Nonexistence of Global Solutions to Time-Fractional Damped Wave Inequalities in Bounded Domains with a Singular Potential on the Boundary
Abstract
:1. Introduction
2. Preliminaries on Fractional Calculus
3. Statement of the Main Results
- (i)
- , ;
- (ii)
- for every ,
- (i)
- ;
- (ii)
- , ,
- (i)
- , ;
- (ii)
- for all and ,
4. Proof of the Main Results
4.1. Proof of Theorem 1
4.2. Proof of Theorem 2
4.3. Proof of Theorem 3
4.4. Proof of Theorem 4
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsutsumi, M. On solutions of semilinear differential equations in a Hilbert space. Math. Japon. 1972, 17, 173–193. [Google Scholar]
- Levine, H.A. Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. SIAM J. Math. Anal. 1974, 5, 138–146. [Google Scholar] [CrossRef]
- Galaktionov, V.A.; Pohozaev, S.I. Blow-up and critical exponents for nonlinear hyperbolic equations. Nonlinear Anal. 2003, 53, 453–466. [Google Scholar] [CrossRef]
- Erbay, H.A.; Erbay, S.; Erkip, A. Thresholds for global existence and blow-up in a general class of doubly dispersive nonlocal wave equations. Nonlinear Anal. 2014, 95, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Kalantarov, V.K.; Ladyzhenskaya, O.A. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type. J. Soviet Math. 1978, 10, 53–70. [Google Scholar] [CrossRef]
- Li, F. Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation. Appl. Math. Lett. 2004, 17, 1409–1414. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, Y.; Yang, Y.; Li, J.; Xu, R. Kirchhoff-type system with linear weak damping and logarithmic nonlinearities. Nonlinear Anal. 2019, 188, 475–499. [Google Scholar] [CrossRef]
- Guedda, M.; Labani, H. Nonexistence of global solutions to a class of nonlinear wave equations with dynamic boundary conditions. Bull. Belg. Math. Soc. Simon Stevin. 2002, 9, 39–46. [Google Scholar] [CrossRef]
- Messaoudi, S.A. Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation. J. Math. Anal. Appl. 2006, 320, 902–915. [Google Scholar] [CrossRef] [Green Version]
- Kafini, M.; Messaoudi, S.A. blow-up result for a viscoelastic system in . Electron. J. Differ. Equ. 2007, 113, 1–7. [Google Scholar]
- Kafini, M.; Messaoudi, S.A. On the decay and global nonexistence of solutions to a damped wave equation with variable-exponent nonlinearity and delay. Ann. Pol. Math. 2019, 122, 49–70. [Google Scholar] [CrossRef]
- Freeborn, T.J. A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 416–423. [Google Scholar] [CrossRef]
- Bagley, R.L.; Torvik, P.J. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 1983, 27, 201–210. [Google Scholar] [CrossRef]
- Povstenko, Y.Z. Fractional heat conduction equation and associated thermal Stresses. J. Therm. Stress. 2005, 28, 83–102. [Google Scholar] [CrossRef]
- Chen, W.; Sun, H.G.; Zhang, X.; Korosak, D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 2010, 59, 1754–1758. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Hou, Z. Two viscoelastic constitutive models of rubber materials using fractional derivations. J. Tsinghua Univ. 2013, 53, 378–383. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Agarwal, R.P.; Benchohra, M.; Hamani, S. A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 2010, 109, 973–1033. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science Limited: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Li, C.; Zeng, F.H. Numerical Methods for Fractional Calculus; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015. [Google Scholar]
- Kirane, M.; Tatar, N.-E. Exponential growth for a fractionally damped wave equation. Z. Anal. Anwend. 2003, 22, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Georgiev, V.; Todorova, G. Existence of a solution of the wave equation with nonlinear damping and source terms. J. Differ. Equ. 1994, 109, 295–308. [Google Scholar] [CrossRef] [Green Version]
- Tatar, N.-E. A blow up result for a fractionally damped wave equation. Nonlinear Differ. Equ. Appl. 2005, 12, 215–226. [Google Scholar] [CrossRef]
- Mitidieri, E.; Pohozaev, S. A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities. Proc. Steklov Inst. Math. 2001, 234, 1–383. [Google Scholar]
- Korpusov, M.O.; Lukyanenko, D.V.; Panin, A.A.; Shlyapugin, G.I. On the blow-up phenomena for a 1-dimensional equation of ion sound waves in a plasma: Analytical and numerical investigation. Math. Methods Appl. Sci. 2018, 41, 2906–2929. [Google Scholar] [CrossRef]
- Pelinovsky, D.; Xu, C. On numerical modelling and the blow-up behavior of contact lines with a 180 degrees contact angle. J. Eng. Math. 2015, 92, 31–44. [Google Scholar] [CrossRef]
- Cangiani, A.; Georgoulis, E.H.; Kyza, I.; Metcalfe, S. Adaptivity and blow-up detection for nonlinear evolution problems. SIAM J. Sci. Comput. 2016, 38, A3833–A3856. [Google Scholar] [CrossRef] [Green Version]
- Carl, S.; Le, V.K.; Motreanu, D. Nonsmooth Variational Problems and Their Inequalities; Springer: New York, NY, USA, 2007. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bin Sultan, A.; Jleli, M.; Samet, B. Nonexistence of Global Solutions to Time-Fractional Damped Wave Inequalities in Bounded Domains with a Singular Potential on the Boundary. Fractal Fract. 2021, 5, 258. https://doi.org/10.3390/fractalfract5040258
Bin Sultan A, Jleli M, Samet B. Nonexistence of Global Solutions to Time-Fractional Damped Wave Inequalities in Bounded Domains with a Singular Potential on the Boundary. Fractal and Fractional. 2021; 5(4):258. https://doi.org/10.3390/fractalfract5040258
Chicago/Turabian StyleBin Sultan, Areej, Mohamed Jleli, and Bessem Samet. 2021. "Nonexistence of Global Solutions to Time-Fractional Damped Wave Inequalities in Bounded Domains with a Singular Potential on the Boundary" Fractal and Fractional 5, no. 4: 258. https://doi.org/10.3390/fractalfract5040258
APA StyleBin Sultan, A., Jleli, M., & Samet, B. (2021). Nonexistence of Global Solutions to Time-Fractional Damped Wave Inequalities in Bounded Domains with a Singular Potential on the Boundary. Fractal and Fractional, 5(4), 258. https://doi.org/10.3390/fractalfract5040258