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Abstract: The present study focuses on the dynamical aspects of a discrete-time Leslie-Gower
predator-prey model accompanied by a Holling type III functional response. Discretization is
conducted by applying a piecewise constant argument method of differential equations. Moreover,
boundedness, existence, uniqueness, and a local stability analysis of biologically feasible equilibria
were investigated. By implementing the center manifold theorem and bifurcation theory, our study
reveals that the given system undergoes period-doubling and Neimark-Sacker bifurcation around the
interior equilibrium point. By contrast, chaotic attractors ensure chaos. To avoid these unpredictable
situations, we establish a feedback-control strategy to control the chaos created under the influence of
bifurcation. The fractal dimensions of the proposed model are calculated. The maximum Lyapunov
exponents and phase portraits are depicted to further confirm the complexity and chaotic behavior.
Finally, numerical simulations are presented to confirm the theoretical and analytical findings.

Keywords: prey-predator model; boundedness; period-doubling bifurcation; Neimark-Sacker bifur-
cation; hybrid control; fractal dimensions

1. Introduction

predator-prey models have a wide range of applications in ecological and biological
fields. Although various fundamental aspects of the nonlinear dynamics of predator-
prey population models related to continuous dynamical systems have been studied,
the characteristics of discrete dynamical systems remain comparatively unknown. A
discrete dynamical structure possesses a solitary dynamical nature as compared to a
continuous system. There are several critical and practical problems in daily life that can
be characterized with the help of a discrete dynamical system. To consider the analytical
aspects of a solution that is difficult to calculate, various schemes can be implemented to
discretize a continuous system and discuss the numerical solution. Therefore, detailed
critical inspections of discrete-time dynamical systems have contributed immensely to
various fields such as engineering, physics, chemistry, and mathematics. There have been
numerous studies conducted that are related to the dynamics of predator-prey models.

Chen et al. [1] applied the Euler scheme and center manifold theorem to a ratio-
dependent prey-predator model and scrutinized the dynamic characteristics of the model.
Ghaziani et al. [2] studied a prey-predator system with a Holling functional response
and discussed the resonance and bifurcation analyses. Jana [3] found extremely powerful
dynamical conditions through numerical and theoretical investigations of discrete-time
prey-predator models, such as stability conditions, flip, and hopf-bifurcation. Misra et al. [4]
studied a predator-prey model based on age predation and discussed the dynamic behav-
ior of the models. Zhang et al. [5] presented a biological economic system related to
the predator-prey model of a differential algebraic system by applying a new normal
form. Hu and Cao [6] investigated the Holling and Leslie type predator-prey model and
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discussed a chaos and bifurcation analysis. Wang and Li [7] proposed a lemma that is
extremely meaningful for discussing the stability and bifurcation of the systems. The fun-
damental finding in the dynamics of prey-predator species is the classical Lotka-Volterra
prey-predator model, which exhibits unrealistic behavior (see, Murdoch et al. [8]). To
remove such unrealistic behavior, Holling introduced three different types of functional
responses (see, Holling [9]). Rosenzweig and MacArthur [10] implemented a functional
response to modify the predator-prey model. An investigation into population interaction
focused on the continuous dynamical system of two species [11–13]. By contrast, a recent
study led to the discrete dynamical system becoming more suitable than a continuous
version when the population is non-overlapping (e.g., see, Jing et al. [14], Liu et al. [15],
Lopez-Ruiz and Fournier-Prunaret [16], Neubert and Kot [17]). Furthermore, multiple
existing studies related to the dynamics of predator-prey models are described in [18–26].
In [27], the Holling type-III functional response was introduced in both populations (prey
and predator). The stability conditions around biologically suitable equilibria were further
discussed. Diagrams of the phase portraits, bifurcation, and time series were plotted. It was
shown that the system is sensitive to the initial conditions, which means that the system
is chaotic. A two-dimensional continuous model with a Holling-III functional response
in both prey and predator was presented [28]. Furthermore, Euler’s scheme was used to
discretize the model and study the complex behavior of the system. Elettreby et al. [29]
discussed a discrete-time prey-predator model with predator and prey populations having
Holling type I and III functional responses, respectively. Moreover, they described a fasci-
nating dynamical nature of the model, including stability, bifurcation, and chaos, which
ensure the rich dynamics of discrete-time models.

In this study, we evaluate the specific prey –predator model discussed by Murray [30]:

dx
dt

=x
[

r
(

1− x
k

)
− axy

b2 + x2

]
,

dy
dt

=ys
(

1− hy
x

)
,

(1)

where x(t) and y(t) denote the densities of prey and predator species at any time t, respec-
tively; the carrying capacity of prey in the absence of predator is k, and r, b, a, s, and h
are positive constants. Moreover, the carrying capacity is proportional to the prey pop-
ulation size and population of prey attacked by predators, as specified by the Holling
type III functional response. He and Lai [31] examined the bifurcation and chaos control
of the discrete-time version of model (1) by implementing Euler’s forward scheme with
step size h as the bifurcation parameter. The numerical results in [31] show that period-
doubling bifurcation occurs when a large step size is considered in Euler’s method; this
fact contravenes the precision of the numerical method for discretization. To overcome this
deficiency, the following discretization method was implemented. Considering the regular
time interval for the average growth rate in both populations, by resorting to piecewise
constant arguments for solving nonlinear differential equations, system (1) can then be
rewritten as follows:

1
x(t)

dx(t)
dt

=

[
r
(

1− x[t]
k

)
− ax[t]y[t]

b2 + x[t]2

]
,

1
y(t)

dy(t)
dt

=s
(

1− hy[t]
x[t]

)
,

(2)
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where the integer part of t is given by [t] within the interval 0 < t < 1. In addition, by
integrating system (1) for t ∈ [n : n + 1], (n = 0, 1, 2, . . .), we have the following system:

x(t) =xn exp
([

r
(

1− xn

k

)
− axnyn

b2 + xn2

]
(t− n)

)
,

y(t) =yn exp
([

s
(

1− hyn

xn

)]
(t− n)

)
.

(3)

Applying t→ n + 1 , we obtain the following prey-predator system:

xn+1 =xn exp
(

r
(

1− xn

k

)
− axnyn

b2 + xn2

)
,

yn+1 =yn exp
(

s
(

1− hyn

xn

))
.

(4)

The key contributions and findings of the current study are as follows for model (4):

• The existence and uniqueness of biologically feasible equilibria and their stability
analysis are discussed.

• Our findings indicate that model (4) undergoes periodic doubling as well as a Neimark-
Sacker bifurcation at its unique positive equilibrium.

• The direction and existance criteria for both types of bifurcation are examined under
interior equilibrium.

• A hybrid control strategy is applied to control the chaos in model (4).

The remainder of this paper is organized as follows. After presenting some related
preliminaries in Section 2, the boundedness of the steady state is analyzed in Section 3. In
Section 4, the dynamics of system (4), including the existence of equilibria and local stability,
are presented. Section 5 describes an investigation of the birfurcation analysis at the interior
fixed point of system (4). In Section 6, we study a hybrid control method to control the
chaos. The fractal dimensions are calculated in Section 7. Finally, numerical simulations
are provided in Section 8 to verify our analytical approach. Conclusions related to these
results are presented in Section 9 and the future directions are providing in Section 10.

Furthermore, a detailed investigation of some charismatic population models and their
qualitative behavior are provided (see, Din and Din et al. [18–26] and the references therein).

2. Preliminaries

Definition 1. ([32]) A point x∗is said to be a fixed point of the map for an equilibrium point if
f (x∗) = x∗.

Theorem 1. ([32]) Let f : I → I be a continuous map, where I = [a, b] is a closed interval inR.
Then, f has a fixed point.

Theorem 2. ([32]) Let f : I = [a, b] → R be a continuous map such that f (I) ⊃ I. Then, f
has a fixed point in I.

Definition 2. ([32]) Let f : I → I be a map and x∗ be a fixed point of f , where I is an interval
in the set of real numbers R. Then, the following conditions hold true:

1. x∗ is said to be stable if for any ε > 0, there exists δ > 0 such that for all x0 ∈ I with
|x0 − x∗| < δ we have | f n(x0)− x∗| < ε for all n ∈ Z+. Otherwise, the fixed point x∗ is
unstable.

2. x∗ is said to be attractive if η > 0 exists, such that |x0 − x∗| < η implies lim
n→∞

f n(x0) = x∗.

3. x∗ is asymptotically stable if it is both stable and attractive. If in (2), η = ∞, then x∗ is said
to be globally asymptotically stable.
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Definition 3. ([32]) A fixed point x∗ of a map f is said to be hyperbolic if | f ′(x∗)| = 1. Otherwise,
it is non-hyperbolic.

Theorem 3. ([32]) Let x∗ be a hyperbolic fixed point of a map f , where f is continuously differen-
tiable at x∗. The following statements hold true:

1. If | f ′(x∗)| < 1, then x∗ is asymptotically stable.
2. If | f ′(x∗)| > 1, then x∗ is unstable.

3. Boundedness

The boundedness of system (4) is based on the following Remark.

Remark 1. ([25]) Assuming that x0 > 0 for every xt and xt+1 ≤ xtexp(A[1− Bxt]) for every
t ∈ [t1, ∞], where B > 0 is constant. Then,

lim
n→∞

Supxt ≤
1

AB
exp(A− 1)

Using Remark 1, we state the following theorem for the uniform boundedness of
system (4).

Theorem 4. Any positive solution (xn, yn) of model (4) is uniformly bounded.

Proof. Assuming that (xn, yn) is any positive solution of system (4), we then have

xn+1 ≤ xn exp
(

r
(

1− xn

k

))
, for all n = 0, 1, 2, . . . .

Let x0 > 0. Using Remark 1, we obtain the following result.

lim
n→∞

Supxn ≤
k
r

exp(r− 1) = l1. (5)

Furthermore, from the second part of system (4), we obtain the following:

yn+1 ≤ yn exp
(

s
(

1− hyn

l1

))
.

Let y0 > 0. Applying Remark 1, we obtain the following result:

lim
n→∞

Supyn ≤
l1
sh

(s− 1) = l2 (6)

Thus, it follows that limn→∞Sup(xn, yn) ≤ l, where l = max{l1, l2}. The proof is
completed. �

4. Existence of a Positive Fixed Point and Local Stability

To explore the existence of a fixed point of model (4), suppose that (x, y) is any arbitrary
fixed point of (4). Then, (x, y) must satisfy the following algebraic system of equations:

x =x exp
(

r
(

1− x
k

)
− axy

b2 + x2

)
,

y =y exp
(

s
(

1− hy
x

))
.

(7)

Then, (7) has a boundary equilibrium point (k, 0). In addition, we also explore the
existence and uniqueness of the solution of system (4) because the positive fixed points
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are not in a closed form. For this purpose, the following computation, using Theorem 4,
exhibits the existence and uniqueness of the solution to model (4).

Theorem 5. There exists a unique positive steady-state(x∗, y∗) ∈ [0, l1]× [0, l2] of system (4).

Proof. To attain the fixed point by solving system (7), we have

r
(
1− x

k
)
= axy

x2+b2 ,
x = yh.

(8)

Suppose that

F(x) = r
(

1− x
k

)
−

ax2

h
x2 + b2

for all x ∈ [0, l1]. Then, we can see that F(0) = r > 0 and

F(l1) = −
a exp(2(r− 1))k2

h
(

b2 +
exp(2(r−1))k2

r2

)
r2

+ r
(

1− exp(r− 1)
r

)
< 0

for all a, b, s, r, k, and h > 0. Hence, there exists at least one root of F(x) = 0, for
x ∈ [0, l1]. In addition,

F′(x) = − r
k
− 2ab2x

h(b2 + x2)
2 < 0

for all x ∈ [0, l1]. Therefore, the system (4) has a unique positive fixed point (x∗, y∗) ∈
[0, l1]× [0, l2].

Initially, we explored the stability analysis of the boundary equilibrium (k, 0). The
Jacobian matrix FJ evaluated at (k, 0), is expressed as

FJ(k, 0) =

[
1− r − k2a

b2+k2

0 exp(s)

]
,

and the characteristic equation computed at (k, 0) is given by

F(η) = η2 − (1− r + exp(s))η + (1− r) exp(s)

Hence, F(η) = 0 has two roots, namely, η1 = exp(s) and η2 = 1− r. In addition, (k, 0)
is the source if r > 2, and is the saddle point if 0 < r < 2. Next, we explored the stability
analysis of the fixed points. To investigate the stability of the equilibria, we calculated the
Jacobian FJ of system (4) at any point (x, y) as follows:

FJ(x, y) =
[

b11 b12
b21 b22

]
The characteristic polynomial of FJ at (x, y) is given by

R(η) = η2 − T1η + D1, (9)

where
T1 = (b11 + b22),

and
D1 = b11b22 − b12b21

The following Lemma is extremely useful to examine the stability of the equilibria. �
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Lemma 1. Let <(η) = η2 − T1η + D1 and <(1) > 0. Moreover, η1,η2 are the roots of equation
<(η) = 0, and thus

(i) |η1| < 1 & |η2| < 1⇔ <(−1) > 0 and D1 < 1;
(ii) |η1| < 1 & |η2| > 1 or (|η1| > 1 and |η2| < 1)⇔ <(−1) < 0;
(iii) |η1| > 1 & |η2| > 1⇔ <(−1) > 0 and D1 > 1;
(iv) η1 = −1 & |η2| 6= 1 ⇔ <(−1) = 0 and T1 6= 0, 2;
(v) η1 and η2 are complex and |η1| = 1 and |η2| = 1⇔ T1

2 − 4D1 < 0 and D1 = 1.

Because η1 and η2 are the eigenvalues of (9), the following topological results are
obtained.

The equilibrium (x, y) is known as a sink if |η1| < 1 and |η2| < 1, which is locally
asymptotically stable, and as a source if |η1| > 1 and |η2| > 1; thus, the nature of the source
is always unstable. Moreover, the equilibrium point (x, y) is always known as the saddle
point if |η1| < 1 and |η2| > 1 or (|η1| > 1 and |η2| < 1). In the case of a non-hyperbolic
equilibrium (x, y), either |η1| = 1 or |η2| = 1.

Our next aim is to discuss the local stability of the unique positive equilibrium (x∗, y∗)
of system (4). Let (9) be the characteristic polynomial of the variational matrix evaluated at
(x∗, y∗), such that

T1 =
(

2− rx∗
k
−Ω− s)

)
and D1 =

(
1− rx∗

k
−Ω

)
(1− s) +

sΦ
h

where Ω =
ax∗y∗(b2−x2

∗)

(b2+x2∗)
2 and Φ = ax2

∗
b2+x2∗

. Thus, by applying Lemma 1, we discuss the local

stability of system (4) around (x∗, y∗) by stating the following proposition.

Proposition 1. The interior equilibrium point (x∗, y∗) of system (4) satisfies the following results:

(i) The interior equilibrium(x∗, y∗) is stable iff:∣∣∣2− rx∗
k
−Ω− s

∣∣∣ < ∣∣∣∣1 + (1− rx∗
k
−Ω

)
(1− s) +

sΦ
h

∣∣∣∣,
and ∣∣∣∣ sΦ

h
+ (1− s)

(
1− rx∗

k
−Ω

)∣∣∣∣ > 1

(ii) The positive fixed point (x∗, y∗) is a saddle point if and only if

[
2− rx∗

k
−Ω− s

]2
> 4

[
(1− s)

(
1− rx∗

k
−Ω

)
+

sΦ
h

]
,

and
(iii) The interior fixed point (x∗, y∗) is non-hyperbolic if and only if∣∣∣2− rx∗

k
−Ω− s

∣∣∣ = ∣∣∣∣1 + (1− rx∗
k
−Ω

)
(1− s) +

sΦ
h

∣∣∣∣ (10)

or (
1− rx∗

k
−Ω

)
(1− s) +

sΦ
h

= 1 and
∣∣∣2− rx∗

k
−Ω− s

∣∣∣ < 2. (11)

To explore the local stability criteria for (x∗, y∗) of model (4), we have the following
theorem:

Theorem 6. If neither (10) nor (11) is satisfied, then the positive steady-state (x∗, y∗) of system (4)
is locally asymptotically stable if and only if the following condition is satisfied.
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∣∣∣2− rx∗
k
−Ω− s

∣∣∣ < 1 +
(

1− rx∗
k
−Ω

)
(1− s) +

sΦ
h

< 2

5. Bifurcation Analysis

In this section, we discuss the period-doubling and Neimark-Sacker bifurcations of
system (4) around the interior equilibrium. Initially, we explored the period-doubling
bifurcation at a positive fixed point (x∗, y∗) of system (4). To study the period-doubling
bifurcation, assume that T2

1 > 4D1, that is,(
2− rx∗

k
−Ω− s

)
> 4

[(
1− rx∗

k
−Ω

)
(1− s) +

sΦ
h

]
(12)

and T1 + D1 + 1 = 0. It then follows that

s :=
2h(rx∗ − (2−Ω)k)

h(Ω k + rx∗) + k(Φ− 2 h)
(13)

Then, η1 = −1 and η2 6= 1 if(
1− rx∗

k
−Ω

)
(1− s) +

sΦ
h
6= ±1. (14)

Consider the map TPB =
{
(a, b, k, r, s) ∈ R5

+ for which (12)–(14) are thus satisfied.
Then, the equilibrium (x∗, y∗) of system (4) sustains period-doubling bifurcation whenever
the parameters deviate within the small neighborhood of TPB. Thus, system (4) along with
parameters (a, b, k, r, s1) ∈ TPB, can be written as follows:

(
x
y

)
→
(

xer(1− x
k )−

axy
b2+x2

yes1(1−
hy
x )

)
(15)

The following perturbation of system (15) can be obtained by taking s as a bifurcation
parameter: (

x
y

)
→
(

xer(1− x
k )−

axy
b2+x2

ye(s1+s)(1− hy
x )

)
(16)

where |s| << 1 denotes the least perturbation parameter. Assuming that N = x − x∗,
P = y− y∗, system (16) is reduced to the following form:(

N
P

)
→
(

b11 b12
b21 b22

)(
N
P

)
+

(
f1(N, P, s)
f2(N, P, s)

)
(17)

Here,

f1(N, P, s) = b13N2 + b14NP + b15P2 + a1N3 + a2N2P + a3NP2 + a4P3 + O
(
(|N|+ |P|+ |s|)4

)
,

f2(N, P, s) = b23N2 + b24NP + b25P2 + d1N3 + d2N2P + d3NP2 + d4P3

+c1sN + c2rP + c3r2 + c4rNP + c5rN2 + c6rP2 + c7r2N + c8s2P + c9r3 + O
(
(|N|+ |P|+ |s|)4

)
Whereas the descriptions and computations of the involved coefficients are given in

Appendix A.
The canonical form of (17) at s1 = 0 can be obtained by assuming the following map:(

N
P

)
=

(
b12 b12
−1− b11 η2 − b11

)(
u
v

)
. (18)
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The normal form of system (17) under translation (18) can be expressed as(
u
v

)
→
(
−1 0
0 η2

)(
u
v

)
+

(
f̃ (u, v, s)
g̃(u, v, s)

)
, (19)

the descriptions and computations of the involved functions and parameters leading to the
following expression are provided in Appendix B.

F1 :=
(

∂2 f̃
∂u∂s +

1
2

∂F
∂r

∂2F
∂u2

)
(0,0)

= c2(1+b11)
η2+1 − c1b12

η2+1 ,

F2 :=
(

1
6

∂3F
∂u3 +

(
1
2

∂2F
∂u2

)2
)
(0,0)

= t2
1 + t5

Hence, we arrive at the following conclusions based on the aforementioned calculations.

Theorem 7. There exists a period-doubling bifurcation at (x∗, y∗) of system (4), whenever F2 6= 0
and r deviates within a small neighboring point of s1. In addition, if F2 > 0, (F2 < 0), the orbit is
period-2 stable (unstable).

Next, we investigated the Neimark-Sacker bifurcation around (x∗, y∗) of system (4).
For identical results, we referred to the studies by Din [24,25], Shabbir et al. [20], and Jing
et al. [14]. Furthermore, the equilibrium point moves around the close invariant curve,
owing to the Neimark-Sacker bifurcation. To explore the Neimark-Sacker bifurcation, we
find the conditions for which (x∗, y∗) is a non-hyperbolic point with a complex conjugate
root of the characteristic equation of the unit modulus. Thus, if the following results hold
true, then <(η) = 0 has two complex conjugate roots with a unit modulus.

s :=
(Ω k + rx∗)h

h(Ω k + rx∗) + k(Φ− h)
,

and ∣∣∣2− rx∗
k
−Ω− s

∣∣∣ < 2.

Consider

TNS =

{
(a, b, k, r, s) ∈ R5

+ : s =
(Ω k + rx∗)h

h(Ω k + rx∗) + k(Φ− h)
and

∣∣∣2− rx∗
k
−Ω− s

∣∣∣ < 2
}

.

Assuming that s2 = (Ω k+rx∗)h
h(Ω k+rx∗)+k(Φ−h) , the fixed point (x∗, y∗) ensures the Neimark-

Sacker bifurcation when the parameters fluctuate in the least neighborhood of TNS. Thus,
system (4) along with parameters (a, b, k, r2, s) can be expressed as follows:

(
x
y

)
→
(

xer(1− x
k )−

axy
b2+x2

yes2(1−
hy
x )

)
. (20)

The following perturbation of system (20) can be obtained by taking s̃ as the bifurcation
parameter, i.e., (

x
y

)
→
(

xer(1− x
k )−

axy
b2+x2

ye(s2+s̃)(1− hy
x )

)
(21)

where |s̃| << 1 denotes the least perturbation. Assuming that N = x− x∗, P = y− y∗,
then system (21) takes the following modified form:(

N
P

)
→
(

a11 a12
a21 a22

)(
N
P

)
+

(
g1(N, P)
g2(N, P)

)
, (22)
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where

g1(N, P) = b13N2 + b14NP + b15P2 + a1N3 + a2N2P + a3NP2 + a4P3 + O
(
(|N|+ |P|+ |r|)4

)
,

g2(N, P) = b23N2 + b24NP + b25P2 + d1N3 + d2N2P + d3NP2 + d4P3 + O
(
(|N|+ |P|+ |r|)4

)
.

Here, b11, b12, b21, b22, b13, b14, b15, a1, a2, a3, a4, b23, b24, b25, d1, d2, d3, and d4, are
defined in (17) by replacing s1 by s2 + s̃. Let

η2 − T1(s̃)η + D1(s̃) = 0, (23)

be the characteristic equation of the variational matrix of (22) evaluated at (0, 0), where

T1(s̃) =
(

2− rx∗
k
−Ω− (s2 + s̃)

)
and D1(s̃) =

(
1− rx∗

k
−Ω

)
(1− (s2 + s̃))+

(s2 + s̃)Φ
h

where Ω =
ax∗y∗(b2−x2

∗)

(b2+x2∗)
2 and Φ = ax2

∗
b2+x2∗

. Because (a, b, k, r, s2) ∈ TNS, |η1| = |η2| such that

η1 and η2 are the complex conjugate roots of (23), it follows that

η1, η2 =
T1(s̃)

2
± i

2

√
4D1(s̃)− T2

1 (s̃)

We then obtain

|η1|=|η2| =
√

D1(s̃),

(
d
√

D1(s̃)
ds̃

)
s̃=0

=
(Ω h + Φ− h)k + hrx

2
√
((Ω− 1)k + rx)(s− 1)h + Φ ks

6= 0

Moreover, T1(0) =
(
2− rx∗

k −Ω− s2
)
6= 0, −1. Because (a, b, k, r, s2) ∈ TNS, it follows

that −2 < T1(0) =
(
2− rx∗

k −Ω− s2
)
< 2. Thus, we have ηm

1 , ηm
2 6= 1 for all m = 1, 2, 3, 4

at s̃ = 0, for T1(0) 6= 0,−1,±2. Hence, for s̃ = 0, zeros of (23) do not belong to the
intersection of the unit circle with coordinate axes if the following condition is satisfied:

2−Ω− s2 6=
rx∗
k

, 3−Ω− s2 6=
rx∗
k

(24)

The canonical form of (22) at s̃ = 0 can be obtained by taking γ = T1(0)
2 ,

δ = 1
2

√
4D1(0)− T2

1 (0) and assuming(
N
P

)
=

(
b12 0
γ− b11 −δ

)(
u
v

)
(25)

Using transformation (25), we obtain the following canonical form of system (22):(
u
v

)
→
(

γ −δ
δ γ

)(
u
v

)
+

(
f̃ (u, v)
g̃(u, v)

)
(26)

where

f̃ (u, v) =
a1N3

b12
+

a2N2P
b12

+
b13N2

b12
+

a3NP2

b12
+

b14NP
b12

+
a4P3

b12
+

b15P2

b12
+ O

(
(|u|+ |v|)4

)
g̃(u, v) =

(
(γ− b11)a1

b12δ
− d1

δ

)
N3 +

(
(γ− b11)a2

b12δ
− d2

δ

)
N2P

+

(
(γ− b11)b13

b12δ
− b23

δ

)
N2 +

(
(γ− b11)a3

b12δ
− d3

δ

)
NP2
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+

(
(γ− b11)b14

b12δ
− b24

δ

)
NP +

(
(γ− b11)a4

b12δ
− d4

δ

)
P3

+

(
(γ− b11)b15

b12δ
− b25

δ

)
P2 + O

(
(|u|+ |v|)4

)
N = a12u and < P = (γ− b11)u− δv

Owing to the aforementioned computation, we state a nonzero real number

L :=

([
−Re

(
(1− 2η1)η

2
2

1− η1
ξ20ξ11

)
− 1

2
|ξ11|2−|ξ02|2 + Re(η2ξ21)

])
c̃=0

where,

ξ11 =
1
4

[
f̃uu + f̃vv + i(g̃uu + g̃vv)

]
,

ξ02 =
1
8

[
f̃uu − f̃vv − 2g̃uv + i

(
g̃uu − g̃vv + 2 f̃uv

)]
ξ20 =

1
8

[
f̃uu − f̃vv + 2g̃uv + i

(
g̃uu − g̃vv − 2 f̃uv

)]
,

ξ21 =
1

16

[
f̃uuu + f̃uvv + g̃uuv + g̃vvv + i

(
g̃uuu + g̃uvv − f̃uuv − f̃vvv

)]
.

Ultimately, we deduced the following conclusions for the direction and existence of
the Neimark-Sacker bifurcation, based on the aforementioned calculation:

Theorem 8. There exists a Neimark-Sacker bifurcation around (x∗, y∗) whenever s deviates wtihin
the neighborhood of s2 = (Ω k+rx∗)h

h(Ω k+rx∗)+k(Φ−h) . In addition, if L < 0 (L > 0), then an attracting (or
repelling) invariant closed curve fluctuates in the range (x∗, y∗) for s > s2 (or s < s2).

6. Chaos Control

In this section, we implement the hybrid control method for controlling the chaos
caused by the period-doubling bifurcation and for controlling the Neimark-Sacker bifur-
cation in (4). Such strategies have been discussed elsewhere in [21,33–37]. We assume the
following controlled system corresponding to model (4):

xn+1 =εxn exp
(

r
(

1− xn

k

)
− axnyn

b2 + xn2

)
+ (1− ε)xn,

yn+1 =εyn exp
(

s
(

1− hyn

xn

))
+ (1− ε)yn,

(27)

where 0 < ε < 1. Furthermore, both types of bifurcations can be controlled by choosing
an appropriate value of parameter ε. The controlled system (27) and the original system
(4) have the same equilibrium point; the Jacobian matrix of the controlled system (27) at
(x∗, y∗) is expressed by [

1− ε xr
k − ε Ω −ε Φ

ε s
h 1− ε s

]
Consequently, the necessary and sufficient condition for local stability around (x∗, y∗)

of the controlled system (27) yields the following result.

Theorem 9. The interior fixed point (x∗, y∗) of (27) is locally asymptotically stable if∣∣∣2− εrx∗
k
− εΩ− εs

∣∣∣ < 1 +
(

1− εrx∗
k
− εΩ

)
(1− εs) +

sΦ
h

< 2.
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7. Fractal Dimension

The fractal dimension that describes the strange attractors of discrete-time models is
defined as follows [38,39]:
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The strange attractors for fixed parametric values illustrate that the discrete model 
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Furthermore, for the values of parameters a, b, r, k, h, and s, the two Lyapunov expo-
nents F1 and F2 are computed numerically. If b = 3.3, a = 0.8, r = 1.3, h = 2.7, and k = 1.8,
then F1 and F2 corresponding to the values of the bifurcation (period-doubling) parameter
s from the chaotic region, with the help of Mathematica software, are shown in Table 1.
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2.85 0.08462596943938297 −1.1368798813345231 1.0744370366903186

2.90 0.22741225178613755 −1.2160641186798002 1.187006793714976

3.0 0.31895100399320747 −1.0790255038850196 1.2955917194216706

3.1 0.22493177216760443 −1.244489487648406 1.1807422034497348

3.2 0.4025124673527987 −1.1944261491614452 1.3369923436751492

3.3 0.3894200849244259 −1.2328810276916689 1.3158618521801246

3.4 0.47745428811163265 −1.2528556268034083 1.3810928233844715

3.5 0.47582043180971084 −1.2925566246939908 1.3681234715131803

The strange attractors for fixed parametric values illustrate that the discrete model (4)
has a complex dynamical behavior as parameter s increases by s > 2.1894756175566834.
Similarly, for the Neimark-Sacker bifurcation, the Lyapunov exponents and fractal di-
mension can be calculated for the values of parameter s from the chaotic region, that is,
s = 1.66, 1.68, 1.89, and so on. The strange attractors corresponding to these values are
also shown in Figure 1. In particular, Figure 1g,h,k below, demonstrate that the discrete
time model (4) has a complex dynamical nature when parameter s > 1.3874082082631611.
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Figure 1. (a) s = 1.34, (b) s = 1.3811, (c) s = 1.3874082082631611, (d) s = 1.43, (e) s = 1.607,
(f) s = 1.625, (g) s = 1.66, (h) s = 1.68, (i) s = 1.735, (j) s = 1.83, (k) s = 1.89,
(l) s = 1.99. (a)–(l) Phase portraits of system (4) for different values of s ∈ [1, 2] with
b = 1.7, a = 2.26, r = 2.4, h = 1.8, and k = 1.4 under the initial conditions x0 = 1.0219, y0 = 0.567721.

8. Numerical Simulation

This section verifies the aforementioned theoretical discussion. The first example is
related to the existence and direction of the Neimark-Sacker bifurcation. The second exam-
ple shows that for a suitable choice of parameters, system (4) undergoes period-doubling
bifurcation. Moreover, to confirm the control of flip and Neimark-Sacker bifurcation, we
provide two examples for different choices of parameters defined in TPB and TNS.

Example 1. Let b = 1.7, a = 2.26, r = 2.4, h = 1.8, k = 1.4, s ∈ [1, 1.8], and initial conditions
(x0, y0) = (1.0219, 0.567721). Then, both species undergo a Neimark-Sacker bifurcation, as shown
in Figure 2. To confirm the chaotic behavior of model (4) MLE is shown in Figure 2c.



Fractal Fract. 2022, 6, 31 14 of 21Fractal Fract. 2022, 6, x FOR PEER REVIEW 13 of 20 
 

 

  
(a) (b) 

 
(c) 

Figure 2. Bifurcation diagrams and maximum Lypunov exponents (MLE) for system (4) with 
parametric values ܾ = 1.7, ܽ = 2.26, ݎ = 2.4, ℎ = 1.8, ݇ = 1.4 , and ݏ ∈ [1,1.8]  and initial 
conditions (ݔ, (ݕ = (1.0219,0.567721): (a) bifurcation for ࢞, (b) bifurcation for ࢟, and (c) MLE. 

Furthermore, Figure 1(i)–1(xii) shows the interesting behavior of system (4). Figure 
1(vi)–1(xii) shows the chaotic behavior of system (4). Assuming that b = 1.7, we have a 
positive fixed point (x∗, y∗) = (1.165750001,0.6476388892) , which loses stability and 
undergoes a Neimark–Sacker bifurcation. Thus, for the aforementioned parameters, we 
have the following control system: 

ାଵݔ = eݔ ߳
ଶ.ସିଵ.ଵସଶ଼ହଵସ ௫ିଶ.ଶ ௫௬

௫మାଶ.଼ଽ + (1 − ݔ(߳ ,

ାଵݕ = eଵ.ହିଶ. ௬ݕ ߳
௫ + (1 − ݕ(߳ .

 (28)

It can be clearly observed that the controlled system (28) has a unique positive 
equilibrium point (ݔ∗, (∗ݕ = (1.165750001, 0.6476388892),  which is similar to the 
original system (4). In addition, the Jacobian at equilibrium (ݔ∗, (∗ݕ =
(1.165750001,0.6476388892) has the following form: 

ቂ−2.143126283 ߳ + 1 −0.7228285706 ߳
0.8333333325 ߳ −1.500000000 ߳ + 1ቃ. 

 
Example 2. Assuming the parameters ܾ = 3.3, ܽ = 0.8, ݎ = 1.3, ℎ = 2.7, ݇ = 1.8 , 

and ݏ ∈ [2, 3.5] , and the initial conditions (ݔ, (ݕ = (1.74693,0.647013) , both species 
then undergo period-doubling bifurcation when the bifurcation parameter passes 
through ݏ = 2.1894756175566834, as shown in Figure 3. In particular this fact is obvious 
in Figure 3a,b. Moreover, to confirm the chaotic behavior of model (4) MLE is shown in 
Figure 3c.  

 

Figure 2. Bifurcation diagrams and maximum Lypunov exponents (MLE) for system (4) with para-
metric values b = 1.7, a = 2.26, r = 2.4, h = 1.8, k = 1.4, and s ∈ [1, 1.8] and initial conditions
(x0, y0) = (1.0219, 0.567721): (a) bifurcation for xn, (b) bifurcation for yn, and (c) MLE.

Furthermore, Figure 1a–l shows the interesting behavior of system (4). Figure 1f–l
shows the chaotic behavior of system (4). Assuming that b = 1.7, we have a positive
fixed point (x∗, y∗) = (1.165750001, 0.6476388892), which loses stability and undergoes
a Neimark-Sacker bifurcation. Thus, for the aforementioned parameters, we have the
following control system:

xn+1 =ε xne
2.4−1.714285714 xn−2.26 xnyn

xn2+2.89 + (1− ε)xn,

yn+1 =ε yne1.5−2.70 yn
xn + (1− ε)yn.

(28)

It can be clearly observed that the controlled system (28) has a unique positive equilib-
rium point (x∗, y∗) = (1.165750001, 0.6476388892), which is similar to the original system
(4). In addition, the Jacobian at equilibrium (x∗, y∗) = (1.165750001, 0.6476388892) has the
following form: [

−2.143126283 ε + 1 −0.7228285706 ε
0.8333333325 ε −1.500000000 ε + 1

]
.

Example 2. Assuming the parameters b = 3.3, a = 0.8, r = 1.3, h = 2.7, k = 1.8, and
s ∈ [2, 3.5], and the initial conditions (x0, y0) = (1.74693, 0.647013), both species then undergo
period-doubling bifurcation when the bifurcation parameter passes through s = 2.1894756175566834,
as shown in Figure 3. In particular this fact is obvious in Figure 3a,b. Moreover, to confirm the
chaotic behavior of model (4) MLE is shown in Figure 3c.
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(1.712924751,0.6344165743)  loses its stability and undergoes periodic doubling (see 
Figure 4).  
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Figure 3. Bifurcation diagrams and MLE for system (4) with parameters
b = 3.3, a = 0.8, r = 1.3, h = 2.7, k = 1.8, s ∈ [2, 3], and (x0, y0) = (1.74693, 0.647013):
(a) period-doubling bifurcation for xn, (b) period-doubling bifurcation for yn, and (c) MLE.

Furthermore, if s = 2.4, then the equilibrium point (x∗, y∗) = (1.712924751, 0.6344165743)
loses its stability and undergoes periodic doubling (see Figure 4).

Thus, for the aforementioned parameters, we present the following control system:

xn+1 =ε xne
1.3−0.7222222223 xn−0.8 xnyn

xn2+10.89 + (1− ε)xn,

yn+1 =ε yne2.4−6.48 yn
xn + (1− ε)yn,

(29)

The fixed point (x∗, y∗) = (1.712924751, 0.6344165743) was preserved in the case
of a controlled system (29). Furthermore, the variational matrix of the aforementioned
controlled system computed at a fixed point (x∗, y∗) = (1.712924751, 0.6344165743) is
given by [

−1.273304693 ε + 1 −0.1697967362 ε
0.8888888882 ε −2.399999999 ε + 1

]
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Figure 4. (a) Bifurcation diagrams of xn for controlled system (28), (b) bifurcation diagrams of yn for
controlled system (28), (c) bifurcation diagrams of xn for controlled system (30), and (d) bifurcation
diagrams of yn for controlled system (30).

The characteristic polynomial of the aforementioned Jacobian matrix is given by

η2 + (3.673304692 ε− 2)η + 3.206861694 ε2 − 3.673304692 ε + 1 = 0.

According to Lemma 1, the control system is locally asymptotically stable, if 0 < ε <
0.8910230450195268 and bifurcation is controlled for 0 < ε < 0.8910230450195268 (see
Figure 4c,d).

Finally, some local implications of the MLE diagrams, shown in Figures 1c and 2c for
the Neimark-Sacker bifurcation and period-doubling bifurcation, respectively, are plotted
in Figure 5a,b, respectively. It has also been verified that the system undergoes Neimark-
Sacker bifurcation at s = 1.3874082082631611, where the phase portrait at this point shows
a closed invariant curve, as already shown in Figure 4c.



Fractal Fract. 2022, 6, 31 17 of 21

Figure 5. (a) Local implication for the Neimark-Sacker bifurcation and (b) local implication for
period-doubling bifurcation.

9. Concluding Remarks

In this study, we examined the qualitative and dynamical analyses of a discrete-time
predator-prey model. Piecewise constant arguments have been applied to achieve the
discrete-time counterpart of a continuous model. Thus, a comprehensive analysis of model
(4) was presented. In particular, we investigated the boundedness, local stability of the
boundary, and positive equilibrium points, which seem to present more challenging cases
of Euler’s discretization scheme in [31]. Moreover, it was proved that the population
sustains both period-doubling bifurcation and Neimark-Sacker bifurcation near the interior
equilibrium. The parametric conditions were obtained for the direction and existence of
both types of bifurcations using the theory of bifurcation and center manifold theorem.
Moreover, the chaotic attractors shown in Figure 5 ensures chaos in the system. To control
the chaotic behavior of system (4), a hybrid control method was implemented. Hence, by
applying a control strategy, both types of bifurcations can be controlled for a maximum
range of control parameters. We also presented the fractal dimension of model (4), which
characterizes the strange attractors provided in Figure 5 thereby illustrating the complexity
and rich dynamics of discrete model (4). Finally, numerical simulations were conducted to
verify the analytical and theoretical approaches.

10. Future Direction

Our future research will include the Leslie–Gower predator-prey model with the
functional response of Holling type-II. In this case, we aim to conduct stability, bifurcation,
and chaos-control analyses of the model. A comparison of both functional responses will
be conducted in a future study.
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Appendix A

b11 = 1 + x∗B1, b12 = − ax2
∗

b2+x2∗
, b21 = s1

h , b22 = 1− s1, b15 = a2x3
∗

2(b2+x2∗)
2

b13 = B1 +
1
2 x∗y∗B3 +

1
2 x∗B2

1, b14 = − x∗(ax∗B1−b2B2−x2
∗B2+a)

b2+x2∗
,

a1 = y∗B3 +
1
2 B2

1 +
x∗ay∗(b4−6b2x2

∗+x4
∗)

(b2+x2∗)
4 + 1

2 x∗y∗B3B1 +
1
6 x∗B3

1,

a2 = B2 − B1ax∗
b2+x2∗

+ 1
2 x∗B3 − 1

2
x2
∗y∗B3a
b2+x2∗

+ x∗B1B2 − 1
2

x2
∗B2

1 a
b2+x2∗

,

a3 = 1
2

a2x2
∗

(b2+x2∗)
2 −

x2
∗B2a

b2+x2∗
+ 1

2
x3
∗B1a2

(b2+x2∗)
2 , a4 = − 1

6
x4
∗a3

(b2+x2∗)
3 ,

b23 = hs1y2
∗(hs1y∗−2x∗)

2x4∗
, b24 = hs1y∗(2x∗−hs1y∗)

x3∗
,

b25 = hs1(hs1y∗−2x∗)
2x2∗

, d1 =
hs1y2

∗(6x2
∗−6hs1x∗y∗+h2s2

1y2
∗)

6x6∗
,

d2 = − hs1y∗(hs1y∗−4x∗)(hs1y∗−x∗)
2x5∗

, d3 =
hs1(2x2

∗−4hs1x∗y∗+h2s2
1y2
∗)

2x4∗
,

d4 = − h2s2
1(hs1y∗−3x∗)

6x3∗
, c1 = hy2

∗((1+s1)x∗−hs1y∗)
x3∗

,

c2 =
(x2
∗−h(2+s1)x∗y∗+h2s1y2

∗)
x2∗

,

c3 =
hy∗(2(1+s1)x2

∗−hs1(4+s1)x∗y∗+h2s2
1y2
∗)

x4∗
,

c4 = − hy2
∗(2(1+s1)x2

∗−hs1(4+s1)x∗y∗+h2s2
1y2
∗)

2x5∗
,

c5 = − h(2(1+s1)x2
∗−hs1(4+s1)x∗y∗+h2s2

1y2
∗)

2x3∗
.

where B1 = −
(

r1
k +

ay∗(b2−x2
∗)

(b2+x2∗)
2

)
, B2 = − a(b2−x2

∗)

(b2+x2∗)
2 , B3 =

2ax∗(3b2−x2
∗)

(b2+x2∗)
3 , B4 = y∗B3.

Appendix B

f̃ (u, v, s) =
(

b13(η2−b11)
b12(1+η2)

− b23
1+η2

)
N2 −

(
b24

1+η2
+ b14(b11−η2)

b12(1+η2)

)
NP

−
(

b25
1+λ2

+ b15(b11−η2)
b12(1+η2)

)
P2 −

(
d1

1+λ2
+ a1(b11−η2)

b12(1+η2)

)
N3

−
(

d2
1+λ2

+ a2(b11−η2)
b12(1+η2)

)
N2P−

(
d3

1+η2
+ a3(b11−η2)

b12(1+η2)

)
NP2

−
(

d4
1+η2

+ a4(b11−η2)
b12(1+η2)

)
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1+η2
sN − c2
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rP− c3

1+η2
NP− c4

1+η2
rN2 − c5

1+η2
rP2 + O

(
(|u|+ |v|+ |s|)4

)
,

g̃(u, v, s) =
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b23
1+η2

+ (1+b11)b13
b12(1+η2)

)
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(
b24

1+η2
+ (1+b11)b14

b12(1+η2)

)
NP

+
(

b25
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)
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(
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)
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+
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)
,

where N = b12(u + v) and P = (−1− b11)u + (η2 − b11)v.
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Thus, the approximation of the center manifold Wc(0, 0, 0) of (19) within the neighbor-
hood of s = 0 evaluated at the origin can be expressed as

Wc(0, 0, 0) =
{(

u, v, s1 ∈ R3
)
= M3s2 + M2su + m1u2 + (O|u|, |s1|)4

}
,

where

M1 =
b2

12

(
b23

1+η2
+
(1+b11)b13
b12(1+η2)

)
1−η2

−
(1+b11)b12

(
b24

1+η2
+
(1+b11)b14
b12(1+η2)

)
1−η2

+
(1+b11)

2
(

b25
1+η2

+
(1+b11)b15
b12(1+η2)

)
1−η2

,

M2 = c2(1+b11)−c1b12
η2

2−1 , M3 = 0.

Consequently, the restricted map to center manifold Wc(0, 0, 0) is expressed as follows:

F : u→ −u + t1u2 + t2us + t3u2s + t4us2 + t5u3 + (O|u|, |s1|)4

where
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