Asymptotic and Oscillatory Properties of Noncanonical Delay Differential Equations
Abstract
:1. Introduction
2. Main Results
- (a)
- for and
- (b)
- for and
- (c)
- for
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Norkin, S.B. Second Order Differential Equations with Retarded Argument; Nauk: Moscow, Russia, 1965. (In Russian)
- Rihan, F.A. Delay Differential Equations and Applications to Biology; Springer Nature: Singapore, 2021. [Google Scholar]
- Ali, B.; Abbas, M. Existence and stability of fixed point set of Suzuki-type contractive multivalued operators in b-metric spaces with applications in delay differential equations. J. Fixed Point Theory Appl. 2017, 19, 2327–2347. [Google Scholar] [CrossRef]
- Baculíková, B. Oscillatory behavior of the second order noncanonical differential equations. Electron. J. Qual. Theory Differ. Equ. 2019, 89, 1–11. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Some oscillation theorems for nonlinear second-order differential equations with an advanced argument. Adv. Differ. Equ. 2020, 2020, 160. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A note on oscillation of second-order delay differential equations. Appl. Math. Lett. 2017, 69, 126–132. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. Oscillatory results for second-order noncanonical delay differential equations. Opuscula Math. 2019, 39, 483–495. [Google Scholar] [CrossRef]
- Bohner, M.; Jadlovská, I.; Grace, S.R. Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2017, 60, 1–12. [Google Scholar] [CrossRef]
- Moaaz, O.; Anis, M.; Baleanu, D.; Muhib, A. More effective criteria for oscillation of second-order differential equations with neutral arguments. Mathematics 2020, 8, 986. [Google Scholar] [CrossRef]
- Moaaz, O.; Elabbasy, E.M.; Qaraad, B. An improved approach for studying oscillation of generalized Emden–Fowler neutral differential equation. J. Ineq. Appl. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Bartušek, M.; Cecchi, M.; Došlá, Z.; Marini, M. Fourth-order differential equation with deviating argument. Abstr. Appl. Anal. 2012, 2012, 185242. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. A new approach in the study of oscillatory behavior of even-order neutral delay differential equations. Appl. Math. Comput. 2013, 225, 787–794. [Google Scholar] [CrossRef]
- Bazighifan, O.; El-Nabulsi, R.A.; Moaaz, O. Asymptotic properties of neutral differential equations with variable coefficients. Axioms 2020, 9, 96. [Google Scholar] [CrossRef]
- Moaaz, O.; Kumam, P.; Bazighifan, O. On the oscillatory behavior of a class of fourth-order nonlinear differential equation. Symmetry 2020, 12, 524. [Google Scholar] [CrossRef] [Green Version]
- Baculíková, B.; Džurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. J. Math. Sci. 2012, 187, 387–400. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Suna, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 2011, 24, 1618–1621. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Math. Lett. 2013, 26, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Muhib, A. New oscillation criteria for nonlinear delay differential equations of fourth-order. Appl. Math. Comput. 2020, 377, 125192. [Google Scholar] [CrossRef]
- Dzurina, J.; Grace, S.R.; Jadlovska, I. On nonexistence of Kneser solutions of third-order neutral delay differential equations. Appl. Math. Lett. 2019, 88, 193–200. [Google Scholar] [CrossRef]
- Graef, J.R.; Jadlovská, I.; Tunç, E. Sharp asymptotic results for third-order linear delay differential equations. J. Appl. Analy. Comput. 2021, 11, 2459–2472. [Google Scholar] [CrossRef]
- Jadlovská, I.; Chatzarakis, G.E.; Džurina, J.; Grace, S.R. On sharp oscillation criteria for general third-order delay differential equations. Mathematics 2021, 9, 1675. [Google Scholar] [CrossRef]
- Moaaz, O.; Baleanu, D.; Muhib, A. New aspects for non-existence of Kneser solutions of neutral differential equations with odd-order. Mathematics 2020, 8, 494. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Chalishajar, D.; Bazighifan, O. Asymptotic behavior of solutions of the third order nonlinear mixed type neutral differential equations. Mathematics 2020, 8, 485. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Philos, C.G. On the existence of nonoscillatory solutions tending to zero at ∞ for dif ferential equations with positive delays. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Kitamura, Y.; Kusano, T. Oscillation of first-order nonlinear differential equations with deviating arguments. Proc. Amer. Math. Soc. 1980, 78, 64–68. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moaaz, O.; Cesarano, C.; Askar, S. Asymptotic and Oscillatory Properties of Noncanonical Delay Differential Equations. Fractal Fract. 2021, 5, 259. https://doi.org/10.3390/fractalfract5040259
Moaaz O, Cesarano C, Askar S. Asymptotic and Oscillatory Properties of Noncanonical Delay Differential Equations. Fractal and Fractional. 2021; 5(4):259. https://doi.org/10.3390/fractalfract5040259
Chicago/Turabian StyleMoaaz, Osama, Clemente Cesarano, and Sameh Askar. 2021. "Asymptotic and Oscillatory Properties of Noncanonical Delay Differential Equations" Fractal and Fractional 5, no. 4: 259. https://doi.org/10.3390/fractalfract5040259
APA StyleMoaaz, O., Cesarano, C., & Askar, S. (2021). Asymptotic and Oscillatory Properties of Noncanonical Delay Differential Equations. Fractal and Fractional, 5(4), 259. https://doi.org/10.3390/fractalfract5040259