Third Hankel Determinant for a Subclass of Univalent Functions Associated with Lemniscate of Bernoulli
Abstract
:1. Introduction
2. Set of Lemmas
3. Main Results
- For we get;
- For and , we can get .
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sokol, J. Coefficient estimates in a class of strongly starlike functions. Kyungpook Math. J. 2009, 49, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat 1996, 19, 101–105. [Google Scholar]
- Güney, H.Ö.; Murugusundaramoorthy, G.; Srivastava, H.M. The second hankel determinant for a certain class of bi-close-to-convex functions. Results Math. 2019, 74, 93. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for a function whose derivative has a positive real part. J. Inequal. Pure Appl. Math. 2006, 7, 1–5. [Google Scholar]
- Mishra, A.K.; Gochhayat, P. Second hankel determinant for a class of analytic functions defined by fractional derivative. Int. J. Math. Math. Sci. 2008, 2008, 153280. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Singh, G. On the second hankel determinant for a new subclass of analytic functions. J. Math. Sci. Appl. 2014, 2, 1–3. [Google Scholar]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.; Raza, N.; AbuJarad, E.S.; Srivastava, G.; AbuJarad, M.H. Fekete-szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
- Babalola, K.O. On h_3(1) hankel determinant for some classes of univalent functions. arXiv 2009, arXiv:0910.3779. [Google Scholar]
- Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Ahmad, Q.Z.; Darus, M.; Khan, N.; Khan, B.; Zaman, N.; Shah, H.H. Upper bound of the third hankel determinant for a subclass of close-to-convex functions associated with the lemniscate of bernoulli. Mathematics 2019, 7, 848. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Ma, W. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis; International Press Inc.: Somerville, MA, USA, 1992. [Google Scholar]
- Grenander, U.; Szegö, G. Toeplitz Forms and Their Applications; University of California Press: Berkeley, CA, USA, 1958. [Google Scholar]
- Raza, M.; Malik, S.N. Upper bound of the third hankel determinant for a class of analytic functions related with lemniscate of bernoulli. J. Inequalities Appl. 2013, 2013, 412. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, N.; Ali, I.; Hussain, S.M.; Ro, J.-S.; Khan, N.; Khan, B. Third Hankel Determinant for a Subclass of Univalent Functions Associated with Lemniscate of Bernoulli. Fractal Fract. 2022, 6, 48. https://doi.org/10.3390/fractalfract6010048
Ullah N, Ali I, Hussain SM, Ro J-S, Khan N, Khan B. Third Hankel Determinant for a Subclass of Univalent Functions Associated with Lemniscate of Bernoulli. Fractal and Fractional. 2022; 6(1):48. https://doi.org/10.3390/fractalfract6010048
Chicago/Turabian StyleUllah, Najeeb, Irfan Ali, Sardar Muhammad Hussain, Jong-Suk Ro, Nazar Khan, and Bilal Khan. 2022. "Third Hankel Determinant for a Subclass of Univalent Functions Associated with Lemniscate of Bernoulli" Fractal and Fractional 6, no. 1: 48. https://doi.org/10.3390/fractalfract6010048
APA StyleUllah, N., Ali, I., Hussain, S. M., Ro, J. -S., Khan, N., & Khan, B. (2022). Third Hankel Determinant for a Subclass of Univalent Functions Associated with Lemniscate of Bernoulli. Fractal and Fractional, 6(1), 48. https://doi.org/10.3390/fractalfract6010048