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Abstract: We introduce a data-driven fractional modeling framework for complex materials, and
particularly bio-tissues. From multi-step relaxation experiments of distinct anatomical locations
of porcine urinary bladder, we identify an anomalous relaxation character, with two power-law-
like behaviors for short/long long times, and nonlinearity for strains greater than 25%. The first
component of our framework is an existence study, to determine admissible fractional viscoelastic
models that qualitatively describe linear relaxation. After the linear viscoelastic model is selected, the
second stage adds large-strain effects to the framework through a fractional quasi-linear viscoelastic
approach for the nonlinear elastic response of the bio-tissue of interest. From single-step relaxation
data of the urinary bladder, a fractional Maxwell model captures both short/long-term behaviors
with two fractional orders, being the most suitable model for small strains at the first stage. For
the second stage, multi-step relaxation data under large strains were employed to calibrate a four-
parameter fractional quasi-linear viscoelastic model, that combines a Scott-Blair relaxation function
and an exponential instantaneous stress response, to describe the elastin/collagen phases of bladder
rheology. Our obtained results demonstrate that the employed fractional quasi-linear model, with a
single fractional order in the range α = 0.25–0.30, is suitable for the porcine urinary bladder, producing
errors below 2% without need for recalibration over subsequent applied strains. We conclude that
fractional models are attractive tools to capture the bladder tissue behavior under small-to-large
strains and multiple time scales, therefore being potential alternatives to describe multiple stages of
bladder functionality.

Keywords: fractional viscoelasticity; quasi-linear-viscoelasticity; urinary bladder rheology; data-
driven model selection; power-law relaxation

1. Introduction

Bio-tissues are complex and multi-functional materials, optimized for their spe-
cific host organisms, and constrained by limited set of building blocks and available
resources [1]. While the mechanical behavior of a number of standard engineering ma-
terials is quite well-understood, there is still a significant effort towards bio-materials,
where microstructure heterogeneities, randomness and small scale physical mechanisms
lead to non-standard and at times counter-intuitive responses. Power-law viscoelastic
rheology is a complex response observed in many bio-tissues such as arteries [2], car-
tilage [3], lungs [4], smooth muscle [5], liver and kidneys [6], among other classes of
materials. These power-law materials, also termed anomalous, exhibit one or more power-
law scalings for creep/relaxation in the form J(t) ∝ tβ and G(t) ∝ t−β across multiple
time-scales. Similar anomalous behaviors are also present for dynamic storage/dissipation
in the frequency domain [7,8]. The origin of this power-law behavior at the continuum
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level is linked to (non-Fickian) sub-diffusive processes [9] in the corresponding fractal-like
micro-structures [10].

The aforementioned anomalous non-exponential behavior usually requires a signifi-
cant number of material parameters when employing standard viscoelastic models. These
consist of mechanical arrangements of linear springs and Newtonian dashpots, which
induces a finite number of relaxation modes, which may lack predictability when perform-
ing outside the experimental time scales [3,11]. In this regard, fractional models become
attractive alternatives, since their integro-differential operators naturally utilize power-
law convolution kernels, coding self-similar microstructural features in a reduced-order
mathematical language with smaller parameter spaces. Therefore, they have been em-
ployed as compact and predictive models for a number of anomalous systems, such as
biological materials [2–6], fluid turbulence [12–14], and instabilities [15]. We particularly
note that such predictability has been shown to extend across different experiments (relax-
ation/creep) in certain cases [11]. Additionally, calibrating experimental data with a set of
existing rheological models leads to a material model selection problem, which is inher-
ently ill-conditioned, since multiple models can pragmatically yield similar errors when
confronted to experiment. In this work, we attempt to reduce this implicit ill-posedness by
introducing fractional-order models as attractive alternatives to their integer-order counter-
parts, and employed to urinary bladder (UB) tissue modeling. Our fractional modeling
framework aims to obtain compact mathematical models with a reduced number of mate-
rial model parameters, while introducing a minimal, but sufficient number of fractional
rheological elements that capture the qualitative response of multiple power laws and
minimizes the errors, also rigorously taking into account the corresponding power-law
memory effects.

The lower urinary tract, and especially the UB, is a highly dynamic organ system.
To ensure its proper function, the bladder needs to be able to significantly increase in
size while maintaining a low internal pressure, and this ability is dictated by the mechan-
ics of the bladder wall. Specifically, during filling, the bladder tissue must leverage its
viscoelastic characteristics to accommodate for large deformations without resulting in
significant increase of luminal pressure. When this behavior is compromised due to disease,
the resulting increase in pressure might generate a high-pressure urine reflux from the
bladder to the kidneys, resulting in renal failure [16,17]. To increase the complexity of
the organ mechanics, the characteristics of the bladder differ between different anatom-
ical locations (i.e., dorsal, ventral, lateral, lower-body, trigone) [18,19] and orientations
(i.e., longitudinal/apex-to-base and circumferential/transverse) [18–26]. To describe the
behavior of bladder tissue, both hyperelastic and viscoelastic models have been used in
the literature. Hyperelastic models have included continuum-based Ogden [26], exponen-
tial [21,22,27,28], and fiber recruitment [25] models, as well as fluid pressure-based models
assuming the bladder in spheroidal shapes [26,29–33]. Viscoelastic models have included
various forms of spring-dashpot [23,34–45] and quasi-linear viscoelastic [24,46,47] models.
However, due to the differences in mechanical testing protocols as well as modeling, most
of the results cannot be compared with one another and often results in contradicting con-
clusions. While several pathologies of the lower urinary tract are associated with dramatic
changes of the mechanical behavior of the bladder wall [48], still much is unknown about
the mechanisms that affect this organ, not just in diseased states but in healthy as well.
In this study, we focus on the healthy behavior of the porcine urinary bladder, which a
present work suggested is a good model for the human urinary bladder.

Although fractional linear viscoelasticity has been succesfully employed in a number
of biomechanical applications, additional modeling considerations are necessary when
dealing with other material nonlinearities, such as large strains. This would imply that
the material relaxation behavior depends on both time and applied strains, which requires
additional modeling considerations. In the UB case, Korossis et al. [18] reports the small-
strain regime to be drive by elastin, while a stiffer response for large strains was driven
by collagen. Jokandan et al. [49] characterized the quasi-static stress-strain response of
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the UB as exponential-like. To address such behavior, a practical and well-known class
of models is the quasi-linear-viscoelastic (QLV) theory by Fung [50], which considers a
multiplicative coupling between a linear viscoelastic relaxation and a nonlinear elasticity
term. While the original formulation utilizes a finite spectrum of relaxation times, fractional
extensions of the QLV theory have been developed and employed for the response of bio-
tissues [2,51]. Doehring et al. [51] employed a Mittag-Leffler-type reduced relaxation
function that captured the short and long term behaviors of aortic valve cusp [51]. Craiem
et al. [2] developed a fractional Kelvin-Voigt-type reduced relaxation function with an
exponential instantaneous response, which was successfully applied to the nonlinear
viscoelasticity of arterial walls. Regarding the nonlinear viscoelastic modeling of the UB,
Natali et al. [24], developed an anisotropic, visco-hyperelastic model, which was validated
through a uniaxial experiment under cyclic loads. Nagatomi et al. [46] studied the nonlinear
behavior of rat bladders, by calibrating a two-dimensional QLV model to bi-axial relaxation
data from bladders of subjects that were healthy and with spinal cord injury. Their findings
reported a need for new models to account for both normal and pathological states, due to
tissue remodeling.

To the authors’ best understanding, although existing studies have addressed the
nonlinear viscoelastic of the UB for different subjects and loading conditions, there are
no studies in the literature leveraging the use of fractional viscoelastic models to model
potential, emerging power-law behaviors. In this work we develop a data-driven fractional
modeling framework for linear and quasi-linear viscoelasticity to account for both anoma-
lous power-law relaxation and large strains of bio-tissues. We validate the developed
framework for the first time in the uniaxial relaxation of porcine urinary bladder tissue for
a wide range of applied strains. The characteristics of our experimental procedure are:

• We obtain the porcine UB uniaxial relaxation data from small-to-large strains of five
distinct anatomical locations.

• Our relaxation experiments are performed under increasingly larger strains, with-
out intermediate unloading steps or tissue preconditioning.

• The mechanical response of the UB indicates nonlinear viscoelastic behavior with
power-law relaxation, characterizing an anomalous, non-exponential behavior.

Given the anomalous nonlinear response of the UB tissue, we develop our two-stage
anomalous modeling framework as follows:

• In the first stage, we develop an existence study that considers a set of linear fractional
building block models (Scott-Blair, fractional Kelvin-Voigt, fractional Maxwell), which
are selected according to the multi-power-law nature of the relaxation data and
calibration errors at the linear viscoelastic regime.

• In the second stage, we account for the large strain behavior of the corresponding
tissue, by employing a fractional quasi-linear viscoelastic (FQLV). The goal is to extend
the quality of power-law relaxation (due to the material’s fractal microstructure) to
the large strain regime of the tissue of interest.

We employed the aforementioned two-stage formulation to the UB experimental data,
and obtained the following main findings;

• All candidate fractional linear viscoelastic models provide sufficiently accurate fits
for single-relaxation steps under smaller strain levels, where the two fractional order
Maxwell model is the most suited for the UB data.

• The employed four-parameter FQLV model with a reduced Scott-Blair relaxation
function and exponential instantaneous stress response was successful over five
consecutive relaxation steps, with root mean squared errors below 2%, and without
the need of model recalibration between applied step strains.

• The lower-range of obtained fractional orders is around α = 0.17–0.30, which is com-
patible with the observed long-time slopes of the UB relaxation data. Small α values
have been suggested to indicate strong fractality in bio-tissue microstructures such as
collagen fibers [51].
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The rest of the paper is organized as follows. In Section 2 we present the problem
setup and methodology, with the uniaxial UB stress relaxation experiments and our pro-
posed fractional modeling framework for biotissues, comprised of linear and quasi-linear
fractional models. In Section 3, we present our obtained linear viscoelasticity results for the
UB relaxation under the first strain step, and the fractional quasi-linear viscoelastic model
for all consecutive strain steps, followed by the discussions and potential improvements
of the work. Finally, in Section 4, we provide the concluding remarks of this work and
future directions.

2. Problem Setup and Methodology
2.1. Urinary Bladder Experimental Relaxation Tests

Five samples from a single porcine UB were extracted from distinct anatomical loca-
tions as shown in Figure 1a. The locations are given and denoted by: Dorsal (D), lateral
(L), lower body (LB), trigone (T), and ventral (V). The samples were extracted with a
1 cm × 3 cm leather punch in the apex-to-base direction as shown in Figure 1b. Each
sample was clamped, as illustrated in Figure 1c,d, and subjected to five consecutive stress
relaxation stages, under prescribed step strains εi = 0.25, 0.50, 1.00, 1.50, 2.00 over 30, 45,
45, 45, and 45 min, respectively. Besides the strain inputs, the force denoted by Fdata(t) is
measured by a 10 [lb] load cell throughout the duration of the test. The cross-sectional area
Adata(t) of each sample is calculated by taking top and side view pictures that are converted
to binary images which are processed in MATLAB®, respectively estimating the base b(t)
and height h(t) dimensions of the samples after the application of each consecutive step
strain εi. The updated cross-sectional area is assumed to remain constant throughout the
relaxation at each strain level, and is evaluated as Adata = b(t)h(t). Given force and area
time-series, the true stress is evaluated as σdata(t) = Fdata(t)/Adata(t).

Figure 1. (a) Dissected porcine UB showing the distinct anatomical locations from which samples were punched in the
apex-to-base direction. They are denoted as dorsal (D), lateral (L), lower body (LB), trigone (T), and ventral (V). (b) A
diagram of the UB from the lateral view. Source: Korossis et al. [18] (c,d) A representative sample under clamped, uniaxial
relaxation, respectively, in upper and side views, from which images are extracted for cross-sectional area estimation.

Once the stress σdata(t) and strain εdata(t) time-series are obtained, we filter the
data through a moving average filter with a time-window of thirty neighbor data points.
Figure 2 illustrates the relaxation curves for all samples in linear and log-log scales. We
observe a characteristic power-law scaling for long-time behavior, which is evident in
Figure 2b. As will be shown later through fractional model fits, the relatively low scaling
coefficient β indicates an anomalous behavior of predominantly elastic nature, with a
plateau with low decay rates σ∼t−β at larger time-scales (i.e., t > 400 [s]). We also note that
the trigone and lower body specimens yielded higher stress levels, particularly at very
high strains, while the dorsal specimen yielded lower overall values. This is in accordance
to stress-strain results obtained by Korossis et al. [18], that indicated statistically significant,
higher collagen phase slopes for the lower body and trigone regions.
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Figure 2. Stress relaxation data for all UB samples. (a,b)—stress vs time data in linear and logarithmic scales. (c,d)—
successive step strain vs time data in linear and logarithmic scales. The long-term power-law behavior becomes evident
especially in the first relaxation step in (b), where the slope of the black line is given by |β| ≈ 0.3, indicating an anomalous
behavior of predominantly elastic nature.

We analyze the presence of strain dependency on the UB relaxation behavior, in order
to determine if the viscoelasticity is of linear or nonlinear nature. Therefore, we employ the
definition of linear relaxation modulus G(t) [Pa], applied for each fixed strain application
from experimental data [52]:

Gdata(t) := σdata(t)/εi, (1)

with i = 0, 1, . . . , Nsteps. In addition to the strain dependency on the relaxation behavior,
the above definition also allows us to identify the presence of additional power-laws or
stretched exponential behaviors in the tissue response. Figure 3 illustrates the obtained
relaxation moduli for all UB samples and relaxation steps, after employing (1) into the stress
time-series data of Figure 1 and performing a translation to a reference initial time, here
taken as the first time-step of the data. We observe that although the relaxation moduli data
for each sample is almost linear for εi = 0.25, 0.50, since the curves approximately overlap
(except for the trigone sample), the behavior of Gdata is clearly time- and strain-dependent.
Furthermore, the degree of nonlinearity is more pronounced for the lower body and trigone
samples, and less pronounced for the dorsal sample. Interestingly, we notice two limiting
power-law behaviors for short and long times. The short time behavior appears to have a
stretched exponential nature, with a limiting power law of smaller magnitude β1, while the
long time behavior is associated with a power-law of larger magnitude β2, see Figure 3f.
Nevertheless, the relaxation behavior clearly transitions from a slower regime to a faster
regime, even though the latter still presents a far-from-equilibrum response (no equilibrium
glass state) within the experimental time scales. Larger standard deviations for the long
time power-law were observed for the trigone region due to its distinct response for
ε0 = 0.25. We remark that this analysis is just performed to infer the nonlinear relaxation
quality the data, and we do not intend to construct a master curve for each UB sample.
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Figure 3. Relaxation moduli for each bladder specimen under distinct applied strains: (a) D, (b) L, (c) LB, (d) T, (e) V.
The relaxation behavior seems to be approximately linear for most specimens in the εi ∈ [0.25, 0.5] range. All specimens
clearly demonstrate a dependency of both time and applied strains for εi > 0.5, with largest variations observed in the LB
and T samples. Furthermore, the data indicates two distinct relaxation regimes with slower (t < 3 [s]) and faster (t > 400 [s])
decays, respectively, with slopes β1 and β2 illustrated in (f). The vertical bars represent the average relaxation slopes for each
specimen over the 5 applied strain steps, and error bars are computed over one standard deviation from the average value.

2.2. A Fractional Viscoelastic Modeling Framework for Anomalous Tissue Rheology

We develop a two-stage framework to assess the qualitative linear/nonlinear relax-
ation behavior of anomalous materials and identify the most feasible fractional viscoelastic
models, in order to alleviate the inherent ill-posedness of model selection problems. In the
first stage, we develop an existence study to identify the admissible set of anomalous consti-
tutive laws that satisfy the quality of the experimental linear relaxation behavior, while
shedding light on the corresponding microstructural constituents associated to anomalous
behavior. In the second stage, we incorporate large strain effects to the relaxation quality,
based on the nonlinear nature of the tissue of interest.

2.2.1. First Stage: An Existence Study of Fractional Linear Viscoelastic Models

Starting with the Scott-Blair (SB) model as the fundamental building block, we con-
struct building block models through parallel and serial combinations to obtain the frac-
tional Kelvin-Voigt (FKV) and fractional Maxwell (FM) models. In our approach, we take
into account the anomalous qualities present in the experimental relaxation data and com-
pare them with each of the candidate building block models. Each of the models exhibit
distinguished material complexities, such as distinct asymptotic behaviors of relaxation
G(t), multiple power-law regimes, slower/faster relaxation at the asymptotic stages [53,54]
and presence of material nonlinearities. In the last part of the existence study we classify
the candidate models according to their anomalous response, which together with obtained
fitting errors and number of material parameters, constitutie the criteria for the model
selection procedure. Given the experimental data presented in Section 2.1, we focus on
the first relaxation step (ε0 = 0.25) of Figures 2 and 3 for the first stage of our data-driven
framework. Our objective is to demonstrate how fractional viscoelastic models are able to
capture the UB relaxation with simplistic mechanical arrangements and a small number of
material parameters.
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The rheological building block for our framework is the fractional SB viscoelastic
element, which compactly represents an anomalous viscoelastic constitutive law connecting
the stresses and strains:

σ(t) = E C
0Dα

t ε(t), (2)

with t > 0, ε(0) = 0, and constant fractional order in the range 0 < α < 1, which provides
a material interpolation between Hookean (α → 0) and Newtonian (α → 1) elements.
The operator C

0Dα
t (·) represents the time-fractional Caputo derivative given by:

C
0Dα

t u(t) :=
1

Γ(1− α)

∫ t

0

u̇(s)
(t− s)α

ds, (3)

where Γ(·) represents the Euler-gamma function [54] and u̇ = du/dt. The pair (α,E)
uniquely represents the SB constants, where the pseudo-constant E [Pa.sα] compactly de-
scribes textural properties, such as the firmness of the material [11,55]. In this sense E is
interpreted as describing a snapshot of a non-equilibrium dynamic process instead of an
equilibrium state. The corresponding rheological symbol for the SB model represents a
fractal-like arrangement of springs and dashpots [7,56], which we interpret as a compact,
upscaled representation of a fractal-like microstructure. Regarding the thermodynamic
admissibility of the SB element and more complex models (i.e., plasticity and damage)
involving it, we refer the reader to Lion [57] for the SB model, and Suzuki et al. [58]. The re-
laxation function GSB(t) [Pa] for the SB model is given by the following single, inverse
power-law form:

GSB(t) :=
E

Γ(1− α)
t−α, (4)

which is the convolution kernel of the integro-differential form in (3), with a modulating
pseudo-constant E for fixed α. Figure 4a illustrates the behavior of GSB(t), which is scale-
free, i.e., a single power-law is present for all t > 0. We note that although this relaxation
response may seem to be oversimplified, it provides a flexible constitutive interpolation
able to, at the very least, take into account the long-term anomalous dynamics of materials,
such as the power-law β2 in Figure 3. This also allows the SB element to capture, in certain
time-scales, power-law behaviors induced by predominantly elastic microstructures, such
as collagen networks [51] with small α-values. We also note that single collagen fibril
relaxation data [59] has been calibrated to single-order fractional Kelvin-Zener models
(where a single SB element is combined with Hookean springs), with reported values in
the range α = 0.12–0.21 [60]. Similarly, the macroscopic response of ultrasoft tissues such as
the brain, which has a more fluid-like character with significant microscopic inter-cell body
displacements in the deformation process [61], has also been captured using SB elements
combined with Hookean springs [62,63]. Kohandel et al. [62] calibrated a single-order
dynamic modulus of a fractional Kelvin-Zener model to bovine brain tissue, obtaining a
fractional order α = 0.6. Through relaxation experiments, Stamenović et al. [63] calibrated
a similar model to bovine brain paerenchima also reporting a high value of α = 0.64.

We utilize the SB model as our rheological building block, and define a set of “building
block models”, which introduce a higher degree of material complexity through multiple
power-law behaviors for relaxation and therefore distinct anomalous regimes for small
and large time-scales. This multi-fractal type of rheology is characteristic of cells [63] and
biological tissues [64], due to their complex, hierarchical and heterogeneous microstructure.
Here we consider the two simplest canonical combinations of SB elements. Through a
parallel combination, we obtain the fractional Kelvin-Voigt (FKV) model, which has the
following stress-strain relationship [56]:

σ(t) = E1
C
0D

α1
t ε(t) +E2

C
0D

α2
t ε(t), (5)
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with t > 0, ε(0) = 0, fractional orders 0 < α1, α2 < 1 and associated pseudo-constants
E1 [Pa.sα1 ] and E2 [Pa.sα2 ]. The corresponding relaxation modulus G(t), is also an additive
form of relaxation involving two SB elements:

GFKV(t) :=
E1

Γ(1− α1)
t−α1 +

E2

Γ(1− α2)
t−α2 . (6)

Figure 4b illustrates the relaxation function GFKV for several fractional order values.
We notice a response characterized by two power-law regimes, with a transition from
faster to slower relaxation slopes. The asymptotic responses for small and large time-scales
are given by GFKV∼t−α2 as t → 0 and GFKV∼t−α1 as t → ∞. We note that this quality
allows the FKV model to describe materials that reach an equilibrium behavior for large
times when α1 → 0, which is intuitive from the mechanistic standpoint as one of the
SB elements becomes a Hookean spring. Regarding applications of the FKV model to
bio-tissue constituents, Bonfanti et al. [60] has found the combination of low-high fractional
orders to be proper for bovine trachea smooth muscle cells, recovering α1 = 0.1 and
α2 = 0.78.

Figure 4. Relaxation functions G(t) for the building block models under varying fractional models and E1 = 1, E2 = 1.
(a) Scott-Blair, (b) Fractional Kelvin-Voigt, and (c) Fractional Maxwell. We note the progression from a single, scale-free
power-law behavior for the SB model to two dominating, asymptotic power-laws under small and large times for the FKV
and FM models. Furthermore, the parallel/serial combinations for the FKV/FM models determine whether slower/faster
relaxation rates emerge around an intermediate regime, which is characterized by a critical region.

Finally, through a serial combination of SB elements, we obtain the fractional Maxwell
(FM) model [11], given by:

σ(t) +
E2

E1

C
0D

α2−α1
t σ(t) = E2

C
0D

α2
t ε(t), (7)

with t > 0, fractional orders 0 < α1 < α2 < 1, the additional constraint 0 < α2 − α1 < 1,
and two sets of initial conditions for strains ε(0) = 0, and stresses σ(0) = 0. We note that
in the case of non-homogeneous ICs, one requires compatibility conditions [54] between
stresses and strains at t = 0. The corresponding relaxation function for this building block
model assumes a more complex, Miller-Ross form [11]:

GFM(t) := E1t−α1 Eα2−α1,1−α1

(
−E1

E2
tα2−α1

)
, (8)

where Ea,b(z) denotes the two-parameter Mittag-Leffler function, defined as [54]:

Ea,b(z) =
∞

∑
k=0

zk

Γ(ak + b)
, Re(a) > 0, b ∈ C, z ∈ C. (9)
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Interestingly, the presence of a Mittag-Leffler function in (8) leads to a stretched exponential
relaxation for smaller times and a power-law behavior for longer times, as illustrated
in Figure 4. We also observe that the limit cases are given by GFM∼t−α1 as t → 0 and
GFM∼t−α2 as t → ∞, indicating that the FM model provides a behavior transitioning
from slower-to-faster relaxation. Furthermore, when α2 → 1, the FM model presents a
fluid-like behavior for long times [53], and therefore allowing a fast relaxation, similar to
its integer-order counterpart. We refer the reader to the recent work by Bonfanti et al. [60]
for a number of applications of the aforementioned models. We notice that both FKV and
FM models are able to recover the SB element with a convenient set of pseudo-constants.
Furthermore, we also outline more complex building block models that yield more flexible
responses, including three to four fractional orders, such as the fractional Kelvin-Zener
(FKZ), fractional Poynting-Thomson (FPT), and fractional Burgers (FB), which in turn are
able to recover the FKV and FM models. We refer the reader to the works [56,60] for more
details on such models.

2.2.2. Second Stage: Fractional Quasi-Linear Viscoelastic Modeling

The presented models in Section 2.2.1 provide candidates for power-law relaxation
functions that describe the anomalous linear viscoelasticity of biotissues, however, in
such materials the stress-strain relationship may becomes nonlinear as fibers in collagen
networks transition from entangled to aligned with the applied load direction. There-
fore, the viscoelastic behavior itself becomes nonlinear and the relaxation function has
an intrinsic dependency on the strain levels, as observed in Figure 3 under successive
large step-strain applications. To incorporate this additional effect to our modeling frame-
work, we follow [2,50], and employ the following quasi-linear, fractional viscoelastic
model (FQLV):

σ(t, ε) =
∫ t

0
G(t− s)

∂σe(ε)

∂ε
ε̇ ds, (10)

where the convolution kernel is given by a multiplicative decomposition of a reduced
relaxation function G(t) which may be selected from the first stage of the framework,
and an instantaneous, nonlinear elastic tangent response with stress σe. In the work by
Craiem et al. [2], the reduced relaxation function has a fractional Kelvin-Voigt-like form
with one of the SB elements replaced with a Hookean element. Here, we assume a simpler
rheology and adopt a Scott-Blair-like reduced relaxation in the form:

G(t) = Et−α/Γ(1− α), (11)

with the pseudo-constant E with units [sα], since the elastic strains σe(ε) have units of [Pa].
We adopt the same, two-parameter, exponential nonlinear elastic part as in [2]:

σe(ε) = A
(

eBε − 1
)

, (12)

with A having units of [Pa] and B being a non-dimensional tuning parameter for the
degree of nonlinearity induced by applied strains. Substituting Equations (11) and (12) into
Equation (10), we obtain:

σ(t, ε) =
EAB

Γ(1− α)

∫ t

0

eBε(s) ε̇(s)
(t− s)α

ds, (13)

which differs slightly from the linear SB model (2) in the sense that an additional exponen-
tial factor multiplies the function being convoluted. We remark that reduced relaxation
forms for the FKV and FM can also be employed in the FQLV framework. For the FKV
model, it would lead to a multi-term convolution of the same nature as (13) with fractional
orders α1 and α2. Therefore, the same numerical methods employed in Section 2.2.3 could
be employed. However, when dealing with a FM reduced relaxation function, a specialized
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type of quadrature for a Miller-Ross-type of kernel as (8) would be required, potentially
with impractical computations of Mittag-Leffler functions for a large number of time-steps.

2.2.3. Numerical Discretizations

We discretize the fractional Caputo derivatives in Equations (2)–(7) through an implicit
L1 finite-difference scheme [65]. Therefore, we consider a uniform time-grid with N time-
steps of size ∆t, such that tn = n∆t, with n = 0, 1, . . . , N. We remark that although the
equations for each of the building block models could be discretized utilizing fast schemes
and approaches that treat initial time singularities (see [66,67] and references therein),
the number of utilized data-points is not large, with Ndata ≈ 3000 for the first relaxation
and Ndata ≈ 25,000 for all steps. Also, we avoid the singularity nearby t ≈ 0 since the first
relaxation step is applied at approximately 80 s. Nevertheless, the non-smooth nature of the
loading would degenerate most of the existing numerical methods for FDEs, and we found
that the employed method in this work with the ∆t described in Section 3 is sufficient for the
accuracy to reach the plateau of the experimental data, such that model error is dominant.

In the following, we present the discretized forms for each of our employed linear
fractional viscoelastic models. We start with the stresses for the SB model evaluated at
t = tn+1:

σn+1 = C1[εn+1 − εn +Hα1 ε], (14)

with discretization constant C1 = E/(Γ(2− α)∆tα).
For the FKV model, we obtain:

σn+1 = C1[εn+1 − εn +Hα1 ε] + C2[εn+1 − εn +Hα2 ε], (15)

with discretization constants C1 = E1/(Γ(2− α1)∆tα1) and C2 = E2/(Γ(2− α2)∆tα2).
Finally, for the FM model, we have:

σn+1 =
C1[εn+1 − εn +Hα1 ε] + C2[σn −Hα1−α2 σ]

1 + C2
, (16)

with discretization constants C1 = E1/(Γ(2− α1)∆tα1) and C2 = (E1/E2)/(Γ(2− α1 +
α2)∆tα1−α2). The history terms Hνu with fractional order ν in the above equations are
given by the following form:

Hνu =
n

∑
j=1

bj
[
un+1−j − un−j

]
,

with weights bν
j := (j + 1)1−ν − j1−ν.

The discretization for the FQLV model (13) employed in this work is shown in [68],
which is a straightforward, fully-implicit, L1 finite-difference approach with a trapezoidal
rule employed on the additional exponential factor. Therefore, the discretized stresses for
the FQLV model are given by:

σn+1 = C1

[
exp(Bεn+ 1

2
)(εn+1 − εn) +Hα

(
ε,

∂σe

∂ε

)]
, (17)

with constant C1 = EAB/(∆tαΓ(2− α)). The discretized history load in this case is given
by:

Hα

(
ε,

∂σe

∂ε

)
=

n

∑
k=1

exp(Bεn−k+ 1
2
)(εn−k+1 − εn−k)bk, (18)

with discretization weights bα
k = (k+ 1)1−α− k1−α and εi+ 1

2
= (εi + εi+1)/2. The presented

discretization has an accuracy of O(∆t2−α), and we refer the reader to [68] for simulations
of numerical convergence.
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2.3. Model Optimization

We perform the model fits through a particle-swarm optimization (PSO) algorithm [69],
which was implemented in MATLAB. The adopted PSO parameters are a population
Npop = 30 and Nit = 1000 iterations for the linear cases and Nit = 100 iterations for
the nonlinear cases. For the linear viscoelastic fits, we set the initial material pseudo-
parameter in the 0 ≤ E ≤ 108 [Pa.sα], and the fractional orders are constrained in the
0.0001 ≤ α ≤ 0.9999 range, to ensure that the employed fractional models are able to
recover simpler fractional counterparts and also standard rheological elements, if required
by the experimental data. For nonlinear cases, we estimate ranges for parameters A and
B of the FQLV model by fitting the instantaneous stress response (12) to each stress peak
in every step-strain application of Figure 2. From this preliminary estimate, we have
obtained parameters in the ranges 104 ≤ A ≤ 105 [Pa] and 0 ≤ B ≤ 2, which are taken
as input parameter ranges for the PSO algorithm. For the relaxation parameters of the
FQLV, as in [2], we note that the nature of the power-law relaxation kernel, it is nontrivial
to obtain a normalized G(0+) = 1. Nevertheless, for the pseudo-constant we set the range
0 ≤ E ≤ 1 and for the fractional order α we employ the same range as the linear case.

Since the stresses σdata(i) and strains εdata(i) from the relaxation dataset are non-
uniform in time, we perform a linear (first-order accurate) interpolation of the strains
εdata(i) to an uniform grid. We then utilize the input strains and compute the global
best solution for stress for every PSO iteration through (14), (15), (16), or (17). Then, we
linearly interpolate the stress back to the nonuniform grid to obtain σmodel . The time-
step size for the uniform grid solution is set to ∆t = 0.495 [s], which is the minimum
time interval between two consecutive data-points. For verification purposes, we tested
smaller step-sizes (∆t = 0.0495) and did not obtain improved results, and we note that
all employed numerical discretizations for fractional models are fully-implicit. Therefore,
our verification step indicates that model error dominates over discretization error for the
employed time-step size. The cost function is defined as:

Cost :=
Ndata

∑
i=0

(
σdata

i − σmodel
i

)2
. (19)

The adopted error measures in this work are the normalized least-squares error (LSE)
and root mean squared error (RMSE) between the experimental and mapped simulated
stresses, which are respectively given by:

LSE :=

√
∑Ndata

i=1

(
σdata

i − σmodel
i

)2√
∑Ndata

i=1

(
σdata

i
)2

× 100%,

RMSE :=
1

max(σdata)

√
∑Ndata

i=1

(
σdata

i − σmodel
i

)2

Ndata
× 100%.

Finally, all numerical simulations were run in a computer system with Intel Xeon Gold
6148 CPUs with 2.40 GHz.

3. Results and Discussion
3.1. Linear Viscoelasticity

Figure 5 illustrates the obtained fits for all bladder samples utilizing an SB model,
for the first strain step (ε0 = 0.25). We observe very good fits for most samples, especially at
larger time scales, with an exception for the trigone (T) sample due to a sudden stress drop
in the experimental data. The fitting quality decreases for all samples at the early relaxation
dynamics (nearby the step-strain application), with the SB model underestimating the
maximum values of stress peaks. The obtained fractional orders lie in the 0.2–0.3 range
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(see Table 1), which are similar to the observed long-term power law from the estimated
experimental relaxation functions in Figure 3. Furthermore, the least-squared errors lie in
the 2–11% range, while the RMS errors are within the 2–4% range. The higher values of
the pseudo-constant and fractional order for the trigone sample are likely due to the SB
model accounting for both instantaneous and long-term response over its limited set of
two parameters. We also note that the FKV model pragmatically recovered the SB model in
all instances, where the PSO algorithm obtained optimal values for the fractional orders
that are close to the SB model. In addition, the optimal values for one pseudo-constant is
either set to zero, or the summation of E1 and E2 recovers the value of E for the SB model.
This indicates the a FKV model does not improve the bladder fit quality, and one would
rather employ a SB model with half the amount of material parameters under the same
error levels.
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(a) Scott-Blair model.
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Figure 5. Obtained linear viscoelastic fits for (a) the fractional SB model, and (b) fractional Maxwell model for all bladder
samples and the first strain step (ε0 = 0.25). The results clearly show the capability of the FM model to better capture the
short and long time relaxation regimes of the UB, reinforcing the qualitative agreement observed between the experimental
relaxation curves in Figure 3 and the models in Figure 4.

Figure 5 illustrates the obtained fits for the FM model, where the added flexibility of the
underlying power-law/Mittag-Leffler relaxation response improves the fitting quality for
both short and long time-scales, yielding least squares errors as low as 2.08 %. The obtained
parameters in Table 1 indicate the presence of a predominantly elastic power-law α1 in
the 0.17–0.19 range, and a predominantly viscous α2 in the 0.74–0.99 range. Particularly,
the FM model fit for the trigone specimen indicates the recovery of a dashpot element,
and thus the corresponding SB element could be replace by a Newton element. Regarding
pseudo-constant values, we note that E1 values have variations that qualitatively agree
with the intensity of stress peaks, but E2 values can vary in several orders of magnitude,
which could be due to the presence of multiple local minima or the discrepancy between
obtained fractional orders α2. In general, the dorsal and ventral samples seem to be
the most anomalous, as they present both fractional order values sufficiently far from
standard elements.
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Table 1. Obtained material parameters for all employed linear fractional models and UB samples.
The range of α1 values agrees with the power-law exponent range from the experimental relaxation
functions in Figure 3.

Model
Parameters Error %

Sample
E1 [kPa.sα1 ] α1 E2 [kPa.sα2 ] α2 LS RMS

SB 18.1901 0.226 – – 4.32 1.72
DFKV 15.6574 0.225 2.42019 0.229 4.32 1.72

FM 14.7616 0.171 3976.90 0.743 2.29 0.91

SB 31.3077 0.219 – – 3.47 1.42
LFKV 31.3462 0.220 0 0.503 3.47 1.41

FM 26.9311 0.186 48,826.1 0.932 2.08 0.82

SB 41.6335 0.236 – – 5.33 1.98
LBFKV 33.2005 0.232 7.95429 0.252 5.34 1.99

FM 33.0853 0.183 37,339.9 0.935 3.23 1.20

SB 66.7689 0.278 – – 11.1 3.82
TFKV 66.4714 0.278 0 0.907 11.1 3.83

FM 42.4338 0.170 36,938.7 0.999 4.05 1.37

SB 34.9254 0.220 – – 3.21 1.24
VFKV 34.9254 0.220 0 0.579 3.21 1.25

FM 30.7605 0.188 19,799.5 0.797 2.19 0.84

Figure 6 illustrates the pointwise relative errors between the SB and FM models and
the experimental data for the first strain step. We notice that the SB element has similar
errors as the FM model in the 800 < t < 1200 [s] range and larger errors for longer times
for most samples. For shorter time ranges, the SB model has larger errors (up to 1 order of
magnitude) for all samples. This reinforces the fact that the FM model is more descriptive
of both early and long-term dynamics of bladder relaxation, as the qualitative analysis
and estimated experimental relaxation moduli suggest. Furthermore, we also note that the
better performance of the FM model is also attributed to better approximating the loading
ramp and the peak stress preceding the relaxation behavior.
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Figure 6. Obtained pointwise errors for the linear SB and FM models for the first strain step: (a) D, (b) L, (c) LB, (d) T, (e) V.
Generally, smaller errors are obtained for short and long time behaviors using the FM model, with similar errors for the
intermediate time range.
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We also employed more complex fractional linear viscoelastic models, such as frac-
tional Kelvin-Zener, Poynting-Thomson and Burgers’ (see [68] for the models and their
corresponding discretizations ). From our employed fitting procedure, all models either
recovered or had the same performance as the FM model.

3.2. Nonlinear Viscoelasticity

Figure 7 illustrates the obtained fits for the fractional QLV model under all consec-
utive strain steps, where we observe a very good agreement with the experimental data.
Except for the trigone sample, all cases had higher deviations towards the final strain
steps. Nevertheless, we note that the error levels are below 6% (LSE) and 2% (RMSE) for
the entire dataset, under 4 material parameters, which are listed in Table 2. Furthermore,
the obtained fractional-orders lie in the range 0.24–0.3 which are in accordance with the
estimated power-laws in our a-priori analysis presented in Figure 3. Particularly, the lowest
fractional order was obtained for the trigone specimen, and highest for the dorsal one.
A slightly higher degree of nonlinearity is also recovered for the trigone and lower-body
samples due to the larger values of B.
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Figure 7. Obtained fits for the fractional QLV model under all strain steps: (a) D, (b) L, (c) LB, (d) T, (e) V. The fit quality
was very good for all bladder samples, with more significant deviations occuring on strain steps 4 and 5. The recovered
fractional-orders in (f) are within the 0.2 < α < 0.3 range, which is in accordance with the a-priori power-laws obtained
from the relaxation moduli data in Figure 3.

Table 2. Obtained material parameters for the FQLV model with all UB samples and employed
consecutive strain steps, with range of α1 values also in agreement with power-law exponents from
Figure 3.

Sample
Parameters Error %

A [kPa] B E [sα] α LSE RMSE

D 53.8823 0.7803 0.7298 0.2928 4.85 1.11
L 79.1646 0.8823 0.5677 0.2673 4.08 1.00
LB 74.5369 1.2192 0.3463 0.2510 4.17 1.00
T 63.4435 1.2642 0.3590 0.2419 5.61 1.44
V 59.3282 0.9449 0.6704 0.2732 4.74 1.16

Finally, Figure 8 illustrates the pointwise relative errors for the FQLV model under all
bladder samples and strain steps. We observe a similar error behavior as the SB model in
Figure 6, particularly for larger applied strains.
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3.3. Discussion

To our best understanding, this was the first work in the literature addressing fractional
viscoelastic modeling to bladder tissues. From the results obtained for our building block
models, the overall lower range of fractional orders obtained for all linear/nonlinear
models is 0.17–0.3, indicating a predominantly elastic yet highly anomalous behavior with
smaller decay rates at long times, i.e., the presence of far-from-equilibrium dynamics.
A similar parametric range was obtained in other anomalous systems such as arterial wall
relaxation [2], aortic valve tissue [51], 1D and 3D brain artery walls under fluid-structure
interactions [70,71], canine and bovine liver tissue [72,73], and lung tissue [4]. As suggested
by Doehring et al. [51], small α-values can be indications of strong fractality in bio-tissue
microstructure such as collagen fibers, which are vastly present in the UB, and particularly
with a larger network in the trigone region. The larger values of fractional orders α2 in
the 0.74–0.99 range obtained by the fractional Maxwell model is similar to those obtained
for brain tissue relaxation [74] and human ear [75,76]. This indicates a significantly more
dissipative behavior, possibly compensating the highly-anomalous behavior provided
by the smaller fractional order α1 for short time-scales, and thus better fitting the slower
relaxation nearby the load application. The transitional behavior from slower-to-faster
relaxation slopes observed from the UB specimens and captured by the FM model were also
noticed in bio-tissues composed of weakly cross-linked collagen networks [64]. We note
that although the captured fractional orders α1, α2 for the FM model on the UB relaxation
do not quantitatively match the slopes β1, β2 for Gdata(t) in Figure 3, these fractional orders
refer to the asymptotic behaviors at t→ 0 and t→ ∞, as illustrated in our existence study
in Figure 4, and it is likely that relaxation experiments under a larger range of time-scales
would yield a better quantitative agreement. For the purpose of our existence study, we
consider a qualitative agreement and small error levels to be sufficient to select a valid
candidate building block model.

The nonlinear viscoelastic behavior was well approximated by the employed FQLV
model, which decomposes the relaxation kernel in a multiplicative fashion into a power-law
reduced relaxation function and a tangent elastic stiffness described by an exponential
elastic stress form. This allowed the nonlinear part of our existence study to capture the
complex rheology of the UB with large applied strains (up to 200%) and RMS errors as low
as 1%. In fact, Jokandan et al. [49] observed an exponential-like stress-strain response in
quasi-static tensile testing of porcine bladder samples. Specifically, under relaxed states,
the entangled configuration of collagen fibers yield a linear stress strain relationship, but a
nonlinear regime with much higher stress levels is attained once the fibers align with
the load direction and store most of the strain energy in the system. Korossis et al. [18]
attributed the linear region to be predominantly driven by elastin, and the nonlinear phase
by collagen.

Our pointwise relative error analysis reinforced the idea that the FM model is more
descriptive of both slower early dynamics of the porcine bladder, but also the faster
dynamics observed at longer time-scales in the estimated experimental relaxation modulus.
In our error analysis for the nonlinear case, Figure 8 indicates a similar qualitative error
behavior between the FQLV model and the linear SB element in Figure 6, especially towards
the larger strain regime, with higher errors in the small and large times after the step-strain
applications. This fact motivates future investigations on a fractional Maxwell-type QLV
model for the UB response.

Regarding our developed framework, the existence study proved to be interesting to
identify the most proper fractional linear viscoelastic model for stress relaxation, which
can later inform the fractional quasi-linear viscoelastic model on the proper form of the
reduced relaxation function. For the UB, we conclude that while the SB, FKV and FM
models yield errors in the same order of magnitude, the FM model better captures the
two power-law qualitative behavior of the data, which is fundamental for both short- and
long-term predictions of tissue response. Nevertheless, the SB model provided satisfactory
results for the observed experimental time-scale, and the FKV model proved to be redun-
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dant and a source of ill-posedness in a model selection framework, since it obtained the
same performance as the SB model with twice as many parameters. Although we cannot
guarantee that the obtained model parameters provide a global minimum for the cost
function (19), we find our obtained fitting errors, increased number of material parameters,
and diverging qualitative behaviors between the experimental data in Figure 3 and the FKV
relaxation behavior from Figure 4 to be sufficient to exclude the FKV as a viable candidate
for the UB. The same analysis applies to other tested models not shown here, such as
fractional Kelvin-Zener, fractional Poynting-Thomson and fractional Burgers’ models [68],
which consistently recovered the FM model.
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Figure 8. Obtained pointwise errors for the FQLV model under all strain steps: (a) D, (b) L, (c) LB, (d) T, (e) V. The vertical
gray lines represent the step strain application instants.

Regarding potential improvements, anisotropy of bladder samples has been observed
in existing studies [19], and therefore an interesting step would be to map the variation of
fractional-orders for distinct sample orientations. Another possible improvement would
be to employ the model presented here to investigate location differences in a larger cohort
of animals. In this work, we focus on highlighting the versatility of the model, which can
appropriately describe the tissue at different location as well as for a series of subsequent
strain steps. Since the use of the experimental dataset from urinary bladder tissue is
employed as a benchmark for the model, we decided it was outside the scope of this
work to include possible experimental error generated by including biological variables,
such as having samples collected from different animals. A potential modeling aspect
would be to investigate the fit quality of a fractional Maxwell-type relaxation function
to the fractional QLV framework, similar to the work by Doehring et al. [51], to better
describe the initial relaxation process in each strain step. However, due to the larger
number of time-steps required by our dataset, an efficient numerical method would be
required to handle the resulting differ-integral with a Miller-Ross relaxation kernel. Despite
the availability of Mittag-Leffler function routines, developing numerical quadratures for
Mittag-Leffler convolutions to obtain weights for an L1 approach is still an unfeasible task,
particularly towards inverse problems, and we aim to investigate this further in future
works. Finally, biaxial tests and models would give insight in the effects of shear stress
to the tissue behavior, and confronting creep predictions with experiments would allow
one to verify the consistency of the obtained parameters, as already succesfully done with
other anomalous materials [11].
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4. Conclusions

The main contribution of this work was the development of a data-driven fractional
modeling framework for linear and nonlinear viscoelasticity, which was validated in the
uniaxial relaxation of porcine urinary bladder tissue for a wide range of applied strains.
To our best understanting, this is also the first time that fractional viscoelasticity has
been employed to model any type of urinary bladder tissue, opening up new modeling
possibilities to better understand the remodeling of such complex organ. Our approach
employed fractional linear and quasi-linear viscoelastic models to account for anomalous
power-law relaxation and large strains. Our main findings in this study were:

• Our existence study was able to relate the power-law features of specimens from
five distinct bladder samples to the fractional orders in linear/quasi-linear fractional
models, and is an interesting step towards an automated model selection framework.

• The bladder uniaxial relaxation data was obtained from consecutive and increasing
step strain applications, indicating the presence of nonlinear, strain-dependent effects
on the relaxation functions.

• Our obtained data is consistent with other bladder rheology studies, indicating higher
stress levels for the trigone region, and an exponential-like stress-strain relationship.

• Among linear viscoelastic models employed for the first relaxation step (25% strains),
the fractional Maxwell model was the most suited for all regional bladder samples,
with two fractional orders, which dominate short- and long-times. More complex
linear fractional models consistently recovered the FM, and the FKV model proved to
be unfeasible since it recovers a SB element.

• The employed fractional quasi-linear viscoelastic model successfully captured the
multi-step relaxation behavior with four material parameters and without any require-
ment of parameter recalibration, yielding a fractional order range α = 0.25–0.30 with
root mean squared errors below 2%.

• Fractional calculus can be a interesting alternative to describe the linear/nonlinear
behavior of porcine UB especially within a material model selection framework, since
fractional models potentially provide a reduced number of material parameters due
to the presence of multiple power-laws in relaxation.

Regarding potential future steps, investigating the possibility of plastic deformations
under large strains by employing quasi-linear visco-plastic effects [58,68,77] and also failure
mechanisms [78] would be interesting studies towards the life-cycle prediction of such
anomalous bio-tissues. Finally the variation of tissue properties by anatomical location,
orientation, and layers of the UB motivates further studies on distributed order models
incorporating nonlinearities. In this sense, mathematical and computational frameworks
employing distributed-order viscoelastic models that learn distributions for fractional
orders would be able to account for multi-fractal heterogeneous media and stochastic effects,
leading to predictive zero-dimensional models with a reduced number of parameters.
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