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Abstract: The present manuscript focuses on the study of surface wave propagation in a rotating
coated viscoelastic half-space and its response to external forces comprised of the magnetic field and
gravitational forces. A celebrated normal mode analysis procedure is adopted as the methodology of
interest for its high level of efficiency in the literature. The analytically obtained frequency equation
is analyzed for certain scenarios of curiosity, in addition to the determination of the resulting
displacements and stresses. Moreover, certain physical data of relevance with the viscoelasticity
index of unity are considered for the numerical simulations. As for the findings, the presented
graphical illustrations showed that both the magnetic field and rotation positively accelerated the
dispersion of surface waves in the coated half-space, while the obtained approximate fields in the
half-space are found to be oscillatory as they steadily move towards the limiting point.

Keywords: coated half-space; viscoelasticity; external forces; surface waves

1. Introduction

The propagation of waves in coated and layered elastic solids has received substantial
attention in the past and in recent times due to its vast collection of applications. Various
science and engineering applications have been identified to heavily rely on the elasticity
subject. This subject is governed by Hooke’s law and the famous Newton’s second law of
motion, among others, for appropriately modeling different wave propagation problems in
diverse elastic media and structures. Furthermore, engineering fields including aerospace,
civil, seismic, and marine, to mention a few, are known to enjoy many contributions from
the elasticity theory (see [1–6]). A more particular concern in this study is the modeling and
analysis of coated half-space. From an engineering viewpoint, the coated structures have a
wide range of advantages and arise in many areas such as civil, mechanical, manufacturing,
medical, and pharmaceutical, to mention a few. Additionally, coated media and structures
are not different from layered structures as they have similar geometric and mechanical
bases. However, the coatings are primarily used to save the structural surfaces from
corrosive and other external causative harms. They are also aimed at improving adhesion,
resistance, and wettability, in addition to sound control [7–11]. Another area where coating
is applicable is in the construction of medical biomaterial devices in which coatings are
utilized to lessen the mechanical loads on the surface of the implant, for instance [12,13].

Furthermore, many studies have been carried out in recent times with regard to the
influence of other factors affecting the propagation of elastic waves in various structures.
These factors include the presence of internal and external forces such as the magnetic field
force, gravitational force, and thermal heating effect, to mention a few; one can equally
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think of other known factors such as external loads, initial stress, elastic foundation, ro-
tational effects, porosity presence, dislocation, and cracks, among others (see [14–26] and
the references therein). In line with this, the identification and determination of the mo-
tion’s resulting vibrational displacements, stresses, and frequency equation, as well as the
various fields of the respective external effects that result from the coined thermoelasticity,
magnetoelasticity, or poroelasticity, have forced many mathematicians and researchers to
source for different mathematical techniques. The techniques are computational, analytical,
and asymptotic to appropriately analyze the governing model. We mention here certain
methods in [27–39], where such methodologies were utilized, including the integral trans-
form approach, normal mode analysis approach, harmonic solution approach, eigenvalues
approach, and some numerical schemes, among others.

However, the current manuscript focuses on the study of the propagation of elastic
surface waves in a rotating coated higher-order viscoelastic half-space amidst the influence
of certain external forces. The external forces under analysis include both the magnetic
field force and the gravitational force, in addition to which the entire structure is presumed
to be in a rotating orientation. The celebrated normal mode analysis procedure is set to be
utilized as the methodology, having demonstrated a high level of efficiency in the literature.
Thus, the resulting generalized frequency equation will be determined and analyzed
for certain scenarios of curiosity, in addition to the determination of the corresponding
displacements and stresses in the coated rotating viscoelastic half-space. Furthermore,
certain physical data of relevance with a particular viscoelasticity index are considered
for the numerical simulation, which is graphically illustrated to portray the influence
of the magnetic field intensity and rotation on the propagation and dispersion of elastic
surface waves in the governing structure. Moreover, we arrange the present manuscript
in the following manner: the basic governing equations of motion in the presence of
certain external forces are given in Section 2, while Section 3 gives the formulation of the
problem and its related agreed boundary and interfacial conditions. Section 4 utilizes the
normal mode approach to tackle the formulated problem. Furthermore, Section 5 gives the
resulting frequency equation and its analysis, while Section 6 gives the numerical results
and discussion, and Section 7 is reserved for the conclusion.

2. Basic Equations

The celebrated equation of motion in an elastic isotropic homogeneous medium with
body forces ~Fi and gravity ~Gi is given via Einstein summation by [28–34]

σij,j + ~Fi + ~Gi = ρüi, i = j = 1, 2, . . . , (1)

where σij is given by

σij = λεkkδij + 2µεij, εij =
1
2
(
ui,j + uj,i

)
, (2)

where, in the above equations, ui is the displacement, üi =
∂2u
∂t2 is the acceleration, ρ is the

density, σij is the stress–strain relation, εij is the strain–displacement relation, λ and µ are
the Lame’s elastic constants, and δij the Kronecker delta.

In addition, if the body forces ~Fi are considered to be due to the magnetic force from
the linearized Maxwell equations, the force takes the following form [27,28,32,34]:

~Fi = µ0H2
0(e,i − ε0µ0üi), (3)

where µ0 is the magnetic permeability, ε0 is the electric field permeability, H0 is the magnetic
field intensity, and e = ujj for j = 1, 2, is the dilatational strain. Moreover, the gravitational
field force ~Gi is considered based on Biot’s definition [40,41]. Finally, when the media
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are assumed to be in moving frame with only centripetal acceleration, the acceleration in
Equation (1) becomes [29,32,34]

üi = üi −Ωui, (4)

where Ω is the angular velocity.

3. Problem Formulation

Consider a thin coating of constant thickness h occupying the region −h ≤ x3 ≤ 0,
perfectly joint with an elastic half-space, employing the domain −∞ < x1, x2 < ∞ and
0 ≤ x3 < ∞ (see Figure 1; this Figure is taken from Mubaraki, 2021 [42]).

Figure 1. A coated elastic half-space under external forces.

The entire structure is further assumed to be under the influence of magnetic field
and gravitational forces, in addition to being assumed to be in a rotating frame of reference.
Therefore, the governing isotropic plane equation of motions under these effects in the x1x3-
plane and u = (u1, 0, u3) takes the following form from the above given basic equation:

σ
q
11,1 + σ

q
13,3 + µ0H2

0(u
q
1,11 + uq

3,31 − ε0µ0üq
1) + ρqguq

3,1 = ρq(ü
q
1 −Ω2uq

1), q = c, s, (5)

σ
q
31,1 + σ

q
33,3 + µ0H2

0(u
q
1,13 + uq

3,33 − ε0µ0üq
3)− ρqguq

1,1 = ρq(ü
q
3 −Ω2uq

3), q = c, s, (6)

where
σ

q
ij = λqε

q
kkδij + 2µqε

q
ij, ε

q
ij =

1
2
(uq

i,j + uq
j,i), i = j = 1, 3, (7)

where u1 = u1(x1, x3, t), u3 = u3(x1, x3, t) are the in-plane displacements, µq and λq are
elastic constants, and ρq are the densities for q = c, s, where c stands for the coating, s stands
for the half-space, and g is the gravity. Additionally, H0 is the magnetic field intensity, ε0 is
the electric permeability, and µ0 is the magnetic permeability, while Ω = (0, Ω, 0) is the
angular velocity due to rotation.

Moreover, the half-space is assumed to be viscoelastic in nature of higher-order m [27,43,44].
That is, the elastic constants µs and λs take the following form:

µs = µ1
∂n

∂tn , λs = λ1
∂n

∂tn , n = 1, 2, . . . , m. (8)

Furthermore, we prescribe the following mechanical boundary condition on the face
of the coating at x3 = −h:

(a) σc
13 + τc

13 = 0,

(b) σc
33 + τc

33 = 0,
(9)
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and the following interfacial conditions between the coating and the half-space at x3 = 0
are as follows:

(c) uc
1 = us

1,

(d) uc
3 = us

3,

(e) σc
13 + τc

13 = σs
13 + τs

13,

(f) σc
33 + τc

33 = σs
33 + τs

33.

(10)

where τ
q
ij is the linearized electromagnetic stress tensor due the presence of the magnetic

field given by

τ
q
ij = µ0H0(Hihj + Hjhi − Hkhkδij), i = j = 1, 3, q = c, s, (11)

of which
τ

q
13 = 0, and τ

q
33 = µ0H2

0(u1,1 + u3,3), q = c, s, (12)

where the magnetic field vector Hi is defined as Hi = (H0 + hi)δi2, where H0 is the magnetic
field intensity, and hi is the perturbed magnetic field that is considered to be hi = −uk,k [27].

4. Problem Solution

This section determines the solution of the formulated problem by utilizing the normal
node analysis method. This method gives harmonic wave solutions in both regions with
the propagating wave number and phase speed being fixed. The method is far better
than the widely used integral transform methods, where the inversion process normally
poses difficulties.

Now, in trying to express the governing equations given in Equations (5) and (6) in
component form, we make use of the relations given in Equation (7) to obtain

σ
q
13 = µq(u

q
1,3 + uq

3,1) = σ
q
31, σ

q
11 = λquq

3,3 + (λq + 2µq)u
q
1,1, σ

q
33 = λquq

1,1 + (λq + 2µq)u
q
3,3, (13)

such that the governing equations become

(λq + 2µq + µ0H2
0)u

q
1,11 + (λq + µq + µ0H2

0)u
q
3,13 + µquq

1,33 = (ε0µ2
0H2

0 + ρq)ü
q
1 + ρq(−guq

3,1 −Ω2uq
1), (14)

(λq + 2µq + µ0H2
0)u

q
3,33 + (λq + µq + µ0H2

0)u
q
1,13 + µquq

3,11 = (ε0µ2
0H2

0 + ρq)ü
q
3 + ρq(guq

1,1 −Ω2uq
3), (15)

for q = c, s.
Now, employing the following potential functions Uq and Vq, the above equations of

the forms

uq
1 = Uq

,1 + Vq
,3, uq

3 = Uq
,3 −Vq

,1, q = c, s, (16)

and the equations in the coating take the following forms:

(c2
c1 + χc1)∇2Uc = (1 + χc2)Üc + gVc

,1 −Ω2Uc,

c2
c2∇2Vc = (1 + χc2)V̈c − gUc

,1 −Ω2Vc,
(17)

while those of the half-space take the following forms:

c2
s1∂n

t∇2Us + χs1∇2Us = (1 + χs2)Üs + gVs
,1 −Ω2Us, n = 1, 2, . . . , m,

c2
s2∂n

t∇2Vs = (1 + χs2)V̈s − gUs
,1 −Ω2Vs, n = 1, 2, . . . , m,

(18)
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where ∂n
t = ∂n

∂tn for n = 1, 2 is due to the viscoelastic nature of the half-space, and ∇2 =
∂2

∂x2 +
∂2

∂y2 is the Laplacian operator, while c2
q1 and c2

q2 are given by

c2
c1 =

λc + 2µc

ρc
, c2

c2 =
µc

ρc
, c2

s1 =
λ1 + 2µ1

ρs
, c2

s2 =
µ1

ρs
, (19)

and χq1 and χq2 together with χq3 are given by

χq1 =
µ0H2

0
ρq

, χq2 =
εµ2

0H2
0

ρq
, χq3 =

λq

ρq
, q = c, s, (20)

where c2
q1 and c2

q2 for q = c, s are the longitudinal and transverse speeds in the correspond-
ing regions.

Furthermore, we make use of the potential functions U and V defined in Equation (16)
to re-express the boundary conditions given in Equations (9) and (10). Therefore, the
boundary conditions on the face of the coating at x3 = h become

(a) Vc
,33 −Vc

,11 + 2Uc
,13 = 0,

(b) χc3(Uc
,11 + Vc

,13) + c2
c1(U

c
,33 −Vc

,13) + χc1∇2Uc = 0,
(21)

and the interfacial conditions at x3 = 0 now become

(c) Uc
,1 + Vc

,3 = Us
,1 + Vs

,3,

(d) Uc
,3 −Vc

,1 = Us
,3 −Vs

,1,

(e) µc(Vc
,33 −Vc

,11 + 2Uc
,13) = µ1∂n

t (V
s
,33 −Vs

,11 + 2Us
,13),

(f) ρc(χc3(Uc
,11 + Vc

,13) + c2
c1(U

c
,33 −Vc

,13) + χc1∇2Uc) =

ρs(χs3∂n
t (U

s
,11 + Vs

,13) + c2
s1∂n

t (U
s
,33 −Vs

,13) + χs1∇2Us).

(22)

Therefore, considering x1 to be the direction of the propagation, we now assume the
following solutions in the respective layers of the media:

Uq(x1, x3, t) = Mq(x3)eik(x1−ct), q = c, s,

Vq(x1, x3, t) = Nq(x3)eik(x1−ct), q = c, s,
(23)

where k and c are the dimensional wave number and phase speed, respectively, such that
ω = kc, where ω is the dimensional frequency.

Now, substituting the above solutions into Equations (17) and (18), we obtain the
following respective solutions:

l1Mc(x3) + l2Nc(x3) = 0,

l3Mc(x3) + l4Nc(x3) = 0,
(24)

l5Ms(x3) + l6Ns(x3) = 0,

l7Ms(x3) + l8Ns(x3) = 0,
(25)

where ly for y = 1, 2, . . . , 8 are given in Appendix A. Moreover, one can equivalently
express Equations (24) and (25) as follows:

l1 l2 0 0
l3 l4 0 0
0 0 l5 l6
0 0 l7 l8




Mc(x3)
Nc(x3)
Ms(x3)
Ns(x3)

 =


0
0
0
0

, (26)
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of which the nontrivial solutions exist if the determinant of the differential coefficient
matrix vanishes, that is,

(l2l3 − l1l4)(l6l7 − l5l8) = 0, (27)

or simply splitting the characteristic equations for each layer as follows:

a1(D2)2 + a2D2 + a3 = 0, (28)

b1(D2)2 + b2D2 + b3 = 0, (29)

where a1, a2, a3, b1, b2, and b3 are given in Appendix B.
Finally, the solutions in the coating layer are thus obtained as follows:

Uc(x1, x3, t) =
4

∑
j=1

Aje
αjx3+ik(x1−ct),

Vc(x1, x3, t) =
4

∑
j=1

ξ j Aje
αjx3+ik(x1−ct),

(30)

and the solutions in the half-space layer for x3 → ∞ are thus obtained as follows:

Us(x1, x3, t) =
2

∑
j=1

Bje
β jx3+ik(x1−ct),

Vs(x1, x3, t) =
2

∑
j=1

ηjBje
β jx3+ik(x1−ct),

(31)

where Aj for j = 1, 2, . . . , 4 and Bj for j = 1, 2 are constants to be determined, and αj for
j = 1, 2, . . . , 4 and β j for j = 1, 2 are the roots of Equations (28) and (29), respectively,
given by

α1,2 = ± 1√
2

√√√√
−

a2 +
√

a2
2 − 4a1a3

a1
, α3,4 = ± 1√

2

√√√√√
a2

2 − 4a1a3 − a2

a1
, (32)

and

β1 = − 1√
2

√√√√
−

b2 +
√

b2
2 − 4b1b3

b1
, β2 = − 1√

2

√√√√√
b2

2 − 4b1b3 − b2

b1
, (33)

Additionally, ξ j and ηj in Equations (30) and (31) are determined as follows:

ξ j =−
igk

c2
c2

(
k2v2

c2(χc2 + 1) + α2
j − k2

)
+ Ω2

, ηj = −
igk

Ω2 + c2
s2

(
k2v2

s2(χs2 + 1) + (−ick)n
(

β2
j − k2

)) , (34)

where v2
lq = c2

c2
xq

, q = c, s, and x = 1, 2, are the ratios of the phase speed to the respective

regions’ speeds.
However, for the sake of numerical simulation, we set Bj = 1 in Equation (31) to

determine Aj for j = 1, 2, 3, 4 from the prescribed transformed boundary conditions in
Equations (21) and (22) through solving the resulting system of algebraic equations.
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5. Frequency Equation

Next, we determine the frequency equation, also called the dispersion relation of the
formulated problem by utilizing the prescribed transformed boundary conditions given in
terms of potential functions in Equations (21) and (22). Thus, in doing so, we obtain the
following homogeneous system of equations:

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56
a61 a62 a63 a64 a65 a66





A1
A2
A3
A4
B1
B2

 =



0
0
0
0
0
0

, (35)

where the entries for the matrix aij are given in Appendix C.
Furthermore, the determinant of the coefficient matrix given in Equation (35) is said

to vanish in order to have the non-trivial solution of the system; that is,

|Aij|6×6 = 0. (36)

Lastly, the resulting determinant of the dispersion coefficient matrix is the aiming
generalized frequency equation or dispersion relation found above.

Special Cases of the Frequency Equation

Here, we analyze the obtained frequency equation in Equation (36) for some special
and particular cases of interest. These cases include the absence of the external excitations
or forces (and effects), a case of a viscoelastic half-space only, and the situation of welded
half-spaces.

I. Absence of excitations
A swift case of interest would be the absence of external excitations or forces (and ef-

fects). Thus, the frequency equation given in Equation (36) corresponds to a situation when
all the external forces and effects under consideration are zero; that is, the viscoelasticity is
assumed to be of order zero; the magnetic field intensity is zero, H0 = 0; the gravitational
force is zero, g = 0; and finally, the rotation is zero, Ω = 0.

II. Viscoelastic half-space
Yet another case of interest would be the absence of the coating; that is, the layer above

that half-space of thickness h is considered to be zero in this case, h = 0. Thus, the problem
reduces to just a half-space problem such that 0 ≤ x3 < ∞. Furthermore, we obtain two
additional scenarios associated with this case as follows.

(a) Traction-free end
Now, if the half-space in the presence of the prescribed external forces, rotation, and

viscoelasticity is considered to have a traction-free surface at h = 0, then the obtained
frequency equation in Equation (36) reduces to the following:∣∣∣∣ b11 b12

b21 b22

∣∣∣∣ = 0, (37)

of which, when the external forces and rotation are assumed to be zero, the above frequency
equation satisfies the following Rayleigh-wave equation [23]:(

2− c2

c2
s2

)
2 = 4

√
1− c2

c2
s1

√
1− c2

c2
s2

. (38)

(b) Fixed end
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Equally, if the half-space in the presence of the prescribed external forces, rotation,
and viscoelasticity is considered to have a displacement-free surface at h = 0, then the
obtained frequency equation in Equation (36) reduces to the following:∣∣∣∣ c11 c12

c21 c22

∣∣∣∣ = 0, (39)

and further reduces to the following when the external forces, rotation, and viscoelasticity
are eliminated: √

1− c2

c2
s1

√
1− c2

c2
s2

= 1, (40)

Note that the entries bij and cij in Equations (37) and (39) are respectively given in
Appendix D.

II. Welded half-spaces
Another case of interest would be the frequency equation of the welded half-spaces.

This happens when the thickness of the coating is extended to negative infinity, that is,
h→ −∞. Thus, the obtained frequency equation in Equation (36) reduces to∣∣∣∣∣∣∣∣

a31 a32 a35 a36
a41 a42 a45 a46
a51 a52 a55 a56
a61 a62 a65 a66

∣∣∣∣∣∣∣∣ = 0, (41)

where the entries aij are given in Appendix A. It is worth mentioning here that the two
positive roots from αj for j = 1, 2, . . . , 4 are considered, with already negative roots of
β j for j = 1, 2. Moreover, when the external forces and effects under consideration are
zero, including the viscoelasticity index, the above-reduced frequency equation further
reduces to

ρsc2
c2

(√
1− c2

c2
c1
−
√

1− c2

c2
c2

)[
−2c4

s2

(√
1− c2

c2
s1
−
√

1− c2

c2
s2

)
+ c2c2

s1

√
1− c2

c2
s1
− c2c2

s2

√
1− c2

c2
s2

]
=

ρcc2
s2

(√
1− c2

c2
s1
−
√

1− c2

c2
s2

)[
−2c4

c2

(√
1− c2

c2
c1
−
√

1− c2

c2
c2

)
+ c2c2

c1

√
1− c2

c2
c1
− c2c2

c2

√
1− c2

c2
c2

]
.

(42)

6. Numerical Results and Discussion

This section gives the numerical simulation and results of the formulated problem by
considering some physical data of interest in both the coating and half-space. Moreover,
copper material is considered for the coating layer, while aluminum is chosen for the
half-plane, which respectively admit the following physical data [23,28,29]:

ρc = 8.954× 103 kgm−3, λc = 7.76× 1010 Nm−2 µc = 3.86× 1010 Nm−2,

ρs = 2.7× 103 kgm−3, λs = λ1 = 5.775× 1010 Nm−2, µs = µ1 = 2.643× 1010 Nm−2,

µ0 = 4π × 10−7 H m−1, ε0 = 8.85× 10−12 H m−1, g = 10 N.

Next, we give the graphical depictions of the obtained frequency equation in
Figures 2 and 3, depicting the variation of the phase velocity against the dimensionless
wave number kh with the variation of the rotation and magnetic field intensity, respectively.
In addition, Figures 4a,b, 5a,b, 6a,b, and 7a,b show the depictions of the resulting displace-
ments and stresses in the half-space, being the layer of interest against the dimensionless
wave number kh with the variation of the respective rotation and magnetic field intensity.
It is also worth mentioning here that the viscoelasticity index is considered to be of order
unity, n = 1.
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Figures 2 and 3 show the graphical illustrations of the obtained frequency equation in
Equation (36) by depicting the variation of the dimensional phase velocity c against the di-
mensionless wave number kh with the variation of the rotation and magnetic field intensity,
respectively. It is observed in both figures that the dispersion curve—more specifically, the
first harmonic mode—starts off at approximately 20 ms−1 on the phase velocity axis and
steadily decreases to converge at approximately 2.5 on the dimensionless wave number
axis. Moreover, the dispersion increases with an increase of both the rotation and magnetic
field; that is, both the rotation and magnetic field have similar effects on the propagation
of the surface wave in the coated half-plane. Furthermore, Figures 4a, 5a, 6a, and 7a an-
alyze the variational effects of the rotation on the propagation of surface waves, while
their corresponding (b)s examine the variational influence of the magnetic field effects on
the propagation.

Figure 2. Response of the dimensional dispersion relation to the variation of the dimensional rotation.

Figure 3. Response of the dimensional dispersion relation to the variation of the dimensional
magnetic field intensity.
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For instance, Figure 4a shows the propagation of the dimensionless transverse vibra-
tional displacement us

3 of the half-space layer against the dimensionless wave number kh
with the variation of the rotational effect. It is noted from the figure that the transverse
vibrational displacement starts off by decreasing with an increase in the angular velocity
(rotation) before a subsequent periodic rise to the positive side of the displacement axis
and thereafter converges steadily to zero as the wave number grows bigger. Moreover,
Figure 4b shows the propagation of the dimensionless transverse vibrational displacement
us

3 of the half-space layer against the dimensionless wave number kh with the variation
of the magnetic field intensity. It is clear from the plot that the displacement is enhanced
by the presence of the magnetic force as the propagation progresses in accordance with
the presence of the magnetic field intensity as the dimensionless wave number tends
to infinity.

Figure 5a shows the propagation of the dimensionless normal stress σs
11 of the half-

space layer against the dimensionless wave number kh with the variation of the rotational
effect. Here, it is noted from the figure that the normal stress starts off by decreasing with
an increase in the angular velocity (rotation) before a subsequent periodic increase to the
positive side of the stress axis, oscillates a little, and further steadily converges to zero as
the wave number increases. In addition, from Figure 5b, the evolution of the dimensionless
normal stresses σs

11 of the half-space layer against the dimensionless wave number kh with
the variation of the magnetic field intensity is portrayed. In the figure, periodic behavior is
equally observed as the profile responds periodically to the presence of the magnetic field
force. Moreover, one can also conclude that the influence is not that significant, looking at
the variation in the bulk part of the curves; the significance is observed on the approximate
range of 0 ≤ kh ≤ 0.45, where an instant response is noted at the beginning before the
subsequent smooth decline.

A similar interpretation of the above figure also applies to the corresponding normal
stress σs

33 plots portrayed in Figure 6a,b. The only difference here is that the σs
11 begins

downwardly from the negative axis of the stress and periodically progresses to the limiting
point,while σs

33 reverses the initial trend and equally tends to the limiting point. In addition,
one can note from the two figures the periodic behavior being enjoyed by the stress.
Moreover, one can also conclude that the presence of rotation is more significant from (a)
as compared to the presence of magnetic field intensity in (b).

Furthermore, Figure 7a shows the propagation of the dimensionless shear stress
σs

13 of the half-space layer against the dimensionless wave number kh with the variation
of the rotational effect. One can equally observe an oscillatory behavior of the profile
that rises and falls periodically towards converging at the limit point zero. Furthermore,
upon magnification, one would also deduce that the greater the increase in the angular
velocity, the greater the delay in reaching the limit point. Lastly, Figure 7b portrays the
periodic evolution of the dimensionless shear stress σs

13 of the half-space layer against the
dimensionless wave number kh with the variation of the magnetic field intensity. Similarly,
one can equally notice an instant response on the approximate range of 0 ≤ kh ≤ 0.45
before a subsequent decline towards the limiting point as kh enlarges. To conclude, one
could deduce that the presence of the rotational effect is more significant than the magnetic
field, as both the displacement and stresses respond greatly to it.
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Figure 4. Variation of the dimensionless displacement us
3 versus dimensionless wave number with respect to the dimensional

(a) rotation and (b) magnetic field intensity.

Figure 5. Variation of the dimensionless normal stress σs
11 versus dimensionless wave number with respect the dimensional

(a) rotation and (b) magnetic field intensity.

Figure 6. Variation of the dimensionless normal stress σs
33 versus dimensionless wave number with the dimensional

(a) rotation and (b) magnetic field intensity.
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Figure 7. Variation of the dimensionless shear stress σs
13 versus dimensionless wave number with respect the dimensional

(a) rotation and (b) magnetic field intensity.

7. Conclusions

In conclusion, the present manuscript examined the propagation of surface waves
in a rotating coated higher-order viscoelastic half-space amidst the influence of external
forces. These forces included the magnetic field and gravitational forces, in addition to
the structure being assumed to be in a rotating orientation. The celebrated normal mode
analysis procedure was considered as the methodology, having demonstrated a high level
of efficiency in the literature. The general analytical frequency equation was determined
and analyzed for certain scenarios of curiosity, in addition to the determination of the
approximate analytical displacements and stresses in the rotating viscoelastic half-space.
Moreover, we have considered certain physical data of relevance with viscoelasticity index
of unity for the sake of the numerical simulation. To conclude, certain graphical illustrations
were also depicted to portray the results of the study graphically. Hence, the presence of
both the magnetic field and rotation was observed to positively accelerate the dispersion of
the surface waves in the coated half-space, while sinusoidal behaviors were noted with
regards to the obtained displacements and stresses. Lastly, both fields of the half-space layer
were noted to respond greatly to the rotational effect, in comparison with their reaction to
the presence of the magnetic field.
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Appendix A

The coefficients of the system of ordinary differential equations given in
Equations (24) and (25) are given by

l1 =
D2χc1

c2
c1
− k2χc1

c2
c1

+
Ω2

c2
c1

+ k2v2
c1χc2 + k2v2

c1 + D2 − k2,

l2 = − igk
c2

c1
, l3 =

igk
c2

c2
, l6 = − igk

c2
s1

, l7 =
igk
c2

s2
,

l4 =
Ω2

c2
c2

+ k2v2
c2χc2 + k2v2

c2 + D2 − k2,

l5 = D2(−ick)n +
D2χs1

c2
s1
− k2(−ick)n − k2χs1

c2
s1

+
Ω2

c2
s1

+ k2v2
s1χs2 + k2v2

s1,

l8 = D2(−ick)n − k2(−ick)n +
Ω2

c2
s2

+ k2v2
s2χs2 + k2v2

s2,

where D2 = d2/dx2
3.

Appendix B

The coefficients of the differential characteristic equations given in Equations (28) and (29)
are given by

a1 = −χc1

c2
c1
− 1, b1 = (−ick)n

(
−χs1

c2
s1
− (−ick)n

)
,

a2 = −
c2

c2
(
k2χc1

(
v2

c2(χc2 + 1)− 2
)
+ Ω2)+ Ω2χc1

c2
c1c2

c2
−

c2
c1
(
k2c2

c2
(
v2

c1(χc2 + 1) + v2
c2(χc2 + 1)− 2

)
+ Ω2)

c2
c1c2

c2
,

a3 =
k2c2

c2
(
v2

c2(χc2 + 1)− 1
)(

k2χc1 −Ω2)+ k2Ω2χc1 + g2k2 −Ω4

c2
c1c2

c2
−

k2c2
c1
(
v2

c1(χc2 + 1)− 1
)(

k2c2
c2
(
v2

c2(χc2 + 1)− 1
)
+ Ω2)

c2
c1c2

c2
,

b2 =
−χs1

(
k2c2

s2v2
s2(χs2 + 1) + Ω2)+ c2

s2(−(−ick)n)
(
Ω2 − 2k2χs1

)
c2

s1c2
s2

+

c2
s1(−ick)n(−Ω2 + k2c2

s2
(
−(χs2 + 1)

(
v2

s1 + v2
s2
)
+ 2(−ick)n))

c2
s1c2

s2
,

b3 = −
k2c2

s2
(
k2χs1 −Ω2)(−v2

s2(χs2 + 1) + (−ick)n)− g2k2 − k2Ω2χs1 + Ω4

c2
s1c2

s2
−

k2c2
s1
(
−v2

s1(χs2 + 1) + (−ick)n)(−Ω2 + k2c2
s2
(
−v2

s2(χs2 + 1) + (−ick)n))
c2

s1c2
s2

.

Appendix C

The entries for the dispersion matrix aij given in Equation (35) that result in the aiming
frequency equation are found to be

a11 = eα1h
(

α2
1ξ1 + k2ξ1 + 2iα1k

)
, a12 = eα2h

(
α2

2ξ2 + k2ξ2 + 2iα2k
)

, a15 = 0,

a13 = eα3h
(

α2
3ξ3 + k2ξ3 + 2iα3k

)
, a14 = eα4h

(
α2

4ξ4 + k2ξ4 + 2iα4k
)

, a16 = 0,
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a21 = eα1h
(

α1c2
c1(α1 − ikξ1) + χc1

(
α2

1 − k2
)
− kχc3(k− iα1ξ1)

)
,

a22 = eα2h
(

α2c2
c1(α2 − ikξ2) + χc1

(
α2

2 − k2
)
− kχc3(k− iα2ξ2)

)
,

a23 = eα3h
(

α3c2
c1(α3 − ikξ3) + χc1

(
α2

3 − k2
)
− kχc3(k− iα3ξ3)

)
, a25 = 0,

a24 = eα4h
(

α4c2
c1(α4 − ikξ4) + χc1

(
α2

4 − k2
)
− kχc3(k− iα4ξ4)

)
, a26 = 0,

a31 = α1ξ1 + ik, a32 = α2ξ2 + ik, a33 = α3ξ3 + ik,

a34 = α4ξ4 + ik, a35 = −β1η1 − ik, a36 = −β2η2 − ik,

a41 = α1 − ikξ1, a42 = α2 − ikξ2, a43 = α3 − ikξ3,

a44 = α4 − ik, ξ4, a45 = −β1 + iη1k, a46 = −β2 + iη2k,

a51 = µc

(
α2

1ξ1 + k2ξ1 + 2iα1k
)

, a52 = µc

(
α2

2ξ2 + k2ξ2 + 2iα2k
)

,

a53 = µc

(
α2

3ξ3 + k2ξ3 + 2iα3k
)

, a54 = µc

(
α2

4ξ4 + k2ξ4 + 2iα4k
)

,

a55 = µ1(−(−ick)n)
(

β2
1η1 + η1k2 + 2iβ1k

)
,

a56 = µ1(−(−ick)n)
(

β2
2η2 + η2k2 + 2iβ2k

)
,

a61 = ρc

(
α1c2

c1(α1 − ikξ1) + χc1

(
α2

1 − k2
)
− kχc3(k− iα1ξ1)

)
,

a62 = ρc

(
α2c2

c1(α2 − ikξ2) + χc1

(
α2

2 − k2
)
− kχc3(k− iα2ξ2)

)
,

a63 = ρc

(
α3c2

c1(α3 − ikξ3) + χc1

(
α2

3 − k2
)
− kχc3(k− iα3ξ3)

)
,

a64 = ρc

(
α4c2

c1(α4 − ikξ4) + χc1

(
α2

4 − k2
)
− kχc3(k− iα4ξ4)

)
,

a65 = −ρs

(
β1c2

s1(−ick)n(β1 − iη1k)− kχs3(−ick)n(k− iβ1η1) +
(

β2
1 − k2

)
χs1

)
,

a66 = −ρs

(
β2c2

s1(−ick)n(β2 − iη2k)− kχs3(−ick)n(k− iβ2η2) +
(

β2
2 − k2

)
χs1

)
.

Appendix D

The entries for the respective reduced frequency equations bij and cij given in
Equations (37) and (39) are determined to be

b11 = β2
1η1 + η1k2 + 2iβ1k, b12 = β2

2η2 + η2k2 + 2iβ2k,

b21 = β1c2
s1(−ick)n(β1 − iη1k)− kχs3(−ick)n(k− iβ1η1) +

(
β2

1 − k2
)

χs1,

b22 = β2c2
s1(−ick)n(β2 − iη2k)− kχs3(−ick)n(k− iβ2η2) +

(
β2

2 − k2
)

χs1,

c11 = k− iβ1η1, c12 = k− iβ2η2,

c21 = β1 − iη1k, c22 = β2 − iη2k.
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