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Abstract: The current study acts on the notion of quantum calculus together with a symmetric
differential operator joining a special class of meromorphic multivalent functions in the puncher
unit disk. We formulate a quantum symmetric differential operator and employ it to investigate
the geometric properties of a class of meromorphic multivalent functions. We illustrate a set of
differential inequalities based on the theory of subordination and superordination. In this real case
study, we found the analytic solutions of q-differential equations. We indicate that the solutions are
given in terms of confluent hypergeometric function of the second type and Laguerre polynomial.
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1. Introduction

The quantum calculus (QC) (or Jackson calculus) [1] is the richest area of research
within the theory of classical mathematical analysis. It centers on a hypothetically suitable
detail of the operations of differentiation and integration. It is a complete frame for study in
mathematics, which has its past origins, as well as a transformed scope in the present times.
It is vital to indicate that the long past of the QC eras back to the effort of Bernoulli and Euler.
Nevertheless, definitely, it has strained the attention of contemporary mathematicians in
the last numerous periods, which is due chiefly to its widespread fields of application. It
includes multifaceted controls and computations, which make it problematic as associated
with the rest of the topics in mathematics. Newly, there is a quick development in the area
of the QC and its application has appeared in discrete and continuous in mathematics and
physics. In the field of geometric functions, theory [2], it brought a natural extension and
vision of differential and integral operators (see [3–6]).

In many investigations and research papers, the investigators and researchers faced
many q-differential equations, inclusions, and inequalities, which are unfulfilled by a lack
of accepting natural forms for such equations. One has operators of the category q-KP
or q-KdV for instance, but even there, communicating the resulting equations looked
interestingly challenging. Moreover, Laplace, heat wave, and Schrodinger operators have
been formulated in numerous forms and their symmetries studied (see e.g., [7]). In ad-
dition, many operators connected with q-special functions have been sequestered and
studied (see e.g., [8,9]). Nevertheless, when we investigated the development of nonlinear
differential equations from zero curvature conditions on a quantum plane, for instance,
we were confused about their significance, their solvability, and their relative to q-KP
for sample. Thus, it appears appropriate to partially study in the area of q-differential
operators and separate the more important classes while observing also for procedures of
solvability [10,11].
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The practical applications of fractional calculus and corresponding quantum differ-
ential operators are suggested in many sciences. Miller [12] utilized the quantum theory
as a practical technique to design the devices. Cao et al. [13] utilized quantum theory as
practical challenges in simulating quantum systems on classical computers. Douglas [14]
presented an advanced investigation describing the quantum mechanical density matrix
corresponding to a delta function, which is a model of the problem of a surface inter-
acting polymer. Some practical applications of q-DEs to nonlocal elasticity, anomalous
wave propagation, modeling of defects in solids, and even bio-engineering can be located
in [15–20].

During this investigation, and by using the concept of a quantum calculus, we for-
mulated a new symmetric differential operator (q-SDO) connected with analytic functions
of meromorphic multivalent property of a complex variable. Accordingly, we propose a
new formula of analytic functions utilizing the suggested q-SDO. Furthermore, we study
the real situation of the considered functional containing the q-SDO, which is indicated
a q-differential equation. We show that this operator is a solution of the Sturm–Liouville
equation. A set of examples is given with details.

2. Methods

Our major concepts are defined in this section, as follows:

2.1. Quantum Calculus

For a non-negative integer ℵ, the q-integer number ℵ([ℵ]q) is organized by

[ℵ]q =
1− qℵ

1− q
, 0 < q < 1,

wherever [0]q = 0, [1]q = 1 besides limq→1− [ℵ]q = ℵ. Accordingly, the q-derivative of any
analytic function ψ in the open unit disk is given by the following arrangement

Qqψ(z) =
ψ(qz)− ψ(z)

z(q− 1)
, z ∈ U := {z ∈ C : |z| < 1}.

Obviously, a computation implies that

Qq

(
zℵ
)
=

(
1− qℵ

1− q

)
zℵ−1 = [ℵ]qzℵ−1.

The q-derivative is corresponding to the integral formula

∫
ψ(z) dqz = (1− q)

∞

∑
n=0

z qnψ(z qn),

which is known as the Jackson integral of ψ(z), where dq (ψ(z)) = ψ(q z)− ψ(z).
Proceeding, for a complex number κ, the q-shifted factorials are formulated by the

formal [1]

(κ; q)m =
m−1

∏
ı=0

(1− qıκ), m ∈ N, (κ; q)0 = 1. (1)

According to (1) and in terms of the gamma function, we obtain the q-shifted formula

(qκ ; q)m =
Γq(κ + m)(1− q)m

Γq(κ)
, Γq(κ) =

(q; q)∞(1− q)1−κ

(qκ ; q)∞
(2)



Fractal Fract. 2021, 5, 228 3 of 15

where

Γq(κ + 1) =
Γq(κ)(1− qκ)

1− q
, q ∈ (0, 1).

and

(κ; q)∞ =
∞

∏
ı=0

(1− qıκ). (3)

In mathematical physics, there are special functions recognized to state q-analogs,
that is deformations connecting a parameter q (see [21]). The q-hypergeometric series is
formulated as

jFk

[
α1 α2 . . . αj
β1 β2 . . . βk

; q, z
]
=

∞

∑
n=0

(α1, α2, . . . , αj; q)n

(β1, β2, . . . , βk, q; q)n

(
(−1)nq(

n
2)
)1+k−j

zn

where
(α1, α2, . . . , αm; q)n = (α1; q)n(α2; q)n . . . (αm; q)n

and

(α; q)n =
n−1

∏
k=0

(1− α qk) = (1− α)(1− α q)(1− α q2) · · · (1− α qn−1)

is the shifted Formula (1). The most significant special formula is suggested by assuming
j = k + 1, when it formulates

k+1Fk

[
α1 α2 . . . αk αk+1
β1 β2 . . . βk

; q, z
]
=

∞

∑
n=0

(α1, α2, . . . , αk+1; q)n

(β1, β2, . . . , βk, q; q)n
zn.

The basic hypergeometric power series is a q-analog of the hypergeometric power
series because

lim
q→1

jFk

[
qa1 qa2 . . . qaj

qb1 qb2 . . . qbk
; q, (q− 1)1+k−jz

]
= jFk

[
a1 a2 . . . aj
b1 b2 . . . bk

; z
]

.

This calculus has been suggested to develop many classes of analytic functions. Govin-
daraj and Sivasubramanian [22] presented a class of analytic functions connecting with
the domains bounded bconic sections. Yalcin et al. [23] studied a special class of analytic
functions involving the Salagean Type q-differential operator. Hussain et al. [24] introduced
an investigation in a class of multivalent univalent functions. Qadeem and Mamon [25]
investigated the p-valent Salagean differential operator. Ibrahim and Darus [26] formulated
a new q-differential-difference operator.

2.2. Meromorphiclly Multivalent Functions (MMF)

In this effort, we deal with the class of MMF denoting by Ψk(℘), k, n− ℘ ∈ N and
structuring the power series

Ψk(℘) := {ψ : ψ(z) =
1

z℘
+

∞

∑
n=k

ψnzn−℘}. (4)

(
z ∈ Ū := {z ∈ C : 0 < |z| < 1}, k, n− ℘ ∈ N

)
Note that ψ(z)− z−℘ is a holomorphic function in the open unit disk, U := {z ∈ C :

|z| < 1} (see Komatu [27], Rogosinski [28] or Hayman [29]). Our aim is to study a subclass
of Ψk(℘), which is expressed by a differential subordination inequality. Moreover, we
examine its geometric possessions in virtue of the convolution (or Hadamard) product [30].
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Definition 1. Two functions u(z) =
1

z℘
+ ∑∞

n=k unzn−℘ and v(z) =
1

z℘
+ ∑∞

n=k vnzn−℘ in

Ψk(℘) are convoluted if they satisfy the product (u ∗ v)(z) = u(z) ∗ v(z) =
1

z℘
+∑∞

n=k un vnzn−℘.

2.3. Q-Symmetric Differential Operator (q-SDO)

Acting the definition of QC on the class MMF Ψk(℘), we have the following structure:

Qqψ(z) = −[℘]q
(

z−1−℘
)
+

∞

∑
n=k

[n− ℘]qψnzn−℘−1.

Definition 2. For functions ψ ∈ Ψk(℘), we formulate the quantum symmetric differential operator,
as follows:

∆0
qψ(z) = ψ(z) =

1
z℘

+
∞

∑
n=k

ψnzn−℘

∆α
q ψ(z) =

(
α

−[℘]q

)
(z(Qqψ)(z)) +

(
(1− α)(−1)℘+1

−[℘]q

)(
z(Qqψ)(−z)

)
=

(
α

−[℘]q

)(
−[℘]q

(
z−℘

)
+

∞

∑
n=k

[n− ℘]qψnzn−℘
)

+

(
(1− α)(−1)℘+1

−[℘]q

)(
(−[℘]q)(−1)−℘−1z−℘ +

∞

∑
n=k

[n− ℘]qψn(−1)n−℘−1zn−℘
)

=
1

z℘
+

∞

∑
n=k

[n− ℘]q

(
α + (1− α)(−1)n

−[℘]q

)
ψnzn−℘

∆2α
q ψ(z) = ∆α

q ϕ(z)
(

∆α
q ψ(z)

)
=

1
z℘

+
∞

∑
n=k

[n− ℘]2q

(
α + (1− α)(−1)n

−[℘]q

)2
ψnzn−℘

...

∆m α
q ψ(z) = ∆α

q ψ(z)
(

∆(m−1)α
q ψ(z)

)
=

1
z℘

+
∞

∑
n=k

[n− ℘]mq

(
α + (1− α)(−1)n

−[℘]q

)m
ψnzn−℘

(5)

where 0 < q < 1, α ∈ [0, 1], ℘ ∈ N, m ∈ N and z ∈ U.

Note that when q→ 1, we obtain the original symmetric operator [31]. Obviously, the
q-SDO ∆m α

q ψ(z) ∈ Ψk(℘); also, for two functions ϕ and ψ ∈ Ψk(℘), we obtain

∆ α
q [A1 ϕ(z) + A2 ψ(z)]

=

(
α

−[℘]q

)
(zQq[A1 ϕ(z) + A2 ψ(z)]) +

(
(1− α)(−1)℘+1

−[℘]q

)
(zQq[A1 ϕ(−z) + A2 ψ(−z)])

= A1

((
α

−[℘]q

)
(zQq ϕ(z)) +

(
(1− α)(−1)℘+1

−[℘]q

)
(zQq ϕ(−z))

)

+ A2

((
α

−[℘]q

)
(zQqψ(z)) +

(
(1− α)(−1)℘+1

−[℘]q

)
(zQqψ(−z))

)
= A1∆ α

q ϕ(z) + A2∆ α
q ψ(z); A1, A2 ∈ R.

Generally, we can prove the following proposition.

Proposition 3. Let ϕ and ψ in Ψk(℘). Then

∆m ν
q [A1 ϕ(z) + A2 ψ(z)] = A1∆m α

q ϕ(z) + A2∆m α
q ψ(z).
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Two analytic functions η1 and η2 are subordinated denoting by η1 ≺ η2, if there is
an analytic function κ satisfying κ(0) = 0, |κ(z)| ≤ |z| < 1 and η1(z) = η2(κ(z)), z in U
(see [32]).

Definition 4. Let −1 ≤ν < µ ≤ 1 and τ < 0. A function ψ ∈ Ψk(℘) is selected to be in the class
Ψα

k,q(µ, ν, τ,℘), when it fulfilled the first order differential subordination inequality

(1− τ)z℘ [∆m α
q ψ(z)]−

(
τ

℘

)
z1+℘[∆m α

q ψ(z)]′ ≺ 1 + µ z
1 + ν z

:= Jµ,ν(z). (6)

The functional

Jµ,ν(`(z)) :=
1 + µ`(z)
1 + ν`(z)

and its special case of the form

Jµ,ν(z) =
1 + µz
1 + νz

are important because Jµ,ν(`(z)) is the class of Caratheodory analytic functions of order
1−µ
1−ν , that is, < {Jµ,ν(`(z))} > 1−µ

1−ν (see Janowski [33] or Jahangiri et al. [34]). The classes of
q-Janowski starlike and q-Janowski convex functions and other formulas are investigated
by many researchers Ahuja et al. [35], Ibrahim et al. [36], Srivastava et al. [37], Srivastava
and Deeb [38], and Srivastava [39].

2.4. Lemmas

We request the following preliminaries, which can be located in [32].

Lemma 5 ([32]). Let g1(z) analytic in U and g2(z) convex univalent in U with g1(0) = g2(0). If

g1(z) +
1
c
(
zg′1(z)

)
≺ g2(z)

for a non-zero complex constant number c with <(c) ≥ 0, then

g1(z) ≺ g2(z).

Lemma 6 ([32] (Theorem 3.1c. P73)).
Assume the class of holomorphic functions

H[$, n] = {g : g(z) = $ + $nzn + $n+1zn+1 + . . .},

where $ ∈ C and positive integer n.
Let { > 0 and ε = ε({, n) be the solution of the equation

ε2 =
3π/2− tan−1(n{ε2)

π
.

Moreover, let

ε1 = ε1(ε2, {, n) = ε2 + (2/π) tan−1(n{ε2), 0 < ε2 ≤ ε.

If g ∈ H[1, n], then

g(z) + {zg′(z) ≺
[

z + 1
1− z

]ε1

⇒ g(z) ≺
[

z + 1
1− z

]ε2

.
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Lemma 7 (see [40]). Let h̄, p ∈ H[$, n], where p is convex univalent in U and for k1,k2 ∈ C,k2 6=
0, then

k1h̄(z) + k2zh̄′(z) ≺ k1 p(z) + k2z p′(z)→ h̄(z) ≺ p(z).

Lemma 8 (see [41]). Let g, p ∈ H[$, n], where p is convex univalent in U such that g(z) +
k zg′(z) is univalent then

p(z) + kz p′(z) ≺ g(z) + k zg′(z)→ p(z) ≺ g(z).

3. Results

Our main results are stated in this section concerning the class Ψα
k,q(µ, ν, τ,℘). This

section is devoted into two subsections including q-differential inequalities, which deals
with the complex studies and q-differential equations, which investigates real cases.

3.1. q-Differential Inequalities

Inclusion property is indicated in the next result:

Theorem 9. Let ψ ∈ Ψk(℘). If τ2 < τ1 < 0 then

Ψα
k,q(µ, ν, τ2,℘) ⊂ Ψα

k,q(µ, ν, τ1,℘).

Proof. Let ψ ∈ Ψα
k,q(µ, ν, τ2,℘). Formulate an analytic function W ∈ U as follows:

W(z) = z℘[∆m α
q ψ(z)],

achieving W(0) = 1. A computation gives

(1− τ2)z℘ [∆mα
q ψ(z)]−

(
τ2

℘

)
z1+℘[∆m α

q ψ(z)]′ = W(z)− τ2

℘
(z W ′(z)).

Immediately, we have the inequality

W(z)− τ2

℘
(zW ′(z)) ≺ µ z + 1

ν z + 1
.

Employing Lemma 5 given that c = −τ2

℘
> 0, we have

W(z) ≺ µ z + 1
ν z + 1

, z ∈ U.

Since, 0 < τ1/τ2 < 1 and since Jµ,ν(z) is convex univalent in U, we obtain the
following arrangement:

(1− τ1)z℘ [∆m α
q ψ(z)]−

(
τ1

℘

)
z1+℘[∆m α

q ψ(z)]′

= (1− τ1)W(z)−
(

τ1

℘

)(
zW ′(z)− ℘W(z)

)
+

(
τ1

τ2
W(z)− τ1

τ2
W(z)

)
=

τ1

τ2

(
(1− τ2)W(z)−

(
τ2

℘

)
(zW ′(z)− ℘W(z))

)
+

(
1− τ1

τ2

)
W(z)

=
τ1

τ2

(
(1− τ2)z℘ [∆m α

q ψ(z)]−
(

τ2

℘

)
z1+℘[∆m α

q ψ(z)]′
)
+

(
1− τ1

τ2

)
W(z)

≺ Jµ,ν(z).

Hence, by Definition 4, we receive ψ ∈ Ψα
k,q(µ, ν, τ1,℘).
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Next, we deal with results concerning differential inequalities.

Theorem 10. Define the functional

G(z) = (1− τ)z℘ [∆m α
q ψ(z)]−

(
τ

℘

)
z1+℘[∆m α

q ψ(z)]′.

If

υ1(1 + ℘)z℘∆m α
q ψ(z) + [υ1 − υ2(1 + ℘)− υ2]z1+℘

(
∆m α

q ψ(z)
)′
− υ2z2+℘

(
∆m α

q ψ(z)
)′′

≺
(

1 + z
1− z

)ϑ1

then

G(z) ≺
(

1 + z
1− z

)ϑ2

(
ϑ1 > 0, ϑ2 > 0, υ1 = 1− τ, υ2 =

τ

℘
, ℘ < 0

)
,

where for a constant ϑ = ϑ(n) satisfies the equation

ϑ2 =
3π/2− tan−1(nϑ2)

π
,

the constants ϑ1 and ϑ2 satisfy the relation

ϑ1 = ϑ1(ϑ2, n) = ϑ2 + (2/π) tan−1(nϑ2), 0 < ϑ2 ≤ ϑ.

Proof. Is clear that G ∈ H[1, n]. A computation yields

G(z) + zG′(z) = (1− τ)z℘ [∆m α
q ψ(z)]−

(
τ

℘

)
z1+℘[∆m α

q ψ(z)]′

+ z
(
(1− τ)z℘ [∆m α

q ψ(z)]−
(

τ

℘

)
z1+℘[∆m α

q ψ(z)]′
)′

= υ1(1 + ℘)z℘∆m α
q ψ(z) + [υ1 − υ2(1 + ℘)− υ2]z1+℘

(
∆m α

q ψ(z)
)′

− υ2z2+℘
(

∆m α
q ψ(z)

)′′
≺
(

1 + z
1− z

)ϑ1

.

Then according to Lemma 6 with { = 1, we obtain G(z) ≺
(

1 + z
1− z

)ϑ2

.

Note that when n = ϑ2 = 1, ϑ1 = 3/2, we obtain the next outcome

Corollary 11. Let the assumptions of Theorem 10 hold. If the differential inequality

υ1(1 + ℘)z℘∆m α
q ψ(z) + [υ1 − υ2(1 + ℘)− υ2]z1+℘

(
∆m α

q ψ(z)
)′
− υ2z2+℘

(
∆m α

q ψ(z)
)′′

≺
(

1 + z
1− z

)3/2

(
υ1 = 1− τ, υ2 =

τ

℘
, ℘ < 0

)
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occurs, then ψ ∈ Ψα
q,k(1,−1, τ,℘).

Theorem 12. Let ψ ∈ Ψα
k,q(µ, ν, τ,℘) and g ∈ Ψk(℘). Then ψ ∗ g ∈ Ψα

k,q(µ, ν, τ,℘) if

<
(

z℘∆m α
q g(z)

)
>

1
2

. (7)

Proof. In virtue of the convolution’s behavior, a computation gives

(1− τ)z℘ [∆m α
q (ψ ∗ g)(z)]−

(
τ

℘

)
z1+℘[∆m α

q (ψ ∗ g)(z)]′

= (1− τ)
(

z℘[∆m α
q ψ(z)] ∗ z℘[∆m α

q g(z)]
)
−
(

τ

℘

)(
z1+℘[∆mα

q g(z)]′ ∗ (z℘[∆m α
q g(z)])

)
=

(
(1− τ)z℘ [∆m α

q ψ(z)]−
(

τ

℘

)
z1+℘[∆m α

q g(z)]′
)
∗
(

z℘∆m α
q g(z)

)
= G(z) ∗

(
z℘∆m α

q g(z)
)

,

where G(z) ≺ Jµ,ν(z). By the condition (7) yields
(

z℘∆m α
q g(z)

)
admits the Herglotz

integral expression [42] (
z℘∆m α

q g(z)
)
=
∫
|χ|=1

(
dv(χ)

1− χ z

)
,

where d v defines the probability measure on the unit circle |χ| = 1 and∫
|χ|=1

dv(χ) = 1.

By the convexity of Jµ,ν(z) in U, we obtain

(1− τ)z℘ [∆m α
q (ψ ∗ g)(z)]−

(
τ

℘

)
z1+℘[∆m α

q (ψ ∗ g)(z)]′

= G(z) ∗
(

z℘∆m α
q g(z)

)
=
∫
|χ|=1

G(χ z)dv (χ)

≺ Jµ,ν(z).

Hence, ψ ∗ g ∈ Ψα
k,q(µ, ν, τ,℘).

More differential and integral inequalities are presented in the next results.

Theorem 13. Define the functional G as follows:

G(z) = (1− τ)z℘ [∆m α
q ψ(z)]−

(
τ

℘

)
z1+℘[∆m α

q ψ(z)]′, τ < 0

= 1 +
∞

∑
n=1

γnzn, z ∈ U.

If <(G(z)) > 0 then the coefficient bounds are determined by the integral inequality

|γn| ≤ 2
∫ 2π

0
|e−in υ| dω(υ),

where dω is a probability measure. Moreover, if <
(
eiσG(z)

)
> 0, σ ∈ R then G(z) is convex

in U.
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Proof. To prove the first result, we assume that

<(G(z)) = <
(

1 +
∞

∑
n=1

γnzn

)
> 0.

Then in virtue of the Carathéodory positivist theorem in the class of analytic functions,
we obtain

|γn| ≤ 2
∫ 2π

0
|e−inυ| dω(θ),

where dω is a probability measure.
The second result comes as follows: since

<
(

eiσG(z)
)
> 0, z ∈ U, σ ∈ R

then according to [30], Theorem 1.6-P22, and σ ∈ R, we obtain

G(z) ≈ µ z + 1
ν z + 1

, z ∈ U.

Since
µ z + 1
ν z + 1

is convex in U, then majority fact implies that G(z) is convex in U.

The conclusion of Theorem 13 yields the sufficient conditions for functions ψ ∈ Ψk(℘)
to be in Ψα

k,q(µ, ν, τ,℘).

Theorem 14. Let ψ ∈ Ψk(℘) and

\(z) := z℘+1∆m α
q ψ(z) ≺ z

(1 + z)2 , z ∈ U.

Then \(z) is starlike univalent in U satisfying the integral inequalities(∫ z

0

√
\(ζ)

χ
dχ

)2

≺
(

2 tan−1(z1/2)
)2

,

where for 0 < |z| = $ < 1,

−π

2
< −2 tan−1√$ ≤ <

(∫ z

0

√
[(χ)

χ
dχ

)
< 2 tan−1√$ ≤ π

2
.

Proof. Consider

\(z) = z℘+1∆m α
q ϕ(z) = z +

∞

∑
n=2

bnzn, z ∈ U.

Clearly,

B(z) : =
(

2 tan−1(z1/2)
)2

= 4z−
(

8
3

)
z2 +

(
92
45

)
z3 + O(z4).

By the starlikeness of the function (see [32]-P177)

ϕ(z) =
z

(1 + z)2 = z− 2z2 + 3z3 − 4z4 + 5z5 + O(z6),

together with the majority theory, we obtain the starlikeness of \(z) ∈ U.
The second and third outcomes are direct applications of [32], Corollary 3.6a.1.
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Theorem 15. Define the functional

G(z) = (1− τ)z℘ [∆m α
q ϕ(z)]−

(
τ

℘

)
z1+℘[∆m α

q ϕ(z)]′

Let the following differential inequalities hold

−
(

z℘(z(τz[∆m α
q ϕ(z)]′′ + (2τ(℘+ 1)− ℘)[∆m α

q ϕ(z)]′) + (τ − 1)℘(℘+ 1)[∆m α
q ϕ(z)])

)
℘

≺ p2(z) + zp′2(z),

(8)

where p2(0) = 1 and convex in U. In addition, let G(z) be univalent in U such that G ∈
H[p1(0), 1] ∩Q, where Q presents the set of all (1-1) analytic functions g such that

lim
z∈∂ U

g 6= ∞

and

p1(z) + z p′1(z)

≺
−
(

z℘(z(τz[∆m α
q ϕ(z)]′′ + (2τ(℘+ 1)− ℘)[∆m α

q ϕ(z)]′) + (τ − 1)℘(℘+ 1)[∆m α
q ϕ(z)])

)
℘

.
(9)

Then
p1(z) ≺ G(z) ≺ p2(z)

and p1(z) is the best sub-dominant and p2(z) is the best dominant.

Proof. Since,

G(z) + zG′(z) =

≺
−
(

z℘(z(τz[∆m α
q ϕ(z)]′′ + (2τ(℘+ 1)− ℘)[∆m α

q ϕ(z)]′) + (τ − 1)℘(℘+ 1)[∆m α
q ϕ(z)])

)
℘

then we have the bi-subordination

p1(z) + zp′1(z) ≺ G(z) + zG′(z)

≺ p2(z) + zp′2(z).

Thus, Lemmas 7 and 8 imply the desired assertion.

3.2. q-Differential Equations

In this part, we deal with the real formula

<
(
G(z) + zG′(z)

)
= <

(
υ1(1 + ℘)z℘∆m α

q ψ(z) + [υ1 − υ2(1 + ℘)− υ2]z1+℘
(

∆m α
q ψ(z)

)′
− υ2z2+℘

(
∆m α

q ψ(z)
)′′)

= υ1(1 + ℘)xyq +

(
(1 + ℘)(2υ1 − 1)− 1

℘

)
x1−℘y′q −

(
1− υ1

℘

)
x1−2℘ y′′q ,

such that x := <(z℘), υ1 = 1− τ > 0, υ2 = (1− υ1)/℘ and <(∆m α
q ψ(z)) := yq(x). By

approximate υ1 → 2, we obtain

<
(
G(z) + zG′(z)

)
= 2(1 + ℘)xyq +

(
3(1 + ℘)− 1

℘

)
x1−℘y′q +

(
1
℘

)
x1−2℘y′′q .
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The analytic result of <(G(z) + zG′(z)) = 0 is indicated by finding the outcome of the
following second order differential equation:

2(1 + ℘)xyq +

(
3(1 + ℘)− 1

℘

)
x1−℘y′q +

(
1
℘

)
x1−2℘y′′q = 0. (10)

The analytic outcome of Equation (10) is given in the following result.

Theorem 16. The analytic solvability of Equation (10) is presented as follows:

yq(x) ≈

2

℘

2(℘+ 1)

e2x℘+1


x

℘(℘+ 1)
2(℘+ 1)

−
℘

2


×
{

c1U
(

2℘
2 + ℘

,
℘

1 + ℘
,
℘+ 2x℘+1

℘+ 1

)
+ c2L

(−1/(℘+1))
(−2℘/(℘+2)

(
(℘+ 2)x1+℘

℘+ 1

)} (11)

where U indicates the second type of confluent function and L represents the Laguerre polynomial.

Proof. Equation (10) takes the Sturm–Liouville formula (SLF). Thus, we come to the
conclusion

d
dx

e

(2 + 3℘)x1+℘

1 + ℘ y′q(x)

+ 2e

(2 + 3℘)x1+℘

1 + ℘
(
℘(1 + ℘)x2℘

)
yq(x) = 0. (12)

A computation yields the analytic solution (11).

3.3. Numerical Examples

We illustrate the following numerical examples.

Example 17. Consider ℘ = 1, then Equation (11) takes the next SLF

d
dx

(
exp(

5x2

2
)y′q(x)

)
+ 4 exp(

5x2

2
)x2 yq(x) = 0. (13)

Equation (13) yields the structure

e2x2
√

ex2 y′′q (x) + 5e2x2
√

ex2 xy′q(x) + 4e2x2
√

ex2 x2yq(x) = 0.

This leads to the formula equation

e(5x2)/2
(

4x2yq(x) + 5xy′q(x) + y′′q (x)
)
= 0

Thus, we attain the outcome (see Figure 1)

yq(x) ≈ exp(−2x2)
{

c1H−4/3(

√
3
2

x) + c2 (1F1)

(
2
3

;
1
2

;
3x2

2

)}
,

where Hn(χ) indicates the Hermite function and ( 1F1) is the hypergeometric function. Obviously,
the outcome (13) is proposed at ∂U (see Figure 1, left column). Hence, we have

<(∆m α
q ψ(z)) ≈ yq(x), x → 1.
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Assume that yq(0) = 1, which yields the outcome (see Figure 1, right column)

yq(x) ≈ exp(−2x2)

3.7

(
3.7c1H−4/31.22x−

(
1.5
√

πc1 − 3.7
)
(1F1)(

2
3

;
1
2

;
3x2

2
)

)
.

Figure 1. The solution of (13) for ℘ = 1.

Example 18. Assume that ℘ = 2, then Equation (11) becomes the SLF

d
dx

(
exp(

8x3

3
)y′q(x)

)
+ 12 exp(

8x3

3
)x4yq(x) = 0, (14)

which is equivalent to solve the differential equation

12x4yq(x) + 8x2y′q(x) + y′′q (x) = 0.

Hence, with the outcome at ∂U (see Figure 2, first row)

yq(x) = c1 exp(
−2x3

3
) x +

22/3c2 exp(
−2x3

3
)(x3)1/3 Γ(

−1
3

,
4x3

3
)

31/3 .

Figure 2. The solution of (14) for ℘ = 2.

In addition, the outcome, when yq(0) = 1 is formulated by the construction (see Figure 2,
second row)

yq(x) =
1
9

exp(
−2x3

3
)

(
c1x + 3.3xΓ1(

−1
3

,
4x3

3
)

)
.
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Example 19. Suppose that ℘ = 3, then Equation (11) becomes

d
dx

(
exp(

5x4

2
)y′q(x)

)
+ 12 exp(

5x4

2
) x6yq(x) = 0, (15)

which is equivalent to

12x6yq(x) + 10x3y′q(x) + y′′q (x) = 0.

Thus, with the outcome approximating to the boundary of U (see Figure 3, first column)

yq(x) ≈ c1 exp(
−x4

2
)x + c2 exp(

−x4

2
) x Γ(

−1
4

,
3x4

2
)

yq(x) ≈ c12.718(−0.5x4)x + 1.1066 c2 2.718(−0.5x4)(x4)(1/4)Γ(−0.25, 1.5x4).

In addition, the outcome when yq(0) = 1 is formulated by the construction (see Figure 3,
second column)

yq(x) ≈ 1
8

exp(
−x4

2
)

(
c1x + 1.68(3x4)1/4Γ(

−1
4

,
3x4

2
)

)
.

Figure 3. The solution of (15) for ℘ = 3.

Proposition 20. If
<
(
G(z) + zG′(z)

)
> 0, z ∈ U (16)

then the equation

2(1 + ℘)xyq +

(
3(1 + ℘)− 1

℘

)
x1−℘y′q +

(
1
℘

)
x1−2℘y′′q = k, k > 0 (17)

has a positive solution.

Proof. In view of the assumption (16) together with Lemma 6 (the first part), we obtain
<(G) > 0. This yields that <(∆m α

q ψ(z)) = yq(x) > 0, which means that Equation (17) has
a positive outcome.
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4. Conclusions

From above, we expressed a new quantum symmetric differential operator (q-SDO)
related to a class of analytic function with the property of multivalent meromorphically in
the open unit disk. We investigated two different concepts, q-differential inequalities

p1(z) ≺ G(z) + zG′(z) ≺ p2(z)

of a complex variable and the real cases of q-differential equations corresponding to the
same class of analytic functions

<(G(z) + zG′(z)) = 0.

The functional G(z) is defined by using a symmetric differential operator in terms of
quantum calculus formulating by

(1− τ)z℘ [∆m α
q ψ(z)]−

(
τ

℘

)
z1+℘[∆m α

q ψ(z)]′.

Some geometric properties are investigated For future investigations, we suggest
another class of analytic functions to define a new symmetric differential operator, such as
harmonic and multivalent harmonic functions.
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