Y3, 0, · · · , 0)


Bα

0
Bα

1
...

Bα
M−1



= 1
M (Y0, Y1, Y2, Y3)


Bα

0
Bα

1
Bα

2
Bα

3

,

(49)

where Bα
k = exp

(
2πikα

M

)
; k = 0, 1, · · · , M− 1.

The effective weighted sum of the M-WFRFT based on the fractional-order matrix is
also four terms. In order to prove its unitarity, we denote

(Tα
MW)H =

1
M

(
YH

0 B−α
0 + YH

1 B−α
1 + YH

2 B−α
2 + YH

3 B−α
3

)
, (50)

Therefore, there is

Tα
MW(Tα

MW)H =
1

M2

(
3

∑
k=0

3

∑
l=0

YkYH
l Bα

k B−α
l

)
. (51)

From Equation (36), we can obtain

YkYH
l = V


Q1(k) 0 · · · 0

0 Q2(k) · · · 0
...

...
. . .

...
0 0 0 Qn(k)

VH

V


Q1(l) 0 · · · 0

0 Q2(l) · · · 0
...

...
. . .

...
0 0 0 Qn(l)

VH


H

. (52)
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The eigenvector V of the DFT can be defined as a real symmetric matrix [27–29]; and
through Equations (41), (43), (45) and (47), we know that the value of Qr(k) is 0 or M (M is
an integer greater than 4). Therefore, YH

l = Yl . Then, Equation (52) can be expressed as

YkYH
l = YkYl = V


Q1(k)Q1(l) 0 · · · 0

0 Q2(k)Q2(l) · · · 0
...

...
. . .

...
0 0 0 Qn(k)Qn(l)

VH , (53)

and

Qr(k)Qr(l) =
{

M2, k = l
0, k 6= l.

(54)

Therefore, we can obtain

YkYH
l =

{
MYk, k = l
0, k 6= l.

(55)

Then, the result of Equation (51) is

Tα
MW
(
Tα

MW
)H

= 1
M2

(
3
∑

k=0

3
∑

l=0
YkYH

l Bα
k B−α

l

)
= 1

M (Y0 + Y1 + Y2 + Y3)

= 1
M

V


M 0 · · · 0
0 M · · · 0
...

...
. . .

...
0 0 · · · M

VH


= I.

(56)

�

Remark 3. With the help of theoretical analysis, we can confirm that the M-WFRFT based on the
fractional-order matrix has unitarity. However, we find that the theoretical analysis deviates from
the previous numerical simulation [1], which we will discuss further in Section 4.

3.3. Eigendecomposition-Type FRFT as the Basis Function

Proposition 3. Eigendecomposition-type FRFT is used as the basis function, so the M-WFRFT
has unitarity.

Proof. In [2], Zhu et al. proposed the M-WFRFT and stated that the basis function is the
FRFT, as shown in Equation (57).

Fα[ f (t)] =
∫ ∞

−∞
Kα(u, t) f (t)dt, (57)

where the transform kernel is given by

Kα(u, t) =


Aαei u2+t2

2 cot φ−iut csc φ α 6= kπ
δ(u− t) α = 2kπ

δ(u + t) α = (2k + 1)π
, (58)

where φ = απ/2 is interpreted as a rotation angle in the phase plane and Aα =
√
(1− i cot α)/2π.
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As we know, Equation (57) is a continuous FRFT, and a discrete FRFT is used for
numerical simulation. At present, the discrete definition [29] closest to the continuous
FRFT is

Fα(m, n) =
N−1

∑
k=0

vk(m)e−i π
2 kαvk(n), (59)

where vk(n) is an arbitrary orthonormal eigenvector set of the N×N DFT matrix. Equation (59)
can be written as

Fα = VDαVH , (60)

where V = (v0, v1, · · · , vN−1), vk is the kth-order DFT Hermite eigenvector, and Dα is a
diagonal matrix, defined as

Dα = diag
(

1, e−i π
2 α, · · · , e−i π

2 (N−2)α, e−i π
2 (N−1)α

)
, when N is odd, (61)

and
Dα = diag

(
1, e−i π

2 α, · · · , e−i π
2 (N−2)α, e−i π

2 (N)α
)

, when N is even. (62)

We only prove that N is odd (when N is even, the proof process is the same). Therefore,
there is

Dα = diag
(
(1)α, (−i)α, (−1)α, (i)α, (1)α, (−i)α, (−1)α, (i)α, · · · · · · , (1 or− 1)α). (63)

Then, Equation (10) can be written as

Yk = u0×k × F0 + u1×k × F
4
M + · · ·+ u(M−1)×k × F

4(M−1)
M

= u0×kV


1 0 · · · 0
0 (−i)0 · · · 0
...

...
. . .

...
0 0 · · · (1 or − 1)0

VH + u1×kV


1 0 · · · 0

0 (−i)
4
M · · · 0

...
...

. . .
...

0 0 · · · (1 or − 1)
4
M

VH + · · ·+ u(M−1)×kV


1 0 · · · 0

0 (−i)
4(M−1)

M · · · 0
...

...
. . .

...

0 0 · · · (1 or − 1)
4(M−1)

M

VH .
(64)

We can further obtain Equation (65) as

Yk = V


Q(1)(k) 0 · · · 0

0 Q(−i)(k) · · · 0
...

...
. . .

...
0 0 · · · Q(1 or−1)(k)

VH . (65)

The diagonal matrix of Equation (65) can be expressed as

diag
(

Q(1)(k), Q(−i)(k), Q(−1)(k), Q(i)(k), Q(1)(k), Q(−i)(k), · · · · · · , Q(1 or−1)(k)
)

. (66)

Then, Q(1)(k) is the same as Equation (40), Q(−i)(k) is the same as Equation (46),
Q(−1)(k) is the same as Equation (44), and Q(i)(k) is the same as Equation (42). Thus, Yk
can be obtained as

Yk =

{
Yk, k = 0, 1, 2, 3
0, k = 4, 5, · · · , M− 1.

(67)

All the following proofs are the same as Section 3.2. In other words, the M-WFRFT
has unitarity. �

Remark 4. From Equation (67), it is not difficult to find that there are only four weighted terms of
the M-WFRFT based on the eigendecomposition-type FRFT.
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3.4. Other Types of FRFTs

There are three types of discrete definitions of the FRFT. In Section 3.1, the linear WFRFT
is used. The fractional-order matrix is used in Section 3.2. The discrete FRFT, which is called
the eigendecomposition type, is used in Section 3.3. Then, there is a sampling-type FRFT.

In [30], a sampling-type FRFT is proposed, and its process can be written as follows:

(a) Chirp multiplication

g(x0) = exp
[
−ipx2

0 tan( f /2)
]

f (x0); (68)

(b) Chirp convolution

g′(x) = Aφ

∫ ∞

−∞
exp[iπ csc(φ)(x− x0)

2]g(x0)dx0; (69)

(c) Chirp multiplication

fα(x) = exp
[
−iπx2 tan(φ/2)

]
g′(x). (70)

The definition of the sampling type is the numerical simulation of a continuous FRFT.
The discretization of the FRFT has been extensively studied [12], and the three main

types of DFRFTs are compared, as shown in Table 2. We noticed that the sampling-type
FRFT did not satisfy additivity and unitarity.

Table 2. Comparison of the three main types of DFRFT.

Linear Weighted Type Eigendecomposition Type Sampling Type

Unitarity
√ √

×
Additivity

√ √
×

Approximation ×
√ √

Closed-form
√

×
√

Complexity O(NlogN) O(N2) O(NlogN)

Remark 5. The M-WFRFT is an extended definition, and its basis function can be expressed as
shown in Figure 1. The sampling type FRFT does not satisfy the additivity and unitarity, so it
cannot be used as a basis function.

Figure 1. Time-frequency denotation of the M-WFRFT operator.
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4. Discussion

Our previous research only verified the unitarity of the M-WFRFT via numerical
simulation [1], but the simulation results are different from the theoretical proof in Section 3.2.
Next, we will analyze and discuss this issue. Equation (10) can be verified using MATLAB,
and its program is shown in Code 1.

Code 1. The program of Equation (10).

1. function Yk = Yk(N,M)
2. % M is the resulting weighting term, for example: M = 4(4-WFRFT); M = 5(5-WFRFT)
3. % N is the length of the signal;
4. F = zeros(N);
5. for k = 1:N
6. for h = 1:N
7. F(h,k) = exp(2*pi*i*(h−1)*(k−1)/N)/sqrt(N); % IDFT
8. end
9. end
10. F = fftshift(F);
11. for k = 0:M−1
12. yy = Fˆ(4*k/M); % Fractional power of Fourier transform
13. y{k + 1} = yy;
14. end
15. % celldisp(y);
16. u = zeros(M);
17. for k = 1:M
18. for h = 1:M
19. u(h,k) = exp(−2*pi*i*(h−1)*(k−1)/M); %DFT
20. end
21. end
22. for k = 1:M
23. YY = zeros(N);
24. for h = 1:M
25. YY = YY + u(h,k)*y{h};
26. end
27. Y{k} = YY; % Yk in the paper is obtained
28. end
29. Celldisp(y)

We tested from 2 to 1000 dimension and found that Yk was a real matrix only when
the dimensions were

N = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 18, 21, 28, 29, 32, 33, 44. (71)

Therefore, the unitarity of the M-WFRFT is only available in the aforementioned
cases.Yk has the following rules:

5-WFRFT⇒ Y0 Y1 Y2 Y3 Y4
6-WFRFT⇒ Y0 Y1 Y2 Y3 Y4 Y5
7-WFRFT⇒ Y0 Y1 Y2 Y3 Y4 Y5 Y6
8-WFRFT⇒ Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

...
...

M-WFRFT⇒ Y0 Y1 Y2 Y3 Y4 · · · YM−3 YM−2 YM−1

(72)

where the blue Yk indicates that the result is zero.
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For other dimensions, the M-WFRFT does not have unitarity, and Yk is as follows:

5-WFRFT⇒ Y0 Y1 Y2 Y3 Y4
6-WFRFT⇒ Y0 Y1 Y2 Y3 Y4 Y5
7-WFRFT⇒ Y0 Y1 Y2 Y3 Y4 Y5 Y6
8-WFRFT⇒ Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

...
...

M-WFRFT⇒ Y0 Y1 Y2 Y3 Y4 · · · YM−3 YM−2 YM−1

(73)

where the blue Yk indicates that the result is zero.
The numerical simulation results show that the M-WFRFT has unitarity only in certain

dimensions. Following the theory of Section 3.2, the program is shown in Code 2. Our
purpose is to compare the results of Code 2 with the results of Code 1.

Code 2. The program of Equation (36).

1. function Yk = Yk1(N.M)
2. % M is the resulting weighting term, for example: M = 4(4-WFRFT); M = 5(5-WFRFT)
3. % N is the length of the signal;
4. F = zeros(N);
5. for k = 1:N
6. for h = 1:N
7. F(h,k) = exp(2*pi*i*(h−1)*(k−1)/N)/sqrt(N); % IDFT
8. end
9. end
10. F = fftshift(F);
11. [V,D] = eig(F);
12. for k = 0:M−1
13. YY = zeros(N);
14. for l = 0:M−1
15. YY = YY + exp(−2*pi*i*k*l/M)*Dˆ(4*l/M);
16. end
17. YY = V*YY*inv(V);
18. Y{k + 1} = YY; % Yk in the paper is obtained
19. end
20. celldisp(Y)

After verification, we found that the results of Codes 1 and 2 are the same. Therefore,
the numerical simulation shows that the unitarity of the M-WFRFT is related to signal
length. However, our theoretical analysis shows that the unitarity of the M-WFRFT does not
depend on signal length. Therefore, there is a problem insofar as the simulation verification
is inconsistent with the theoretical analysis. In order to solve this problem, we will analyze
it with a specific numerical value. For Code 2, when M = 7 and N = 13, we can obtain the
eigenvalue of the DFT in line 11 of Code 2. Therefore, the eigenvalue matrix D is

D =



i
i

i 0
−i

−i
−i

−1
−1

−1
1

0 1
1

1


13×13

(74)
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Then, for Equation (36), the calculated values of Yk (k = 0, 1, · · · , 6) are

Y0 = V



0
0

0 0
0

0
0

0
0

0
7

0 7
7

7



V−1; (75)

Y1 = V



7
7

7 0
0

0
0

0
0

0
0

0 0
0

0



V−1; (76)

Y2 = V



0
0

0 0
0

0
0

7
7

7
0

0 0
0

0



V−1; (77)

Y3 = V


0 0

0
. . .

0 0

V−1; (78)

and Y4 = Y5 = Y3;

Y6 = V



0
0

0 0
7

7
7

0
0

0
0

0 0
0

0



V−1. (79)

In the results obtained, the values of Y3, Y4 and Y5 are zero; Equation (72) is verified.
If M = 7 and N = 14, we can obtain the eigenvalue of the DFT in line 11 of Code 2.

Therefore, the eigenvalue matrix D is
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D =



1
1

1 0
1

i
i
−i

i
−i

−i
−1

0 −1
−1

−1


14×14

(80)

Then, using Equation (36), the calculated values of Yk (k = 0, 1, · · · , 6) are

Y0 = V



7
7

7 0
7

0
0

0
0

0
0

0

0 0
0

0



V−1; (81)

Y1 = V



0
0

0 0
0

7
7

0
7

0
0

0

0 0
0

0



V−1; (82)

Y2 = V



0
0

0 0
0

0
0

0
0

0
0

7

0 0
7

7



V−1; (83)

Y3 = V


0 0

0
. . .

0 0

V−1; (84)

and Y4 = Y3;
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Y5 = V



0
0

0 0
0

0
0

0
0

0
0

0

0 7
0

0



V−1; (85)

Y6 = V



0
0

0 0
0

0
0

7
0

7
7

0

0 0
0

0



V−1; (86)

In the results obtained, the values of Y3 and Y4 are zero, and Equation (73) is verified.
When N = 13, Equation (72) is obtained by means of Code 1. However, in the the-

oretical analysis, the nonzero terms of Yk are Y0, Y1, Y2 and Y3, which are different from
the simulation results presented by Equation (72). This problem is generated by fractional
power operation, based on MATLAB, mainly in line 15 of Code 2 (line 12 of Code 1), and its
operation D4l/M (F4l/M).

According to the deMoivre theorem, we know that

[r(cos θ + i sin θ)]n = rn(cos nθ + i sin nθ). (87)

where n is a positive integer. Therefore, for Equation (87),

xn = r(cos θ + i sin θ), (88)

the results have n roots

xk =
n
√

r(cos((θ + 2kπ)/n) + i sin((θ + 2kπ)/n)). (89)

where k = 0, 1, · · · , n− 1. However, in the numerical simulation, we only obtained one
of the roots. For example, −i = cos(3π/2) + i sin(3π/2). Using MATLAB to calculate
(−i)1/2, we obtain 0.7071 − 0.7071i. The actual results should be that the two roots are
0.7071 − 0.7071i and −0.7071 + 0.7071i, respectively. This leads to the deviation between
the simulation results (Equation (72)) and the theory (Section 3.2).

For N = 14, the simulation results (Equation (73)) show that the M-WFRFT does not
have unitarity. However, the theoretical (Section 3.2) explanation has unitarity. This prob-
lem is caused by fractional exponentiation operation based on MATLAB. In Equation (80),
we notice the position of the eigenvalue (−1), but after the fractional power operation based
on MATLAB, Equations (83) and (85) appear. Therefore, the final numerical simulation
results show that the M-WFRFT does not have unitarity. In fact, the correct result is the
sum of Equations (83) and (85).

Using the above analysis, we explain the error of the operation based on MATLAB,
which is also the clarification of our previous research work. The final conclusion is that
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the M-WFRFT has unitarity. The M-WFRFT code is shown in Appendix A, and interested
researchers can verify it.

5. Conclusions

In this paper, we present a new reformulation of the M-WFRFT to prove its unitarity.
The M-WFRFT uses the DFRFT as the basis function, and the diversity of the DFRFT leads
to different definitions of the M-WFRFT. We use the linear weighted-type, fractional-order
matrix and eigendecomposition-type FRFT as the basis functions and prove the unitarity
of the M-WFRFT. The results show that M-WFRFTs based on these three definitions have
unitarity. However, with greater research, the results also show that the effective weighted
sum of the M-WFRFT is only four terms. That is to say, as an extended definition of the
WFRFT, the M-WFRFT shows no increase in its weighting term. It has great reference
value for the application of the M-WFRFT. Furthermore, we note the deviation between
the numerical simulation and the theoretical analysis, which reveals that the unitary
verification based on MATLAB is inaccurate for the previous work. Finally, we analyze
two examples and establish the reasons for the deviation. In other words, the fractional
power operation directly based on MATLAB can only obtain one root at a time.
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Appendix A

M-WFRFT code is written; its basis function is the WFRFT. By calling “celldisp (Y)”,
Yk is verified in Section 3.1.

%% M-WFRFT (multi-weighted type fractional Fourier transform)
% The basis function Fˆ(4*l/M) is WFRFT
function F = mwfrft(alpha,M,N)
% This code is written by Tieyu Zhao, E-mail: zhaotieyu@neuq.edu.cn;
% alpha is the transform order;
% M is the resulting weighting term, for example: M = 4(4-WFRFT); M = 5(5-WFRFT)
% N is the length of the signal;
for l = 0:M−1

yy = wfrft(N,4*l/M); % WFRFT
y{l + 1} = yy;

end
% celldisp(y);
D = zeros(M);
for k = 1:M

for h = 1:M
D(h,k) = exp(−2*pi*i*(h−1)*(k−1)/M); % DFT

end
end
for k = 1:M

YY = zeros(N);
for h = 1:M

YY = YY + D(h,k)*y{h};
end
Y{k} = YY; % Yk is obtained in Section 3.1

end
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% celldisp(Y)
B = zeros(1,M);
for k = 0:M−1

B(k + 1) = B(k + 1) + exp(2*pi*i*k*alpha/M); % B_alpha
end
F = zeros(N);
for k = 0:M−1

F = F + B(k + 1)*Y{k + 1}/M; % M-WFRFT
end

function F = wfrft(N,beta) % WFRFT
Y = eye(N);
y1 = fftshift(fft(Y))/(sqrt(N));
y2 = y1*y1;
y3 = conj(y1);
pl = zeros(1,4);
for k = 0:3

pl(k + 1) = pl(k + 1) + exp(i*3*pi*(beta−k)/4)*cos(pi*(beta−k)/2)*cos(pi*(beta−k)/4);
end
F = pl(1)*Y + pl(2)*y1 + pl(3)*y2 + pl(4)*y3;
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