Fractional-Order Logistic Differential Equation with Mittag–Leffler-Type Kernel
Abstract
:1. Introduction
2. Basic Definition and Notations
3. Prabhakar Fractional Logistic Equation and Its Limiting Cases
3.1. Fractional Liouville–Caputo Logistic Differential Equation
3.2. Atangana–Baleanu Logistic Differential Equation
3.3. Caputo–Fabrizio Logistic Differential Equation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Area, I.; Nieto, J.J. Power series solution of the fractional logistic equation. Phys. A Stat. Mech. Its Appl. 2021, 573, 125947. [Google Scholar] [CrossRef]
- Wolfram Research, Inc. Mathematica, Version 12.1; Wolfram Research, Inc.: Champaign, IL, USA, 2020. [Google Scholar]
- Thieme, H.R. Mathematics in Population Biology, Princeton series in Theoretical and Computational Biology; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Saito, T. A Logistic Curve in the SIR Model and Its Application to Deaths by COVID-19 in Japan. MedRxiv 2020. [Google Scholar] [CrossRef]
- Pelinovsky, E.; Kurkin, A.; Kurkina, O.; Kokoulina, M.; Epifanova, A. Logistic equation and COVID-19. Chaos Solitons Fractals 2020, 140, 110241. [Google Scholar] [CrossRef] [PubMed]
- Ortigueira, M.; Bengochea, G. A new look at the fractionalization of the logistic equation. Phys. A Stat. Mech. Its Appl. 2017, 467, 554–561. [Google Scholar] [CrossRef]
- Area, I.; Losada, J.; Nieto, J.J. A note on the fractional logistic equation. Physica A 2016, 444, 182–187. [Google Scholar] [CrossRef] [Green Version]
- D’Ovidio, M.; Loreti, P.; Sarv Ahrabi, S. Modified fractional logistic equation. Phys. A Stat. Mech. Its Appl. 2018, 505, 818–824. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.M.A.; El-Mesiry, A.E.M.; El-Saka, H.A.A. On the fractional-order logistic equations. Appl. Math. Lett. 2007, 20, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Kaharuddin, L.N.; Phang, C.; Jamaian, S.S. Solution to the fractional logistic equation by modified Eulerian numbers. Eur. Phys. J. Plus 2020, 135, 229. [Google Scholar] [CrossRef]
- West, B.J. Exact solution to fractional logistic equation. Physica A 2015, 429, 103–108. [Google Scholar] [CrossRef]
- Izadi, M.; Srivastava, H.M. A discretization approach for the nonlinear fractional logistic equation. Entropy 2020, 22, 1328. [Google Scholar] [CrossRef] [PubMed]
- Izadi, M.; Srivastava, H.M. Numerical approximations to the nonlinear fractional-order logistic population model with fractional-order Bessel and Legendre bases. Chaos Solitons Fractals 2021, 145, 110779. [Google Scholar] [CrossRef]
- Oldham, K.B.; Spanier, J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order; Academic Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F. A practical guide to Prabhakar fractional calculus. Frac. Calcul. Appl. Anal. 2020, 23, 9–54. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag- Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Samko, S.; Kilbas, A.A.; Marichev, O. Fractional Integrals and Derivatives; Taylor & Francis: Abingdon, UK, 1993. [Google Scholar]
- Nieto, J. Solution of a fractional logistic ordinary differential equation. Appl. Math. Lett. 2022, 123, 107568. [Google Scholar] [CrossRef]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Eng. Comput. 2021, 5, 135–166. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions, 9th ed.; Dover: New York, NY, USA, 1972. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S. Mittag-Leffler functions. In Theory and Applications; Springer Monographs in Mathematics; Springer: Berlin, Germany, 2014. [Google Scholar]
- Garra, R.; Garrappa, R. The Prabhakar or three parameter Mittag-Leffler function: Theory and application. Commun. Nonlin. Sci. Numer. Simul. 2018, 56, 314–329. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M. Linear model of dissipation whose Q is almost frequency independent. II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel. Theory and application to heat transfer model. Ther. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M.; Fabrizio, M. On the singular kernels for fractional derivatives. Some applications to partial differential equations. Progr. Fract. Differ. Appl. 2021, 7, 1–21. [Google Scholar]
- Losada, J.; Nieto, J.J. Fractional integral associated to fractional derivatives with nonsingular kernels. Progr. Fract. Differ. Appl. 2021, 7, 79–82. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Area, I.; Nieto, J.J. Fractional-Order Logistic Differential Equation with Mittag–Leffler-Type Kernel. Fractal Fract. 2021, 5, 273. https://doi.org/10.3390/fractalfract5040273
Area I, Nieto JJ. Fractional-Order Logistic Differential Equation with Mittag–Leffler-Type Kernel. Fractal and Fractional. 2021; 5(4):273. https://doi.org/10.3390/fractalfract5040273
Chicago/Turabian StyleArea, Iván, and Juan J. Nieto. 2021. "Fractional-Order Logistic Differential Equation with Mittag–Leffler-Type Kernel" Fractal and Fractional 5, no. 4: 273. https://doi.org/10.3390/fractalfract5040273
APA StyleArea, I., & Nieto, J. J. (2021). Fractional-Order Logistic Differential Equation with Mittag–Leffler-Type Kernel. Fractal and Fractional, 5(4), 273. https://doi.org/10.3390/fractalfract5040273