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Abstract: In this paper, we propose a semi-implicit difference scheme for solving one-dimensional
nonlinear space-fractional diffusion equations. The method is first-order accurate in time and second-
order accurate in space. It uses a fractional central difference formula and the backward Euler method
to approximate its space and time derivatives, respectively. Stability and convergence properties
of the proposed scheme are proved with the help of a discrete Grönwall inequality. Moreover,
we extend the method to the solution of two-dimensional nonlinear models. A fast matrix-free
implementation based on preconditioned Krylov subspace methods is presented for solving the
discretized linear systems. The resulting fast preconditioned semi-implicit difference scheme reduces
the memory requirement of conventional semi-implicit difference schemes from O(N2

s ) to O(Ns)

and the computational complexity from O(N3
s ) to O(Ns log Ns) in each iterative step, where Ns is

the number of space grid points. Experiments with two numerical examples are shown to support
the theoretical findings and to illustrate the efficiency of our proposed method.

Keywords: nonlinear space fractional diffusion equation; semi-implicit scheme; stability analysis;
Krylov subspace methods

1. Introduction

In this paper, we are interested in developing efficient numerical solutions of strongly
nonlinear space-fractional diffusion equations (NSFDEs) of the following form:

∂u(x,t)
∂t = a(u) ∂αu(x,t)

∂|x|α + f (x, t), (x, t) ∈ (0, Lx)× (0, T],

u(x, 0) = φ(x), x ∈ [0, Lx],
u(0, t) = ϕ(t), u(Lx, t) = ψ(t), t ∈ [0, T],

(1)

where a(u), f (x, t), φ(x), ϕ(t), ψ(t) are known functions. Function u(x, t) may represent,
for example, the concentration of a particle plume undergoing anomalous diffusion. The
diffusion coefficient a(u) is assumed to be positive, and the forcing function f (x, t) repre-
sents the source or sink term [1,2]. In addition, we assume that Equation (1) has a smooth
solution u(x, t), and that there exist real positive numbers ε1, ε2, ε, a0, a1 and L satisfying
the following:

0 < a0 ≤ a(u(x, t) + ε1) ≤ a1, (2)

|a(u(x, t) + ε1)− a(u(x, t) + ε2)| ≤ L|ε1 − ε2|, (3)
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where |ε1| ≤ ε, |ε2| ≤ ε, and (x, t) ∈ [0, Lx]× [0, T]. Moreover, the symbol
∂α

∂|x|α denotes

the Riesz fractional derivative operator [3–5] for 1 < α ≤ 2, defined as follows:

∂αu(x, t)
∂|x|α = − 1

2 cos
(

απ
2
)
Γ(2− α)

∂2

∂x2

∫ ∞

−∞
|x− ξ|1−αu(ξ, t)dξ, (4)

where Γ(·) is the Gamma function.
In the past few decades, a significant amount of research work has been devoted

to the analysis and solution of fractional partial differential equations (fPDEs) especially
for modeling anomalous diffusion [6,7], subdiffusion and and superdiffusion processes
that can be observed in many real physical systems, such as heat transfer problems
and wave analysis [8,9]. Space fractional equations are obtained by replacing the tra-
ditional space derivative with a fractional derivative in the integer-order diffusion equation
and can describe heterogeneous substances with memory and genetic properties very
effectively [10]. Closed-form analytic solutions are available only for limited classes of
fPDEs. For solving more general equations, the only viable approach is to use discretization
methods such as finite difference [11–15], finite element [16,17], finite volume [18,19] and
spectral [20] methods.

The Riemann–Liouville fractional derivative is often used to model the dynamics of
discrete systems with long-range interaction. Several studies have applied the weighted
and shifted Grünwald difference (WSGD) formula to approximate the Riemann–Liouville
derivative; see [14,21,22] for details. By using the WSGD formula for two-sided fractional
derivatives combining the compact technique, Hao et al. presented a fourth-order differ-
ence approximation for the space fractional derivatives [23]. In addition, Çelik and Duman
used a fractional centered difference operator to approximate the Riesz fractional derivative
with second-order accuracy and to solve the Riesz SFDE (RSFDE) on a finite domain [24].
Later, Yang et al. [25] used the Diethelm method [15] to derive a new O(∆x3−α) approx-
imation for discretizing the Riesz fractional derivatives of order α ∈ (1, 2), where ∆x is
the step size. Then, a new finite difference scheme for solving the RSFDE was obtained
by discretizing the first-order time derivative using the Crank–Nicolson (CN) method.
In contrast with the classical diffusion operator ∆, Riesz fractional derivative [3,5] is a
special linear combination of left- and right-sided Riemann–Liouville fractional deriva-
tives. By exploiting this property, Ding and Li [4] established a novel class of high-order
numerical algorithms for Riesz derivatives through constructing new generating functions.
In 2018, Lin et al. [26] studied the CN temporal discretization with various high-order
spatial difference schemes for RSFDEs with variable diffusion coefficients and gave the
unconditional stability and convergence analysis for temporally second-order and spatially
jth-order (j = 1, 2, 3, 4) difference schemes for such equations with variable coefficients.
In 2019, Lin et al. [27] studied the CN alternative direction implicit (CN-ADI) method
for two-dimensional RSFDEs with nonseparable coefficients. They showed under mild
assumptions the unconditional stability of the CN-ADI method in discrete `2-norm and
the consistency of cross perturbation terms arising from the CN-ADI method. We point the
reader to [3,12,13,28] for other recent works on the numerical solution of fPDEs with the
Riesz fractional derivative.

Due to their non-local nature, numerical approximations of space fractional operators
generally lead to dense matrices. Conventional direct solution methods for linear systems
based on variants of the Gaussian elimination algorithm may not be affordable to use
because of their high computational complexity and large memory costs. The quest for fast
algorithms for solving linear systems originated in the numerical discretization of fPDEs
has become a topic of great interest in the recent literature on numerical methods for fPDEs.
Lin et al. [29] proposed a splitting preconditioner for fast solution of Toeplitz-like linear
systems arising from one- and two-dimensional time-dependent RSFDEs with variable
diffusion coefficients [27]. Some other preconditioners are being applied also to solving the
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discretized (non-)linear systems from the solution of linear and non-linear problems; see,
for example, [1,2,30,31] and the references therein.

In this paper, we study the efficient numerical solution of strongly NSFDEs because
they are more suitable than linear models to describe some difficult physical processes,
such as fractional distillation in nonlinear space, and when the diffusion coefficient is
related to the concentration of a particle plume [31]. However, to the best of our knowledge,
only a few studies on fast numerical schemes for nonlinear or semi-linear problems have
been published in the literature; see, for example, refs. [32–34]. Our main contribution
to the subject can be summarized as follows: first, for this class of strongly NSFDEs, we
propose a semi-implicit difference scheme that can avoid solving the discretized nonlinear
systems [35], and analyze its stability and convergence properties. Then, we extend the
method to the solution of the two-dimensional formulation of Equation (1). In order to
compute an efficient iterative solution of the discretized systems, a suitable preconditioning
technique is developed and presented in the paper. The complexity and memory require-
ment of the resulting semi-implicit difference scheme are fairly lower, compared to the
fully implicit difference scheme that requires to solve the discretized nonlinear systems,
motivating our choice of the semi-implicit difference scheme for Equation (1) [36]. More-
over, unlike the traditional (semi-)implicit difference schemes, our proposed semi-implicit
difference scheme can be implemented as a matrix-free method because it does not store
any of the coefficient matrices involved in the whole solution process.

The rest of this article is organized as follows. In Section 2, we propose a semi-implicit
difference scheme for Equation (1), and then we analyze its stability and convergence
properties. In Section 3, we extend our method to the solution of the two-dimensional
formulation of Equation (1). A fast matrix-free preconditioned iterative algorithm for
solving the discretized linear system arising in the analysis of the two-dimensional case
of Equation (1) is developed, and it is presented in Section 4. In Section 5, we report on
numerical experiments to illustrate the efficiency of the proposed semi-implicit difference
method. Some conclusions arising from this work are drawn in Section 6.

2. The Semi-Implicit Difference Scheme and Its Stability and Convergence Analysis

In this section, we propose a semi-implicit difference method to approximate the
solution of Equation (1). The proposed method uses a fractional central difference formula
to discretize the Riesz fractional derivative; it is stable and achieves first-order convergence
in time and second-order convergence in space, respectively.

2.1. The Semi-Implicit Difference Scheme

We introduce the following notation. Let M, N be positive integers, h = Lx/N, xi = ih,
tj = j∆t and ∆t = T/M. We consider the sets of grid points Ωh := {xi|0 ≤ i ≤ N}, Ω∆t :={

tj|0 ≤ j ≤ M
}

, Ωh∆t := {(xi, tj)|0 ≤ i ≤ N, 0 ≤ j ≤ M}, and let v = {vj
i |0 ≤ i ≤ N, 0 ≤

j ≤ M} be a grid function defined on Ωh∆t. To simplify the notation, we write Equation (1)
at the generic points (xi, tj) as follows:

∂u(xi, tj)

∂t
= a

(
u(xi, tj)

)∂αu(xi, tj)

∂|x|α + f (xi, tj), 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M, (5)

or, equivalently, as follows:

∂u(xi, tj)

∂t
− a
(
u(xi, tj−1)

)∂αu(xi, tj)

∂|x|α = F′(xi, tj), 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M, (6)

where F′(xi, tj) = f (xi, tj) +
[
a(u(xi, tj))− a(u(xi, tj−1))

]∂αu(xi, tj)

∂|x|α . Additionally, we in-

troduce a grid function U defined as follows:

U j
i := u(xi, tj), f j

i := f (xi, tj), 0 ≤ i ≤ N, 0 ≤ j ≤ M. (7)



Fractal Fract. 2021, 5, 230 4 of 18

By these notations, the partial derivative of u(x, t) with respect to t evaluated at point
(xi, tj) is expressed as follows:

∂u(xi, tj)

∂t
=

u(xi, tj)− u(xi, tj−1)

∆t
+ R(1)

i,j ,
U j

i −U j−1
i

∆t
+O(∆t), (8)

and the Riesz space fractional derivative as follows:

∂αu(xi, tj)

∂|x|α = −h−α∆α
hu(xi, tj) + R(2)

i,j , δα
hU j

i +O(h
2), (9)

where ∆α
hU j

i =
i

∑
k=i−N

g(α)k U j
i−k and g(α)k =

(−1)kΓ(α + 1)
Γ(α/2− k + 1)Γ(α/2 + k + 1)

; refer to [24] for

details. For brevity, we denote the following:

Rij = −R(1)
i,j − R(2)

i,j +
[
a(u(xi, tj))− a(u(xi, tj−1))

]∂αu(xi, tj)

∂|x|α . (10)

Finally, Equation (1) at grid points (xi, tj) is written as follows:

U j
i −U j−1

i
∆t

− a(U j−1
i )δα

hU j
i = f j

i + R̂ij, 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M, (11)

where the terms {R̂ij} are small and satisfy the inequality as follows:

|R̂ij| ≤ c1(∆t + h2), 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M. (12)

Since the quantities {R̂ij} are small, we can omit them. By imposing the initial-
boundary value conditions,

U0
i = φ(xj), 0 ≤ i ≤ N, (13)

U j
0 = ϕ(tj), U j

N = ψ(tj), 1 ≤ j ≤ M, (14)

the following semi-implicit difference scheme is obtained:
uj

i − uj−1
i

∆t
− a(uj−1

i )δα
h uj

i = f j
i , 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M,

u0
i = φ(xj), 0 ≤ i ≤ N,

uj
0 = ϕ(tj), uj

N = ψ(tj), 1 ≤ j ≤ M,

(15)

that requires to solve the discretized linear system at each time step.

2.2. Stability and Convergence Analysis

In this subsection, we study the stability and convergence properties of the numerical
scheme given by Equation (15). Let uj

i be the approximate solution of Equation (15), and
introduce the error function as follows:

ej
i = U j

i − uj
i , i = 0, · · · , N, j = 0, · · · , M,

defined as
ej

i − ej−1
i

∆t
− a(uj−1

i )δα
h ej

i =
[

a(U j−1
i )− a(uj−1

i )
]
δα

hU j
i + R̂ij, 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M,

e0
i = 0, 0 ≤ i ≤ N,

ej
0 = 0, ej

N = 0, 1 ≤ j ≤ M,

(16)
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where |R̂ij| ≤ c2(∆t + h2). Denote Ej = [ej
1, ej

2, · · · , ej
N−1]

>, and assume the following:

‖Ej‖∞ = |e`j
| = max

1≤`≤N−1
|ej
`| (0 ≤ j ≤ M, 1 ≤ `j ≤ N − 1). (17)

To prove the stability and assess the convergence order of the scheme (15), we need
some preliminary theoretical results given in [24,35,37] that are recalled below.

Lemma 1. Let

g(α)k =
(−1)kΓ(α + 1)

Γ(α/2− k + 1)Γ(α/2 + k + 1)

be the coefficients of the centered finite difference approximation (9) for k = 0,±1,±2, . . ., and
α > −1. Then, we have the following:

(1) g(α)0 ≥ 0 and g(α)−k = g(α)k ≤ 0 for all |k| ≥ 1;

(2)
∞
∑
−∞

g(α)k = 0 and
i

∑
k=i−N, k 6=0

g(α)k ≥ −g0.

Lemma 2. (Discrete Grönwall inequality) Let {Fk | k ≤ 0} be a sequence of non-negative numbers
and let ∆t > 0 be such that the following is true:

Fk+1 ≤ (1 + c∆t)Fk + (∆t)g, k = 0, 1, 2, . . . , (18)

where both c and g are non-negative scalars. Then, the following inequality holds:

Fk ≤ eck∆t
(

F0 +
g
c

)
(19)

with k = 0, 1, . . . .

At this stage, the following result on the numerical stability of the proposed one
dimensional semi-implicit difference scheme can be proved:

Theorem 1. Suppose that {uj
i | 0 ≤ j ≤ M, 0 ≤ i ≤ N} is the solution of the semi-implicit

difference scheme (15), and define the following:

C1 =
c1

LMα
exp(LMαT), Mα =

∣∣∣∣∣∣ max
0≤x≤L,
1≤t≤T

∂αu(x, t)
∂|x|α

∣∣∣∣∣∣. (20)

Then, if ∆t and h satisfy the following condition

∆t ≤ ε

2C1
, h ≤

√
ε

2C1
, (21)

the semi-implicit difference scheme (15) is stable, and the following inequality holds:

‖ek‖∞ ≤ C1(∆t + h2), 0 ≤ k ≤ n. (22)

Proof. According to Equation (15), we know that ‖ek‖∞ ≤ C1(∆t + h2) holds for k = 0. Sup-
pose that the inequality (22) holds for 0 ≤ k ≤ l, when ∆t and h satisfy the condition (21) and

‖ek‖∞ ≤ ε, 0 ≤ k ≤ l. (23)

Therefore, the following holds:

a0 ≤ a(uj
i) ≤ a1, |a(U j

i )− a(uj
i)| ≤ L|ej

i |, 1 ≤ i ≤ N − 1, 0 ≤ j ≤ l. (24)
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From Equation (17), we have the following:

ej
i − ej−1

i = ∆ta(uj−1
i )δα

h ej
i + ∆t

[
a(U j−1

i )− a(uj−1
i )

]
δα

hU j
i + ∆tR̂ij,

where δα
h ej

i = −h(−α)
i

∑
k=i−N

g(α)k ej
i−k. Thus we obtain the following:

ej
i − ej−1

i = −∆t
hα

a(uj−1
i )

[
i

∑
k=i−N, k 6=0

g(α)k ej
i−k + g(α)0 ej

i

]
+ ∆t

[
a(U j−1

i )− a(uj−1
i )

]
δα

hU j
i + ∆tR̂ij.

So, we rewrite Equation (17) to obtain the following:

[
1 + µg(α)0 a(uj−1

i )
]
ej

i = µa(uj−1
i )

i

∑
k=i−N, k 6=0

g(α)k ej
i−k + ej−1

i + ∆t
[

a(U j−1
i )− a(uj−1

i )
]
δα

hU j
i + ∆tR̃ij, (25)

where µ = ∆t/hα. If we take infinite norms on both sides of Equation (25), and we set
i = `i obtained so that[
1 + µg0a(uj−1

i )
]
‖ej‖∞ ≤ µa(uj−1

i )g(α)0 ‖e
j‖∞ + ‖ej−1‖∞ + ∆tLMα‖ej−1‖∞ + c1∆t(∆t + h2)

for 1 ≤ i ≤ N − 1, 1 ≤ j ≤ l + 1. Thus, we have the following:

‖ej‖∞ = (1 + ∆tLMα)‖ej−1‖∞ + c1∆t(∆t + h2), 1 ≤ j ≤ l + 1.

By applying the discrete Grönwall inequality (cf. Lemma 2) to Fk = el−1, c = LMα

and g = c1(∆t + h2), we obtain the inequality as follows:

‖el+1‖∞ = exp[LMα(l + 1)∆t] ·
[
‖e0‖∞ +

c1(∆t + h2)

LMα

]
≤ c1

LMα
exp(LMαT)(∆t + h2)

, C1(∆t + h2).

The above proof shows that the semi-implicit difference scheme (15) is stable in the
discrete L∞-norm.

3. Extensions to the Two-Dimensional Problem

In this section, we extend our method to the solution of two-dimensional problems.
For this purpose, let Nx, Ny be positive integers and define a spatial partition of nodes
h = L/N, xi = ihx (i = 1, 2, · · · , Nx), yj = jhy (j = 1, 2, · · · , Ny) with step sizes hx = Lx

Nx
,

hy =
Ly
Ny

in the x-axis and y-axis, respectively, and a uniform time partition tk = k∆t
of the interval [0, T] with time step ∆t = T/M. We consider the sets of grid points
Ωh := {(xi, yj) | 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny}, Ω∆t := {tk | 0 ≤ k ≤ M}, Ωh∆t :=
{(xi, yj, tk) | 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ M}, and let u = {uk

i,j | 0 ≤ i ≤ Nx, 0 ≤ j ≤
Ny, 0 ≤ k ≤ M} be a grid function defined on Ωh∆t.

We consider the following two-dimensional problem:
∂u(x, y, t)

∂t
= a(u)

[
∂αu(x, y, t)

∂|x|α +
∂αu(x, y, t)

∂|y|α

]
+ f (x, y, t), (x, y, t) ∈ Ω× (0, T],

u(x, y, 0) = φ(x, y), (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T].

(26)
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where Ω = [0, Lx] × [0, Ly]. Upon evaluating Equation (26) at the points (xi, yj, tk), we
obtain the following discrete equation:

∂u(xi, yj, tk)

∂t
= a(u(xi, yj, tk))

[
∂u(xi, yj, tk)

∂|x|α +
∂u(xi, yj, tk)

∂|y|α

]
+ f (xi, yj, tk),

1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1, 1 ≤ k ≤ M,
(27)

which can be written equivalently as follows:

∂u(xi, yj, tk)

∂t
− a(u(xi, yj, tk−1))

[
∂αu(xi, yj, tk)

∂|x|α +
∂αu(xi, yj, tk)

∂|y|α

]
=

[
a(u(xi, yj, tk))− a(u(xi, yj, tk−1))

][∂αu(xi, yj, tk)

∂|x|α +
∂αu(xi, yj, tk)

∂|y|α

]
+ f (xi, yj, tk).

(28)

Let U be the grid function defined as follows:

Uk
i,j := u(xi, yj, tk), f k

i,j := f (xi, yj, tk), 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ M.

Thus, the partial derivative of t at the point (xi, yj, tk) is as follows:

∂u(xi, yj, tk)

∂t
=

u(xi, yj, tk)− u(xi, yj, tk−1)

∆t
+ R(1)

i,j,k =
uk

i,j − uk−1
i,j

∆t
+O(∆t),

and
∂αu(xi, yj, tk)

∂|x|α = −h−α
x ∆α

hx
u(xi, yj, tk) + R(2)

i,j,k , δα
hx

U j
i +O(h

2
x),

∂αu(xi, yj, tk)

∂|y|α = −h−α
y ∆α

hy
u(xi, yj, tk) + R(3)

i,j,k , δα
hy

U j
i +O(h

2
y),

where ∆α
hx

Uk
i,j =

i

∑
`=i−Nx

g(α)l Uk
i−`,j, ∆α

hy
Uk

i,j =
j

∑
`=j−Ny

g(α)` Uk
i,j−` and g(α)` =

(−1)`Γ(α+1)
Γ(α/2−`+1)Γ(α/2+`+1) .

We denote for simplicity the following:

Ri,j,k = −R(1)
i,j,k − a(u(xi, yj, tk−1))R(2)

i,j,k − a(u(xi, yj, tk−1))R(3)
i,j,k + R′, (29)

where R′ =
[
a(u(xi, yj, tk))− a(u(xi, yj, tk−1))

][∂αu(xi, yj, tk)

∂|x|α +
∂αu(xi, yj, tk)

∂|y|α

]
, so that

the equation can be rewritten as follows:

Uk
i,j −Uk−1

i,j

∆t
− a(Uk−1

i,j )
[
δα

hx
Uk

i,j + δα
hy

Uk
i,j

]
= f k

i,j + Ri,j,k, (30)

with 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1, 1 ≤ k ≤ M.
Observe that the terms Ri,j,k are small. Omitting the quantities Ri,j,k in the previous

expression, and imposing the initial-boundary value conditions,

U0
i,j = φ(xi, yj), 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny;

Uk
0,j = Uk

Nx ,j = ϕ(tk), Uk
i,0 = Uk

i,Ny
= ϕ(tk), 0 ≤ k ≤ M,

(31)

the following semi-implicit difference scheme is obtained, where by uk
i,j we denote the

approximate solution of Equation (31) at the points (xi, yj, tk):
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
uk

i,j−uk−1
i,j

∆t − a(uk−1
i,j )

[
δα

hx
uk

i,j + δα
hy

uk
i,j

]
= f k

i,j, 1 ≤ i ≤ Nx − 1, 1 ≤ i ≤ Ny − 1, 1 ≤ k ≤ M

u0
i,j = φ(xi, yj), 1 ≤ i ≤ Nx − 1, 1 ≤ i ≤ Ny − 1,

uk
0,j = uk

Nx ,j = ϕ(tk), uk
i,0 = uk

i,Ny
= ψ(tk), 1 ≤ k ≤ M.

(32)

Below, we analyze stability and convergence properties of the two-dimensional semi-
implicit difference scheme given by Equation (32). We define the following:

ek
i,j = Uk

i,j − uk
i,j, i = 0, · · · , Nx, j = 1, · · · , Ny, k = 0, · · · , M,

the error satisfying the following equations:

ek
i,j − ek−1

i,j

∆t
− a(uk−1

i,j )
[
δα

hx
ek

i,j + δα
hy

ek
i,j

]
=
[

a(Uk−1
i,j )− a(uk−1

i,j )
][

δα
hx

Uk
i,j + δα

hy
Uk

i,j

]
+ Ri,j,k,

1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1, 1 ≤ k ≤ M,
e0

i,j = 0, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny,

ek
0,j = ek

Nx ,j = 0, ek
i,0 = ek

i,Ny
= 0, 1 ≤ k ≤ M.

(33)

By a similar proof to Theorem 1, the following result is established about the numerical
stability of the semi-implicit difference scheme given by Equation (26).

Theorem 2. Suppose that {uk
i,j| 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ M} is the solution of the

semi-implicit difference scheme (25), and define the following:

C2 =
c2

LMα
exp(LMαT), Mα =

∣∣∣∣∣∣ max
0≤x,y≤L,

1≤t≤T

[
∂αu(x, t)

∂|x|α +
∂αu(x, y, t)

∂|y|α

]∣∣∣∣∣∣. (34)

Then, when constants ∆t, h (= hx = hy) satisfy the following condition,

∆t ≤ ε

2C2
, h ≤

√
ε

2C2
, (35)

the semi-implicit difference scheme (32) is stable and as follows:

‖ek‖∞ ≤ C2(∆t + h2), 0 ≤ k ≤ M. (36)

4. Fast Implementation of the Semi-Implicit Difference Scheme

In this section, we present a fast matrix-free implementation of the proposed one-
dimensional and two-dimensional semi-implicit difference schemes that use the precondi-
tioned biconjugate gradients stabilized (BiCGSTAB) method [38] to iteratively solve the
nonsymmetric linear system with a Toeplitz-like structure arising from the discretization.
Such an implementation enables us to reduce both the algorithmic complexity and the
memory requirements for the solution significantly.

First, we analyze the properties of the coefficient matrices of the discretized linear systems.

4.1. One-Dimensional Coefficient Matrix

By rewriting Equation (15) in the following form,

uj − uj−1

∆t
=

1
hα

D(j−1)Auj +
1
hα

D(j−1)vj−1 + f j, (37)
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where vj−1 = [g(α)1 uj−1
0 + g(α)−(N−1)u

j
N , g(α)2 uj−1

0 + g(α)−(N−2)u
j
N , · · · , g(α)N−1uj−1

0 + g(α)−1 uj
N ]
>, we

derive the following matrix form of the semi-implicit difference scheme:(
I − ∆t

hα
D(j−1)A

)
uj = uj−1 + ∆tFj, (38)

where I is an identity matrix of suitable order, Fj = 1
hα D(j−1)vj−1 + f j, uj = [uj

1, uj
2, · · · , uj

N ]
>,

D(j−1) =


a(uj−1

1 )

a(uj−1
2 )

. . .

a(uj−1
N−1)

 ∈ R(N−1)×(N−1),

is a diagonal matrix and

A =


g(α)0 g(α)−1 · · · g(α)−(N−2)

g(α)1 g(α)0 · · · g(α)−(N−3)
...

...
...

g(α)N−2 g(α)N−3 · · · g(α)0


is a symmetric negative definite Toeplitz matrix [3,35], which can be represented by a vector
containing the elements of the first column, i.e., its storage requirement is of O(N).

4.2. Two-Dimensional Coefficient Matrix

The structure of the two-dimensional coefficient matrix is more complex than in the
one-dimensional case. By writing Equation (26) in the following equivalent form

uk − uk−1

∆t
= D̃(k−1)

[
W(α)

x ⊗ Iy + Ix ⊗W(α)
y

]
uk + f k

i,j, (39)

in which uk = [uk
11, · · · , uk

Nx−1,1, uk
1,2, · · · , uk

Nx−1,2, · · · , uk
1,Ny−1, · · · , uk

Nx−1,Ny−1]
>, we can

derive the discretized linear system as follows:(
I − ∆t

hα
D̃(k−1) Ã

)
uk = uk−1 + ∆t f k, (40)

where Ã = W(α)
x ⊗ Iy +W(α)

y ⊗ Ix, Iq (q ∈ {x, y}) is also an identity matrix of suitable order
and f k = [ f k

11, · · · , f k
Nx−1,1, f k

12, · · · , f k
Nx−1,2, · · · , f k

1,Ny−1, · · · , f k
Nx−1,Ny−1]

> and

D̃(k−1) =



a(uk−1
11 )

. . .
a(uk−1

Nx−1,1)
. . .

a(uk−1
1,Ny−1)

. . .
a(uk−1

Nx−1,Ny−1)


.

is a diagonal matrix. In order to simplify the calculation, we choose h = hx = hy (i.e.,

Nx = Ny = N) and thus Wα
x = W(α)

y = W(α) = A.
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According to Lemma 2, W(α) is a symmetric Toeplitz matrix of order (N − 1). We
convert W(α) into a τ-matrix defined as follows:

τ(W(α)) = W(α) − HN−1,

where HN−1 is a Hankel matrix with constant entries along antidiagonals, namely[
g(α)2 , g(α)3 , · · · , g(α)N−2, 0, 0, 0, g(α)N−2, · · · , g(α)3 , g(α)2

]
.

Notice that the τ-matrix can be diagonalized by the sine transform matrix SN−1 [39]
as follows:

τ(W(α)) = SN−1ΛSN−1, (41)

where Λ is the diagonal matrix consisting of the eigenvalues of τ(W(α)). The entries of
SN−1 are given by the following:

[SN−1]i,j =
√

2
N sin

(
πij
N

)
, 1 ≤ i, j ≤ N − 1.

A simple calculation shows that SN−1 is a symmetric orthogonal matrix, that is,

S−1
N−1 = S>N−1 = SN−1.

Upon replacing W(α) with τ(W(α)) in the expression of Ã, and using the properties of
the Kronecker product, we derive the following:

P = τ(W(α))⊗ I + I ⊗ τ(W(α))

= (SN−1 ⊗ I)[(Λ⊗ I) + (I ⊗Λ)](SN−1 ⊗ I).
(42)

Finally, we introduce matrices A andM defined as follows:

A = I − ∆tD̃(k−1) Ã and Pτ = I − ∆td(k−1)P, (43)

where constant d(k−1) is defined as follows:

d(k−1) : =
a(uk−1

11 ) + · · ·+ a(uk−1
1,N−1) + · · ·+ a(uk−1

N−1,1) + · · ·+ a(uk−1
N−1,N−1)

(N − 1)2 > 0, (44)

due to the condition (2).
Under these assumptions, we can prove the following property of the preconditioner

Pτ that guarantees the invertibility of Pτ :

Proposition 1. The preconditioner Pτ defined in (43) is symmetric positive definite.

Proof. From Equation (41) and Lemma 3.2 in [30], we know that all the eigenvalues of
τ(W(α)) are negative as are those of matrix W(α); that is, the matrix P defined in (42) is negative
definite. Recalling the definition of the preconditioner Pτ given by Equation (43), and that
∆t, d(k−1) > 0, we can conclude that the preconditioner Pτ is symmetric positive definite. �

Henceforth, for clarity, we rewrite Equation (40) as the following linear system:

Au = b, (45)

where the right-hand side vector is b = uk−1 + ∆t f k. Since the coefficient matrix A is
non-symmetric, we can solve it by the preconditioned BiCGSTAB method described below:
(Algorithm 1).
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Algorithm 1 The preconditioned BiCGSTAB method.

1: x0 is an initial guess; r0 = b−Au0;
2: r0 is an arbitrary vector, such that
3: (r0, r0) 6= 0, e.g., r0 = r0; ρ0 = α =

ω0 = 1;
4: v0 = p0 = 0;
5: for i = 1, 2, . . . , do
6: ρi = (r0, ri−1); β = (ρi/ρi−1)(α/ωi−1);
7: pi = ri−1 + β(pi−1 −ωi−1vi−1);
8: Solve y from Pτy = pi;
9: vi = Ay

10: α = ρi/(r0, vi);
11: s = ri−1 − αvi;
12: Solve z from Pτz = s;
13: t = Az;
14: ωi = (P−1

τ t, P−1
τ s)/(P−1

τ t, P−1
τ t);

15: ui = ui−1 + αy + ωiz;
16: if ui is accurate enough then quit;
17: ri = s−ωit
18: end for

At each iteration of the preconditioned BiCGSTAB algorithm, two matrix-vector
products need to be computed, i.e., Av and P−1

τ v, where v represents an arbitrary vector.
The matrix–vector product

Av = (I − ∆tD̃(k−1) Ã)v = v− ∆tD̃(k−1)(Ãv), (46)

is calculated as follows:

Ãv = (W(α) ⊗ I + I ⊗W(α))v

= (W(α) ⊗ I)v + (I ⊗W(α))v

= W(α) ·V + V ·W(α),

(47)

where V = [v1, v2, · · · , vN−1], vi ∈ RN−1 and v = vec(V). Obviously, this problem
is transformed into a matrix–vector operation with matrix W(α) and vector v. On the
one hand, the calculation W(α) · V is expressed as W(α) · [v1, v2, · · · , vN−1] one by one
and costs O(n log n) arithmetic operations, where n = (N − 1)2. On the other hand, the
operation V ·W(α) is computed as W(α) ·V>, and thus, it can be carried out at the same with
O(n log n) complexity. Similarly, since matrix P can be diagonalized, the preconditioner
P−1

τ can be diagonalized too, so the inverse of Pτ exists. The preconditioning operation
P−1

τ v is as follows:

P−1
τ v =

[
I − ∆td(k−1)P

]−1
v

= (SN−1 ⊗ I)
[

I − ∆td(k−1)(Λ⊗ I + I ⊗Λ)
]−1

(SN−1 ⊗ I)v.

In conclusion, each iteration of the preconditioned BiCGSTAB iterative algorithm to
solve Equation (45) requires O(n log n) arithmetic operations in total and can be imple-
mented as a matrix-free manner.

It is worth noting that, although the preconditioner P−1
τ is well defined according to

Proposition 1, due to the presence of nonlinear diffusion coefficients and the nonsymmetry
of the discretized linear systems (40), it is not simple to derive theoretically the eigenvalue
distribution of the preconditioned matrix [33]. However, in the next section, we provide
numerical evidence of the favorable clustering of the eigenvalues of the preconditioned
matrices for some problems.

5. Numerical Experiments

In this section, two numerical experiments are presented to illustrate the efficiency
of the proposed preconditioned semi-implicit difference scheme, and to support our theo-
retical findings. All experiments are performed in MATLAB R2019b on Intel(R) Core(TM)
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i5-10210U CPU @ 1.60∼2.11 GHz and 8.00 GB of RAM. On occasion, one can reduce
non-homogeneous Dirichlet boundary conditions to homogeneous Dirichlet boundary
conditions by using the following transformation:

u(x, t) = W(x, t) + V(x, t), (48)

where V(x, t) = φ(t) +
[Φ(t)− ϕ(t)]x

Lx
and W(x, t) is an unknown function such that

W(0, t) = 0, W(Lx, t) = 0.

Example 1. For the first problem, we consider Equation (1) with Lx = T = 1, a(u) = u2,
φ(x) = x2(1− x)2, ϕ(t) = ψ(t) = 0, and the source term f (x, t) is computed as follows:

f (x, t) = α(1 + t)α−1x2(1− x)2 +
a(u)(1 + t)α

2 cos(πα/2)

{
Γ(3)

Γ(3− α)

[
x2−α + (1− x)2−α

]
−

2Γ(4)
Γ(4− α)

[
x3−α + (1− x)3−α

]
+

Γ(5)
Γ(5− α)

[
x4−α + (1− x)4−α

]}
.

This problem can be viewed as a modification of [1,24], and its exact solution is u(x, t) =
(1 + t)αx2(1− x)2. Denoting by un

j the numerical solution, we define the L∞-norm errors and the
L2-norm errors as follows:

E∞(∆t, h) = max
1≤j≤M

‖u(ih, j∆t)− uj
i‖∞, E2(∆t, h) = max

1≤j≤M
‖u(ih, j∆t)− uj

i‖,

respectively, and the space and time convergence orders as follows:

ratet
1 = log2

(
E∞(2∆t,h)
E∞(∆t,h)

)
, ratex

1 = log2

(
E∞(4h2,2h)

E∞(h2,h)

)
,

ratet
2 = log2

(
E2(2∆t,h)
E2(∆t,h)

)
, ratex

2 = log2

(
E2(4h2,2h)

E2(h2,h)

)
.

The data reported in Tables 1 and 2 refer to the convergence results obtained by the fast
preconditioned iterative algorithm and by a direct method (i.e., the backslash “\” operator
in MATLAB) for solving the non-symmetric discretized linear system, respectively. Because
of the small size of the linear systems presented in Table 2, the cost of direct solvers is
affordable [16]. Table 1 presents the maximum errors and the corresponding convergence
orders in time of the semi-implicit difference scheme when N = 512, for α = 1.20, 1.50, 1.90,
respectively. The numerical results show a convergence order approximately equal to 1
in time for the semi-implicit difference scheme. Meanwhile, the experiments reported in
Table 2 confirm that the semi-implicit difference scheme is convergent with second-order
accuracy in space. These results are consistent with the theoretical analysis presented in
Section 2.

Table 1. The errors and temporal convergence orders when N = 512.

α M E∞(∆t, h) ratet
1 E2(∆t, h) ratet

2
8 1.6125e − 03 – 8.6746e − 04 –

16 7.9547e − 04 1.0194 4.2894e − 04 1.0160
1.20 32 3.9507e − 04 1.0097 2.1329e − 04 1.0080

64 1.9688e − 04 1.0048 1.0635e − 04 1.0040
128 9.8288e − 05 1.0022 5.3109e − 05 1.0018
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Table 1. Cont.

α M E∞(∆t, h) ratet
1 E2(∆t, h) ratet

2
8 4.7362e − 03 – 2.6365e − 03 –

16 2.3256e − 03 1.0261 1.2984e − 03 1.0219
1.50 32 1.1525e − 03 1.0128 6.4439e − 04 1.0107

64 5.7374e − 04 1.0063 3.2102e − 04 1.0053
128 2.8628e − 04 1.0030 1.6023e − 04 1.0025

8 1.2993e − 02 – 7.4538e − 03 –
16 6.3112e − 03 1.0417 3.6319e − 03 1.0373

1.90 32 3.1120e − 03 1.0201 1.7935e − 03 1.0179
64 1.5455e − 03 1.0098 8.9131e − 04 1.0088

128 7.7025e − 04 1.0047 4.4437e − 04 1.0042

Table 2. The errors and spatial convergence orders when M = N2.

α N E∞(∆t, h) ratex
1 E2(∆t, h) ratex

2
4 1.1988e − 03 – 6.3875e − 04 –
8 2.9694e − 04 2.0133 1.5674e − 04 2.0269

1.20 16 7.4054e − 05 2.0035 3.9116e − 05 2.0025
32 1.8502e − 05 2.0009 9.7746e − 06 2.0006
64 4.6248e − 06 2.0002 2.4434e − 06 2.0001
4 3.5560e − 03 – 1.9379e − 03 –
8 8.7005e − 04 2.0489 4.7737e − 04 2.0213

1.50 16 2.1633e − 04 2.0120 1.1889e − 04 2.0055
32 5.4010e − 05 2.0030 2.9695e − 05 2.0013
64 1.3498e − 05 2.0007 7.4219e − 06 2.0004
4 1.0923e − 02 – 6.1965e − 03 –
8 2.6106e − 03 2.0649 1.5174e − 03 1.9285

1.90 16 6.4524e − 04 2.0165 3.7556e − 04 1.9873
32 1.6085e − 04 2.0041 9.3655e − 05 1.9954
64 4.0184e − 05 2.0010 2.3399e − 05 1.9992

Example 2. For the second problem, we consider the two-dimensional nonlinear Riesz space-
fractional diffusion problem, which is modified from [34] as follows:

∂u(x, y, t)
∂t

= a(u)
[

∂u(x, y, t)α

∂|x|α +
∂u(x, y, t)α

∂|y|α

]
+ f (x, y, t), (x, y) ∈ Ω, 0 < t ≤ 1

u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0, 0 ≤ t ≤ 1
u(x, y, 0) = x3(1− x)3y3(1− y)3, (x, y) ∈ Ω,

(49)

where Ω = (0, 1)× (0, 1), a(u) = |u|+ 10, and

f (x, y, t) = −u(x, y, t)+
a(u)

2 cos( απ
2 )

e−t
{

y3(1− y)3[g1(x)− 3g2(x) + 3g3(x)− g4(x)]

+ x3(1− x)3[g1(y)− 3g2(y) + 3g3(y)− g4(y)]
} (50)

where

gi(x) =
Γ(i + 3)

Γ(i + 3− α)

[
xi+2−α + (1− x)i+2−α

]
, i = 1, 2, 3, 4. (51)

The exact solution for this problem is u(x, y, t) = e−tx3(1− x)3y3(1− y)3.
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The data reported in Tables 3 and 4 are convergence results obtained with the precon-
ditioned iterative algorithm. Table 3 presents the maximum errors and the corresponding
convergence orders in time of the semi-implicit difference scheme when N = 32, for
α = 1.20, 1.50, 1.90, respectively. The numerical results exhibit a convergence order approx-
imately equal to 1 in time for the semi-implicit scheme. Meanwhile, Table 4 shows that the
semi-implicit scheme is convergent with second-order accuracy in space. These results are
consistent with the theoretical analysis presented in Section 3.

Table 3. The errors and temporal convergence orders when N = 32.

α M E∞(∆t, h) ratet
1 E2(∆t, h) ratet

2

1.20

4 1.8489e − 05 – 6.3044e − 06 –
8 9.4453e − 06 0.9690 3.2208e − 06 0.9689

16 4.7734e − 06 0.9846 1.6277e − 06 0.9846
32 2.3998e − 06 0.9921 8.1828e − 07 0.9922

1.50

4 1.8488e − 05 – 6.3044e − 06 –
8 9.4452e − 06 0.9689 3.2207e − 06 0.9690

16 4.7732e − 06 0.9846 1.6276e − 06 0.9846
32 2.3996e − 06 0.9922 8.1822e − 07 0.9922

1.90

4 1.8489e − 05 – 6.3045e − 06 –
8 9.4456e − 06 0.9690 3.2208e − 06 0.9690

16 4.7737e − 06 0.9845 1.6278e − 06 0.9845
32 2.4001e − 06 0.9920 8.1838e − 07 0.9921

Table 4. The errors and spatial convergence orders when M = N2.

α N E∞(∆t, h) ratex
1 E2(∆t, h) ratex

2

1.20

4 4.7734e − 06 – 1.6181e − 06 –
8 1.2036e − 06 1.9877 4.1036e − 07 1.9793

16 3.0226e − 07 1.9943 1.0299e − 07 1.9943
32 7.6388e − 08 1.9844 2.6021e − 08 1.9855

1.50

4 4.7732e − 06 – 1.6180e − 06 –
8 1.2034e − 06 1.9878 4.1030e − 07 1.9795

16 3.0205e − 07 1.9943 1.0298e − 07 1.9943
32 7.6178e − 08 1.9873 2.5954e − 08 1.9883

1.90

4 4.7738e − 06 – 1.6182e − 06 –
8 1.2039e − 06 1.9874 4.1046e − 07 1.9791

16 3.0264e − 07 1.9920 1.0314e − 07 1.9926
32 7.6769e − 08 1.9790 2.6120e − 08 1.9814

Table 5 shows comparative experiments between a direct method and two fast iterative
algorithms for the solution of the discretized linear system at each step of the implicit
difference scheme for α = 1.20, 1.60, 1.70, 1.90. It presents the total number of iterations
(Iter) and the solution time (CPU in seconds) when M = N2. Obviously, we can see from
the table that the two iterative algorithms are significantly faster than a direct algorithm,
motivating our quest for fast solvers. As seen from Figure 1, the proposed preconditioner
Pτ can be indeed efficient to accelerate the convergence of the preconditioned BiCGSTAB
method in terms of the clustering eigenvalues, i.e., most eigenvalues of the preconditioned
matrices increasingly gather around 1 when we take α→ 2.
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Figure 1. The eigenvalue distributions of both original and preconditioned matrices with N = 26,
M = N2, first line: α = 1.2; second line: α = 1.5; third line: α = 1.9).
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Table 5. Total number of iterations and CPU time (in seconds) when M = N2.

α N
Direct I Pτ

CPU Iter CPU Iter CPU
16 0.026 15.0 0.041 4.0 0.021
32 1.635 24.0 0.350 4.0 0.094

1.20 64 130.982 37.0 2.354 5.0 0.532
128 23,599.059 50.4 41.207 5.0 5.248
256 out of memory 59.9 844.715 5.0 38.040
16 0.024 18.0 0.044 4.0 0.023
32 1.614 33.0 0.479 4.0 0.094

1.60 64 117.905 59.4 3.764 4.0 0.430
128 24,804.137 95.1 78.685 4.8 4.962
256 out of memory 154.3 706.824 5.0 38.935
16 0.020 19.0 0.050 3.0 0.016
32 1.562 36.0 0.522 4.0 0.096

1.70 64 751.896 64.0 4.065 4.0 0.428
128 32,105.020 109.4 89.902 4.0 4.185
256 out of memory 188.2 858.853 4.0 30.393
16 0.021 20.0 0.051 3.0 0.017
32 1.689 43.7 0.636 3.0 0.071

1.90 64 263.742 75.3 4.785 4.0 0.426
128 22,645.044 144.7 387.991 4.0 4.211
256 out of memory 273.0 5633.458 4.0 30.324

Since it is proved that the convergence order of the proposed semi-implicit different
scheme is O(∆t + h2), the Richardson extrapolation can be used to improve the temporal
convergence order. For the sake of clarity, we do the following:

(1) We apply the numerical scheme (24) with time step ∆t, and we compute the solution
Un

ij(hx, hy, ∆t). According to the error analysis of the method, the following holds:

u(xi, yj, tn)−Un
i,j(hx, hy, ∆t) = O(h2

x + h2
y) + c∆t +O(∆t2), (52)

(2) Another run with the scheme (24) is carried out using ∆t
2 , and a new solution

U2n
ij

(
hx, hy, ∆t

2

)
is computed on the fine temporal grid. According to the error analysis,

we have the following:

u(xi, yj, tn)−U2n
i,j

(
hx, hy,

∆t
2

)
= O(h2

x + h2
y) + c

∆t
2

+O
((

∆t
2

)2
)

, (53)

(3) We compute (5.6)× 2− (5.5) and define Ũn
i,j = 2U2n

i,j

(
hx, hy, ∆t

2

)
−Un

i,j(hx, hy, ∆t
2 ):

u(xi, yj, tn)− Ũn
i,j = O(h2

x + h2
y + ∆t2). (54)

This means that Richardson extrapolation indeed can improve the temporal conver-
gence order of the proposed semi-implicit difference scheme from 1 to 2. However, it is
always sensitive to the parameter selection used for solving the model problem and thus, it
is numerically unstable (we omit the specific numerical results here).
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6. Concluding Remarks

In this paper, a fast preconditioned semi-implicit difference scheme for a one-dimensional
strongly NSFDE is first presented, which is also extended to solve a two-dimensional
NSFDE. In addition, the stability and convergence properties of the new numerical scheme
are proved. At the same time, a fast preconditioned iterative algorithm is designed to solve
the discretized linear systems on each time step efficiently and rapidly without necessarily
storing the coefficient matrix of the linear system at each time level. In the future work,
we will design the fast numerical methods and explore their stability and convergence
analyses for solving a class of strongly NSFDEs. Moreover, due to the nonlocality of the
Riesz fractional derivative, developing the fast matrix-free iterative methods accelerated
by suitable preconditioners (e.g., the recent parallel-in-time preconditioners [36,40]) for
solving the discretized linear systems should be also very meaningful.
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