Positive Solutions of a Singular Fractional Boundary Value Problem with r-Laplacian Operators
Abstract
:1. Introduction
2. Preliminary Results
3. Existence of Positive Solutions
- The functions and there exist the functions and with , , such that
4. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Jiang, J. Existence and multiplicity of positive solutions for a system of nonlinear fractional multi-point boundary value problems with p-Laplacian operator. J. Appl. Anal. Comput. 2021, 11, 351–366. [Google Scholar]
- Alsaedi, A.; Luca, R.; Ahmad, B. Existence of positive solutions for a system of singular fractional boundary value problems with p-Laplacian operators. Mathematics 2020, 8, 1890. [Google Scholar] [CrossRef]
- Tudorache, A.; Luca, R. Positive solutions for a system of Riemann–Liouville fractional boundary value problems with p-Laplacian operators. Adv. Differ. Equ. 2020, 292, 1–30. [Google Scholar] [CrossRef]
- Liu, L.; Min, D.; Wu, Y. Existence and multiplicity of positive solutions for a new class of singular higher-order fractional differential equations with Riemann–Stieltjes integral boundary value conditions. Adv. Differ. Equ. 2020, 442, 1–23. [Google Scholar] [CrossRef]
- Prasad, K.R.; Leela, I.D.; Khuddush, M. Existence and uniqueness of positive solutions for system of (p,q,r)-Laplacian fractional order boundary value problems. Adv. Theory Nonlinear Anal. Appl. 2021, 5, 138–157. [Google Scholar]
- Tan, J.; Li, M. Solutions of fractional differential equations with p-Laplacian operator in Banach spaces. Bound. Value Prob. 2018, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Wang, X.; Wang, Z.; Ouyang, P. The existence of solutions for mixed fractional resonant boundary value problem with p(t)-Laplacian operator. J. Appl. Math. Comput. 2019, 61, 559–572. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, S.; Bai, Z. Positive Solutions of Fractional Differential Equations with p-Laplacian. J. Funct. Spaces 2017, 2017, 3187492. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, S.; Li, H. Positive solutions to p-Laplacian fractional differential equations with infinite-point boundary value conditions. Adv. Differ. Equ. 2018, 425, 1–15. [Google Scholar]
- Wang, Y.; Liu, S.; Han, Z. Eigenvalue problems for fractional differential equationswith mixed derivatives and generalized p-Laplacian. Nonlinear Anal. Model. Control 2018, 23, 830–850. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ahmad, B.; Henderson, J.; Luca, R. Boundary Value Problems for Fractional Differential Equations and Systems, Trends in Abstract and Applied Analysis; World Scientific: Hackensack, NJ, USA, 2021; Volume 9. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Hackensack, NJ, USA, 2021. [Google Scholar]
- Henderson, J.; Luca, R. Boundary Value Problems for Systems of Differential, Difference and Fractional Equations. Positive Solutions; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Zhou, Y.; Wang, J.R.; Zhang, L. Basic Theory of Fractional Differential Equations, 2nd ed.; World Scientific: Singapore, 2016. [Google Scholar]
- Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: New York, NY, USA, 1988. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudorache, A.; Luca, R. Positive Solutions of a Singular Fractional Boundary Value Problem with r-Laplacian Operators. Fractal Fract. 2022, 6, 18. https://doi.org/10.3390/fractalfract6010018
Tudorache A, Luca R. Positive Solutions of a Singular Fractional Boundary Value Problem with r-Laplacian Operators. Fractal and Fractional. 2022; 6(1):18. https://doi.org/10.3390/fractalfract6010018
Chicago/Turabian StyleTudorache, Alexandru, and Rodica Luca. 2022. "Positive Solutions of a Singular Fractional Boundary Value Problem with r-Laplacian Operators" Fractal and Fractional 6, no. 1: 18. https://doi.org/10.3390/fractalfract6010018
APA StyleTudorache, A., & Luca, R. (2022). Positive Solutions of a Singular Fractional Boundary Value Problem with r-Laplacian Operators. Fractal and Fractional, 6(1), 18. https://doi.org/10.3390/fractalfract6010018