
Citation: Viola, J.; Chen, Y. A

Fractional-Order On-Line Self

Optimizing Control Framework and

a Benchmark Control System

Accelerated Using Fractional-Order

Stochasticity. Fractal Fract. 2022, 6,

549. https://doi.org/10.3390/

fractalfract6100549

Academic Editor: Martin Čech

Received: 19 August 2022

Accepted: 19 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

A Fractional-Order On-Line Self Optimizing Control
Framework and a Benchmark Control System
Accelerated Using Fractional-Order Stochasticity †

Jairo Viola and YangQuan Chen *

School of Engineering, University of California, Merced, 5200 North Lake Road, Merced, CA 95340, USA
* Correspondence: ychen53@ucmerced.edu
† This manuscript expand the results presented on the paper J. Viola and Y. Chen, “An Accelerated Self

Optimizing Control Framework for Smart Process Control Using Fractional Order Stochasticity”, 2021 9th
International Conference on Control, Mechatronics and Automation (ICCMA), 11–14 November 2021;
pp. 104–109, doi:10.1109/ICCMA54375.2021.9646222.

Abstract: This paper presents a design and evaluation of a fractional-order self optimizing control
(FOSOC) architecture for process control. It is based on a real-time derivative-free optimization
layer that adjusts the parameters of a discrete-time fractional-order proportional integral (FOPI)
controller according to an economic cost function. A simulation benchmark is designed to assess
the performance of the FOSOC controller based on a first order plus dead time system. Similarly,
an acceleration mechanism is proposed for the fractional-order self optimizing control framework
employing fractional-order Gaussian noise with long-range dependence given by the Hurst exponent.
The obtained results show that the FOSOC controller can improve the system closed-loop response
under different operating conditions and reduce the convergence time of the real-time derivative-free
optimization algorithm by using fractional-order stochasticity.

Keywords: self optimizing control; discrete FOPI controller; globalized constrained Nelder–Mead
algorithm; fractional-order stochasticity

1. Introduction

Industry 4.0 requires smart controls to ensure closed-loop stability and improve system
performance based on its real-time prognostic analytics. Thus, control strategies such as
self optimizing control (SOC) can be used to design smart control systems. The SOC
has different approaches. One of them is the control variable optimization as proposed
by [1–4]. In this type of SOC, the system complexity is high due to hundreds of inputs and
outputs on the system that need to be optimized, where the SOC controller performs offline
optimization to determine the most suitable control variables.

Similarly, the SOC can also be extended for controller closed-loop parameter adjust-
ment on systems with limited knowledge of its dynamics. It includes controllers such as
Extremum seeking, maximum power point tracking (MPPT), run to run, iterative learning,
or real-time optimization algorithms [5–7]. In these cases, the performance is assessed in an
online configuration to find the controller parameters that satisfy operation specifications
given a set of constraints.

In addition, the extremum seeking control (ESC) methods rely on a model-free ap-
proach to determine the optimal controller parameters [5,8]. Some ESC methods have
fractional-order versions [9–11] employed on applications such as impedance matching,
gas sensing, or maximum power tracking of photovoltaic arrays. Thus, the system per-
formance is improved based on an economical cost function and using fractional-order
derivatives or stochasticity.

Fractal Fract. 2022, 6, 549. https://doi.org/10.3390/fractalfract6100549 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6100549
https://doi.org/10.3390/fractalfract6100549
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-2739-5383
https://orcid.org/0000-0002-7422-5988
https://doi.org/10.3390/fractalfract6100549
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6100549?type=check_update&version=3

Fractal Fract. 2022, 6, 549 2 of 16

Regarding real-time optimization algorithms, some work uses optimization to find
the optimal controller parameters based on an economical cost function. This includes
solving classic quadratic regulator problems or model predictive control methods [12–15],
which requires a well-defined model of the system in terms of its governing equations or
estimations based on neural networks [7].

In the particular case of fractional-order PI (FOPI) or PID (FOPID) controllers, there are
adaptive control approaches that perform optimization using metaheuristic algorithms and
fuzzy logic to determine the optimal gains for the controller depending on the operating
zone of the system [16–25]. However, these optimization methods are executed offline due
to the high computational load required for these methods to converge into an optimal
solution. It makes this type of optimization impractical from a real-time optimization
point of view, especially if the degrees of freedom (DOF) of the controller are of higher
order (DOF > 5). In addition, the optimization methods noted above require significant
time and computational resources to provide an optimal solution that satisfies the desired
performance specifications. Therefore, accelerating the convergence of the optimization
algorithms to the optimal solution is fundamental to self optimizing control to ensure faster
response from the initial tuning and after an external disturbance or parametric uncertainty
exists in the system.

In that sense, fractional-order calculus has shown the capability of improving optimiza-
tion processes by using more optimal randomness such as Lévy flights, fractional Gaussian
noise, or alpha-stable distributions, which are heavy tail distributions with long-range
dependence (LRD) properties. Applications of more optimal optimization using fractional
order randomness includes improved extremum seeking control and maximum power
point tracking [9,26], metaheuristic optimization [27,28], accelerated gradient descend [29]
stochastic configuration networks [30], or more optimal consensus [31].

This paper presents a new fractional-order self optimizing control (FOSOC) framework
based on derivative-free optimization algorithms for the performance improvement of
a stable closed-loop fractional-order system with online tuning of the system controller
parameters according to a performance cost function. The gradient-free globalized con-
strained Nelder–Mead (GCNM) algorithm is proposed as an optimization method for the
FOSOC controller. In addition, an acceleration method for the GCNM is developed em-
ploying fractional-order stochasticity. It uses the fractional Gaussian noise with long-range
dependence (LRD) given by the Hurst exponent to perform the probabilistic restart on the
GCNM optimization algorithm.

A simulation benchmark is designed for the performance assessment of the FOSOC
controller using a first order plus dead time (FOPDT) system with a fractional-order
proportional integral (FOPI) controller. A discrete-time implementation of the FOPI con-
troller is employed to enable real-time optimization of the approximation proposed by [32].
The initial conditions for the FOPI controller parameters are calculated using the FMIGO
method proposed by [33]. The FOSOC controller is evaluated on three scenarios for the
FOPDT—a time constant dominated, balanced, and delay dominated system—for a peri-
odic reference signal with a set of performance indices to obtain a quantitative performance
comparison of the strategy. The accelerated GCNM for the FOPI controller is evaluated un-
der the same scenarios to determine the LRD that increases the GCNM convergence speed.
This paper is the extended application of the SOC control framework presented in [34,35]
for fractional-order systems with accelerated convergence produced by fractional-order
stochasticity with LRD. The main contributions of this paper are:

• Introducing a fractional-order self optimization control framework using derivative-
free optimization algorithms to improve the closed-loop performance of a system with
a FOPI controller;

• The development of a more optimal fractional-order self optimizing controller using
fractional-order stochasticity with enhanced convergence properties towards the per-
formance improvement of the stable closed-loop system performance employing a
FOPI controller.

Fractal Fract. 2022, 6, 549 3 of 16

This paper is structured as follows. Section 2 introduces the parallel self-optimizing
control framework. Section 3 defines the GCNM optimization algorithm. Section 4 presents
the discrete implementation of the fractional order PI controller using the practical ap-
proximation presented in [36]. Section 5 describes the SOC benchmark designed in Mat-
lab/Simulink to assess the SOC FOPI controller. Section 6 describes the FOSOC acceler-
ation method using fractional-order stochasticity. Finally, conclusions and future work
are presented.

2. Fractional-Order Self Optimizing Control Framework

The proposed FOSOC control architecture is shown in Figure 1. As can be observed,
the SOC acts as a high optimization layer taking the system reference r, error signal e,
and output y to find the optimal values of the controller c(s), corresponding to a FOPI
controller (1) with proportional gain kp, integral gain ki, and fractional-order integration
order λ. A FOPDT system is selected as test system p(s) (2), where K, τ, and L are the
system gain, time constant, and delay, respectively. The FOSOC cost function is given by (3)
and (4), where Ts is the system settling time, OV is the overshoot percentage, µ = [kp, ki, λ],
A and B are the maximum overshoot and settling time, kpmin,max , kimin,max , λmin,max are the
limits for the FOPI gains, and W1,2,3 are the weights for the overshoot, settling time, and
the integral square error index, respectively. In this case, the FOSOC controller executes an
optimization step after one cycle of the periodic reference signal r.

c(s) = kp +
ki
sλ (1)

p(s) = K
τs+1 e−Ls (2)

min
µ∈R

J = W1 OV(µ) + W2 Ts(µ) + W3

∫ t

0
e2(t, µ) dt, (3)

subject to:

OV(µ) < A; Ts(µ) < B,

kpmin ≤ kp ≤ kpmax , kimin ≤ ki ≤ kimax , λmin ≤ λ ≤ λmax. (4)

Figure 1. Proposed self optimizing control architecture with FOPI controller.

3. Globalized Constrained Nelder–Mead Optimization Algorithm

The globalized constrained Nelder–Mead algorithm (GCNM) shown in Figure 2 is
employed as optimization algorithm for the FOSOC control. It is a modification of the
classic Nelder–Mead (NM) [37], which searches for a global optimum based on a set
of constraints. The GCNM method follows the same steps of evaluation α, reflection β,
contraction γ, expansion, and shirking δ of the NM to create the simplex shape of n + 1
vertices, where n is the number of optimization outputs.

The GCNM algorithm introduces a probabilistic restart mechanism that reinitializes
the search from a different random initial condition to prevent falling into a local minimum.

Fractal Fract. 2022, 6, 549 4 of 16

Initially, the probabilistic restart evaluates if the cost function (3) reaches a steady value.
For this, the algorithm evaluates if the standard deviation of the last m values of the simplex
centroid is below a threshold ε. If this is true, then the optimization is in the steady state,
and the constraints are evaluated. If at least one of the constraints is not satisfied, the GCNM
restarts the searching on a new random point, assigning a new set of initial conditions
among the parameter space defined for the problem. In this case, the new random initial
points for the GCNM optimization method are selected using a normal distribution. Notice
that the GCNM probabilistic restart can use different stochasticity, as will be shown in
Section 6, where it is replaced by the fractional order Gaussian noise with LRD.

Initialize n+1 simplex points

Start

Sort:

1. Evaluate f at n+1

2. Sort vertices from worst to best ()

3. Calculate Centroid

Reflection:

ExpansionContraction:

Shrinking:

Are constrains satisfied?

Probabilistic Random

simplex vertices reset

Yes

No

YesNo

YesYes

Yes

No No

No

Figure 2. Globalized constrained Nelder–Mead algorithm flowchart.

One of the main advantages of the GCNM algorithm is that it can be used for any
system with little or no knowledge of its dynamical behavior. In addition, considering
the sequential structure of the GCNM algorithm and the low-computational complexity
of the algorithm, it is adapted for real-time execution, conditioning the computation of
each of the operations to a period of the reference signal r. Other advantages of the GCNM
optimization algorithm include:

• It is a derivative-free model optimization method, which can be employed for any
system with or without prior knowledge of the system model.

Fractal Fract. 2022, 6, 549 5 of 16

• The GCNM optimization is immune to noise (no gradient estimation), enhancing the
robustness of the optimization process.

• By using probabilistic restart, the GCNM optimization algorithm is less susceptible to
falling in a local minimum when searching for an optimal solution.

• The cost function is evaluated online directly using the real process, unlike several
optimization approaches that perform offline optimization before real testing.

• The GCNM can be implemented in any embedded device with low computational
cost. Please see its real-time implementation for solving the sphere function problem
in Arduino https://tinyurl.com/5h3j5r5c (accessed on 10 July 2022).

• In the case of the SOC framework presented in this paper, the noise robustness, as well
as the global search behavior, allows a wider exploration of the optimization space for
the FOPI controller, with faster convergence than other model-free methods such as
metaheuristics or grid search.

4. Discrete FOPI Controller Implementation

The discrete implementation of the FOPI controller (1) is used to perform real-time
changes on the controller gains kp, ki, and integration order λ. According to [32], the
fractional derivative given by the Riemann–Liouville definition (5) with order β can be
represented in a discrete form, using the prewarped Tustin definition (6), where T is the
sampling time and wc is the gain crossover frequency.

Dλ
t f (t) =

1
Γ(n− λ)

dn

dtn

∫ t

a

f (τ)
(t− τ)λ−n+1 dτ (5)

sλ =

(
wc

tan(wcT/2)
× 1− z−1

1 + z−1

)λ

= Mλ ×
(

1− z−1

1 + z−1

)λ

. (6)

The Taylor series approximation of (6) is given by (7), where w = z−1, N is the order of
truncation of the Taylor series, and the coefficients fk(β) are defined in (8). In this paper, the
sβ operator has an order of truncation N = 6.The guideline for selecting the truncation order
N = 6 for the fractional-order controller is given by the fact that, after several evaluations
and real experimentation for lower truncation orders performed in [36], the response of
the discrete FOPI controller was not reliable and robust for N < 6. In addition, the use
of N = 6 truncation allows for a faster and memory efficient implementation of the FOPI
controller on embedded devices unlike a higher truncation.(

M
1− z−1

1 + z−1

)λ

= Mλ
N

∑
k=0

fk(λ)wk, (7)

fk(λ) =
1
k!

dk

dwk

(
1− w
1 + w

)λ
∣∣∣∣∣
w=0

. (8)

The infinite gain of integral term s−λ of the FOPI controller can be reduced by rewriting
it as s−λ = 1

s s1−λ, whose Taylor series is given by (9), where, w = z−1, z+1
z−1 corresponds to the

Tustin approximation for the integral term 1
s , and the parameters fN(λ) = fN(1− λ) =[1, −

2λ, 2λ2, −
(

4
3 λ3 + 2

3 λ
)

, +
(

2
3 λ4 + 4

3 λ2
)

, −
(

4
15 λ5 + 4

3 λ3 + 2
5 λ
)

,
(

4
45 λ6 + 8

9 λ4 + 46
45 λ2

)
]

for N = [0, 1, . . . , 6]. The difference equation for the FOPI controller is given by (10), where
up(z) and ui(z) are defined in (11) and a0:5 = fN(λ). Further details of the discrete fractional-
order PI controller can be found at [36].

s−λ = M−λ z + 1
z− 1

N

∑
k=0

fk(1− λ)z−k (9)

u(z) = up(z) + ui(z), (10)

https://tinyurl.com/5h3j5r5c

Fractal Fract. 2022, 6, 549 6 of 16

up(k) = ke(k); ui(k) =
[

ki
αλ (e(k)− e(k− 1))

]
− (a5 − 1)ui(k− 1)

−(a4 − a5)ui(k− 2)− (a3 − a4)ui(k− 3)− (a2 − a3)ui(k− 4)
−(a1 − a2)ui(k− 5)− (a0 − a1)ui(k− 6) + a0ui(k− 7).

(11)

5. An SOC Benchmark for Smart Process Control

The simulation benchmark shown in Figure 3 was built in Matlab/Simulink to evaluate
FOSOC controller performance. The simulation benchmark is composed of (1) the GCNM
controller and (2) the FOPDT system (12) with the discrete FOPI controller implemented
using Stateflow. The FOPDT system is normalized and evaluated in this benchmark,
following Remark 11.1.3 presented in Appendix A [38]. The FOSOC is tested under three
conditions of the FOPDT system: lag dominated (L = 0.1), balanced time (L = 1), and
delay dominated (L = 10). A closed-loop stable FOPI controller is designed as the initial
condition for each case using the FMIGO method [33]. In addition, the FOSOC benchmark
uses as performance indices the GCNM convergence time, the closed-loop overshoot
and settling time, the root mean square value (RMS) of the control action, the integral
square error (ISE), the integral absolute error (IAE), and the root mean square error (RMSE)
during the benchmark execution time given by (13). The code for the benchmark can
be downloaded from https://github.com/tartanus/FOSOCBenchmark, accessed on 10
July 2022. In addition, there is a 300s period reference square signal r. The benchmark
parameters are shown in Table 1. Notice that the maximum and minimum constraint values
of Kp, Ki, and λ change from each test to ensure the stability of the closed-loop system.
For all the benchmark tests, the cost function weights are W1 = 5, W2 = 0.1, W3 = 0.1.
Considering that (3) is composed of several optimization objectives, the selection of the
weights is based on an extensive simulation analysis of the case study in order to provide a
magnitude balance among the cost function terms. It is important to notice that the cost
function (3) can be improved by adding a L2 norm or sparse regularization term to improve
the optimization landscape.

Po(s) =
1

s + 1
e−Ls, (12)

RMS =
∫ ∞

0
u(t)dt; ISE =

∫ ∞

0
e2(t)dt; IAE =

∫ ∞

0
|e(t)|dt; RMSE =

√∫ ∞

0
e2(t)dt. (13)

Figure 3. FOSOC benchmark in Matlab/Simulink and fractional-order PI controller implementation
using Stateflow.

https://github.com/tartanus/FOSOCBenchmark

Fractal Fract. 2022, 6, 549 7 of 16

The time response of the FOSOC controller for the FOPDT system with L = [0.1, 1, 10]
s are shown in Figures 4–6. As can be observed, the FOSOC controller satisfies the overshoot
and settling time specifications with a convergence time closer to 2000 s after performing
some probabilistic restarts, with an improved performance compared with the initial
condition IC given by the FOPI parameters obtained using the FMIGO [39] tuning method,
shown in the last columns of Table 1 for each value of L. It corresponds to the starting
point for the FOPI optimization obtained by using the FMIGO tuning method for the FOPI
controller proposed in [40]. This is also the case for the values for λ. Notice that for each
period of the reference signal, one candidate solution provided by the GCNM algorithm is
evaluated, which derives in a longer optimization period due to system behavior. Similarly,
the performance metrics obtained for the three tests with L = 0.1, 1, 10 are shown in
Table 2. In addition, the FOSOC convergence time increases with the deadtime, with the
overshoot and settling time satisfying the desired specifications given in Table 1. The other
performance indices are similar for the three tests. Thus, we can say that the FOSOC control
framework shows promising results for its application in process control towards smart
control systems.

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

-1

-0.5

0

0.5

1

y

Optimal y

y GCNM

Reference

450 500 550 600

Time (s)

-2

-1

0

1

2

y

Optimal y from 300 to 600s

y GCNM

y IC

Reference

3150 3200 3250 3300

Time (s)

-2

-1

0

1

2

y

Optimal y from 3000 to 3300s

y GCNM

y IC

Reference

2.805 2.81 2.815

Time (s) 10
4

-2

-1

0

1

2

y

Optimal y from 28000 to 28300s

y GCNM

y IC

Reference

(a)

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

15

20

25

30

35

40

45

J

J

(b)

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0

0.5

1

O
v
e
rs

h
o
o
t

Optimal OV

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0

5

S
e
tt
lin

g
 t
im

e
 (

s
) Optimal Settling time

(c)

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

3
3.2

K
p

Optimal kp

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0.4

0.45

K
i

Optimal ki

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0.7
0.8
0.9

Optimal

(d)

Figure 4. FOSOC controller: (a) time response, (b) cost function, (c) overshoot and settling time,
and (d) FOPI gains evolution for L = 0.1 s.

Fractal Fract. 2022, 6, 549 8 of 16

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

-2

-1

0

1

2

y

Optimal y

y GCNM

Reference

450 500 550 600

Time (s)

-2

-1

0

1

2

y

Optimal y from 300 to 600s

y GCNM

y IC

Reference

3150 3200 3250

Time (s)

-2

-1

0

1

2

y

Optimal y from 3000 to 3300s

y GCNM

y IC

Reference

2.805 2.81 2.815 2.82

Time (s) 10
4

-2

-1

0

1

2

y

Optimal y from 28000 to 28300s

y GCNM

y IC

Reference

(a)

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

100

110

120

130

140

150

160

J

J

(b)

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0

0.5

1

O
v
e
rs

h
o
o
t

Optimal OV

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0

10

20

S
e
tt
lin

g
 t
im

e
 (

s
) Optimal Settling time

(c)

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0.5

1

K
p

Optimal kp

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0.4
0.5
0.6

K
i

Optimal ki

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0.95
1

1.05

K
i

Optimal ki

(d)

Figure 5. FOSOC controller: (a) time response, (b) cost function, (c) overshoot and settling time,
and (d) FOPI gains evolution for L = 1 s.

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

-2

-1

0

1

2

y

Optimal y

y GCNM

Reference

300 400 500 600

Time (s)

-1

-0.5

0

0.5

1

y

Optimal y from 300 to 600s

y GCNM

y IC

Reference

3000 3100 3200 3300

Time (s)

-1

-0.5

0

0.5

1

y

Optimal y from 3000 to 3300s

y GCNM

y IC

Reference

2.8 2.81 2.82 2.83

Time (s) 10
4

-1

-0.5

0

0.5

1

y

Optimal y from 28000 to 28300s

y GCNM

y IC

Reference

(a)

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

120

140

160

180

200

J

J

(b)

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0

0.5

1

O
v
e
rs

h
o
o
t

Optimal OV

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0

10

20

S
e
tt
lin

g
 t
im

e
 (

s
) Optimal Settling time

(c)

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0.2
0.4
0.6

K
p

Optimal kp

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0
0.1
0.2

K
i

Optimal ki

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0.85
0.9

Optimal

(d)

Figure 6. FOSOC controller: (a) time response, (b) cost function, (c) overshoot and settling time,
and (d) FOPI gains evolution for L = 10 s.

Fractal Fract. 2022, 6, 549 9 of 16

Table 1. SOC benchmark configuration parameters.

Delay
L (s)

Kp Ki λ Settling
Time (s)

OV
(%)

FMIGO FOPI

min max min max min max Kp Ki λ

0.1 0.01 4 0.01 0.5 0.7 1.1 20 5 3.26 8.07 0.7
1 0.01 0.5 0.01 0.1 0.7 1.1 20 5 0.2977 0.0886 1

10 0.01 0.5 0.01 0.2 0.7 1.1 50 5 0.3275 0.1618 1.1

Table 2. SOC benchmark performance indices.

Dead
Time L (s)

SOC
Convergence

Time (s)
OV Settling

Time (s) RMS ISE IAE RMSE

L = 0.1 2000 0.01 10 0.9934 0.03143 0.989 0.095
L = 1 4500 0.02 12 0.977 0.045 0.973 0.0958

L = 10 4500 0.06 21 0.967 0.41 0.94 0.984

6. Accelerating Self Optimizing Control for FOPI Controller with
Fractional-Order Stochasticity

As stated before, the GCNM algorithm uses a normal distribution to pick up the new
initial conditions after each probabilistic restart. However, this process can be performed
by using a fractional-order Gaussian distribution to increase the convergence speed of
the algorithm. The fractional-order Gaussian noise can be represented as the change in
Brownian motion step defined by the Riemann–Liouville fractional integral (14), where
dB(s) is the general definition of white noise, Γ(·) is the gamma function, and H is the
Hurst exponent, which indicates the LRD property of the random disturbance signal [41,42].
According to the value of H, the fractional-order randomness can represent a Brownian
motion if H = 0.5, positively correlated if 0.5 < H < 1, and negatively correlated if
0 < H < 0.5.

BH(t) =
1

Γ(H + 1/2)

∫ t

0
(t− s)H−0.5dB(s). (14)

The optimal randomness evaluation is performed using the normalized FOPDT system
(12) for three different delay values L = 0.1, 1, 10 corresponding to the time constant
dominated, balanced time, and delay time dominated behaviors of the system. For each
delay value, the Hurst exponent of the fractional-order Gaussian noise is evaluated as
H = 0.1:0.1:0.9, where H = 0.5 corresponds to the normal distribution and the remaining H
values to the fractional-order noise. A total of 50 evaluations are performed for each value
of H for the different delay values. Thus, the average value for each performance indicator
will be considered as the reference performance index for the system. As an example,
Figure 7 shows the sequences for [kp, ki, λ] used for the SOC benchmark evaluation with
L = 1 s with Hurst exponent H = 0.5.

The SOC controller is tested for the three scenarios defined in the previous section
with normal and fractional-order Gaussian noise. As an example, Figure 8 shows the
performance of the SOC controller for L = 0.1 s with a Hurst exponent H = 0.5 that
is equivalent to the normal distribution. As can be observed, the PI controller begins
with the values provided by the FMIGO tuning and then, after each execution cycle, the
GCNM performs a real-time optimization that searches for the optimal values of the FOPI
controller gains until the desired performance specifications are satisfied according to the
cost function.

Fractal Fract. 2022, 6, 549 10 of 16

0 0.5 1 1.5 2

k
p

0

50

100

150

200

250

300
Fractional-Order Randomness H=0.3

0 0.2 0.4 0.6

k
i

0

50

100

150

200

250

300
Integer-Order Randomness H=0.3

0 0.2 0.4 0.6
0

50

100

150

200

250

300
Integer-Order Randomness H=0.3

0 0.5 1 1.5 2

k
p

0

50

100

150

200

250

300
Integer-Order Randomness H=0.5

0 0.2 0.4 0.6

k
i

0

100

200

300

400
Integer-Order Randomness H=0.5

0 0.2 0.4 0.6
0

100

200

300

400
Integer-Order Randomness H=0.5

Figure 7. Fractional order randomness employed for the SOC controller with H = 0.3, 0.5.

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

-2

-1

0

1

2

y

Optimal y

y GCNM

Reference

300 400 500 600

Time (s)

-2

-1

0

1

2

y

Optimal y from 300 to 600s

y GCNM

y IC

Reference

3000 3100 3200 3300

Time (s)

-2

-1

0

1

2

y

Optimal y from 3000 to 3300s

y GCNM

y IC

Reference

2.8 2.81 2.82 2.83

Time (s) 10
4

-2

-1

0

1

2

y

Optimal y from 28000 to 28300s

y GCNM

y IC

Reference

(a)

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

20

30

40

50

60

70

80

90

J

J

(b)

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0

0.5

1

O
v
e
rs

h
o
o
t

Optimal OV

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0

10

S
e
tt
li
n
g
 t
im

e
 (

s
) Optimal Settling time

(c)

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

1
2
3

K
p

Optimal kp

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0.3
0.35

0.4

K
i

Optimal ki

0 0.5 1 1.5 2 2.5 3

Time (s) 10
4

0.7
0.8
0.9

Optimal

(d)

Figure 8. SOC controller: (a) time response, (b) cost function, (c) overshoot and settling time,
and (d) PI gains evolution for L = 0.1 with H = 0.7.

The average performance of the SOC controller with GCNM algorithm for L = 0.1, 1, 10
regarding to the mean overall convergence time, closed-loop settling time, and overshoot

Fractal Fract. 2022, 6, 549 11 of 16

of the GCNM algorithm after 50 iterations is shown in Figure 9 for the different Hurst
exponents H. As can be observed, the GCNM convergence time is reduced by 10% when
the fractional-order randomness has a negative LRD (H = 0.2 to 0.4), reducing the algorithm
convergence time. Similarly, Figure 9 shows the closed-loop settling time and overshoot of
the system, which indicates that for all H the optimization conditions are satisfied and at
H = 0.3 has the lowest values for settling time.

0 0.5 1

Hurst Exponent

0

2000

4000

6000

8000

GC
NM

 C
on

ve
rge

nc
e T

im
e (

s)
L=0.1s

L=1s

L=10s

12,000

10,000

(a)

0 0.2 0.4 0.6 0.8 1

Hurst Exponent

0

1

2

3

4

5

O
ve

rs
ho

ot
 (%

)

L=0.1s

L=1s

L=10s

0 0.2 0.4 0.6 0.8 1

Hurst Exponent

5

10

15

20

25

30

35

S
et

tli
ng

 T
im

e
(s

)

L=0.1s

L=1s

L=10s

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Hurst Exponent

0

200

400

k p

L=0.1s

L=1s

L=10s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Hurst Exponent

0

0.2

0.4

k i

L=0.1s

L=1s

L=10s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Hurst Exponent

0.8

1

L=0.1s

L=1s

L=10s

(c)

Figure 9. SOC controller: (a) overall convergence time, (b) overshoot and settling time, and (c) final
PI gains after 50 iterations for L = 0.1, 1, 10.

In the case of the balanced system L = 1, the mean overall convergence of the GCNM
convergence time is reduced by 20% when fractional-order randomness is employed,
reaching its minimum value at H = 0.3. Regarding to the overshoot and settling time,

Fractal Fract. 2022, 6, 549 12 of 16

the minimum values are reached at H = 0.3 and H = 0.4, respectively. However, in all the
cases for the fractional order randomness, the performance specifications are satisfied.

For the delay dominated system L = 10, the mean overall convergence of the GCNM
convergence time is reduced by 19%, with fractional-order randomness reaching its min-
imum value at H = 0.3. In the case of the overshoot and settling time, the minimum
values are reached at H = 0.3 and H = 0.4, respectively, again satisfying the performance
specifications for all the Hurst exponents. For this particular case, the overall convergence
time of the algorithm is reduced due to a strong lower boundary on the integral gain
required to keep the system stability caused by the bigger delay of the system.

Finally, the average RMS, RMSE, ISE, and IAE values for the three tests L = 0.1, 1, 10
after 50 repetitions are similar with integer or fractional order randomness, indicating that
the optimization process is able to achieve a similar performance for the different cases
according to the economic cost function (3). Therefore, and based on the obtained results,
we can say that the fractional-order randomness is able to reduce the overall convergence
time of the SOC controller in the range of 10% to 20% compared with the integer-order
Gaussian noise. It means that the fractional-order randomness with negative LRD can
improve the self optimizing control performance by accelerating the convergence of the op-
timization process without modifying the search algorithm or the SOC controller structure.
The fractional-order randomness can be considered as a suitable alternative to improve the
performance not only of real-time SOC controllers but also any searching process.

7. Comparison of the FOSOC GCNM Controller with Other Self-Tuning PID Control
Methods in the Literature

The proposed fractional-order SOC control for FOPI controllers is compared with
several other self-tuning control methods in the literature. Table 3 presents the comparison
analyzing several criteria of the self-tuning controllers, including the cost function used,
the type of controller, tuning methods, number of iterations, and if the control approach is
offline or real-time. As can be observed, in most of the cases, the self-tuning controllers
relying on optimization algorithms are developed on an offline setup, except for the SOC
GCNM control method. The number of iterations for these algorithms is between 10 and
50. Something important about the iterations on the GCNM is that each iteration should be
accounted for when the GCNM performs a complete operation of reflection, contraction,
expansion, or shrinking after evaluating the n + 1 vertices of the simplex. Thus, in the
FOPI case, each iteration will take approximately 2000 s. For these reasons, the iterations
required to converge the GCNM SOC on the first two rows of Table 3 are considerably
faster than the other methods.

For the population-based optimization algorithms, one iteration is considered when all
the candidate solutions are evaluated at one step. Each iteration involves several function
evaluations, increasing the time required to perform the optimization. If these function
evaluations were performed over the real system in the SOC configuration proposed in
this paper, for example, using genetic algorithms or any other population-based algorithm,
the overall convergence time of the algorithm would be much longer than the one resulting
from the SOC GCNM shown in the second column of Table 2. For these reasons, the GCNM
optimization algorithm with SOC provides a much more reasonable convergence time than
population-based algorithms.

In the case of adaptive algorithms, such as sliding surface control or real-time iden-
tification, knowledge of the model is required to determine an appropriate tuning of the
controller parameters, which can be hard to obtain if the system is complex and con-
stantly changing.

In the particular case of extremum seeking control (ESC), it behaves similarly to the
GCNM SOC. The iterations are related in a similar way to the function evaluations, which
have a better performance compared with the population-based algorithms.

Therefore, it is possible to say that the GCNM SOC control is a suitable alternative for
the PID/FOPID controller optimization in real-time when little or no system knowledge is

Fractal Fract. 2022, 6, 549 13 of 16

available, with much better performance than population-based algorithms executed on a
real-time setup.

Table 3. Comparison of self tuning methods for PI, PID, FOPI, and FOPID controllers.

Paper Year Author Controller Cost
Function

Optimization
Method Iterations Real-Time

/Offline

Proposed
method

Viola and
Chen FOPI

Squared error
overshoot

settling time
SOC GCNM 1 real-time

[43] 2021 Viola and
Chen

PID
PI

Squared error
overshoot

settling time
SOC GCNM 3 real-time

[18] 2016 Farhan FOPI
fuzzy Error

Gradient based
optimization

(metaheuristic)
30 offline

[20] 2019 Hekimoğlu FOPID ITAE CHaSO
Algorithm 30 offline

[19] 2021 Izci and
Ekinci

FOPID
PID ITAE Harris Hawk 40 offline

[44] 2006 Kilingsworh
and Krtics PID

IAE
ITAE
ITSE

Extremum
seeking
control

13 real-time

[45] 2006 Suardiaz PID Online
identification

Pole placement
and online

identification
- real-time

[46] 2021 Rodriguez
Abreo PID

Settling time
squared error
phase margin

Genetic
algorithm - offline

[47] 2012 J. L. Meza PID
fuzzy

Error
velocity Fuzzy logic - real-time

[48] 2014 Kumar PID Square
error

Cukoo
search - offline

[49] 2003 Chen PID Phase and
gain margin

Relay
feedback
control

- real-time

[50] 2013 Moradi PID Error
Sliding
surface
control

- real-time

[51] 2022 Baz et al. PID Error
Fuzzy
logic

functions
- real-time

[52] 2018 Oliveira PID ITAE
Particle
swarm

optimization
50 offline

[53] 2021 Vanchinathan FOPID ISE Artificial
Bee Colony 10 offline

[54] 2008 Altinten PID IAE Genetic
algorithm 30 offline

8. Conclusions and Future Work

This paper presented a FOSOC framework to improve a closed-loop system perfor-
mance. A benchmark was built in Matlab/Simulink to evaluate the FOSOC controller
performance using a FOPI controller under three different tests. In addition, a more optimal
self optimizing control (SOC) employing fractional-order Gaussian noise (fGn) with long
range dependence (LRD) to improve the optimization convergence time of the GCNM
(globalized constrained Nelder–Mead) algorithm was presented. The obtained results
show that the FOSOC controller enhances the system closed-loop performance and ensures
stability and robustness for different dead times. Additionally, the accelerated SOC using
fractional order stochasticity was evaluated using fractional Gaussian noise with different
LRD given by the Hurst exponent. It can be noticed that using negative LRD (H = [0.2, 0.3]),
the convergence time of the SOC is reduced significantly compared with classic Gaussian
noise. It indicates that fractional-order stochasticity is more efficient in improving the
SOC convergence speed. It is also a suitable alternative for other optimization algorithms

Fractal Fract. 2022, 6, 549 14 of 16

that heavily rely on random events, such as several metaheuristics or stochastic gradient
methods. In future work, the implementation of the FOSOC algorithm and its extension
to a fractional-order PID controller will be proposed and experimentally validated with
thermal systems.

Author Contributions: Conceptualization, J.V. and Y.C.; methodology, Y.C.; software, J.V.; validation,
J.V. and Y.C.; formal analysis, Y.C.; investigation, J.V.; resources, J.V. and Y.C.; data curation, J.V.;
writing—original draft preparation, J.V.; writing—review and editing, J.V. and Y.C.; visualization, J.V.;
supervision, Y.C.; project administration, Y.C.; funding acquisition, Y.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: https://github.com/tartanus/FOSOCBenchmark, accessed on 10
July 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Remark 11.31 [40]

The FOPDT system (A1) can be normalized as follows:

p(s) =
K

τs + 1
e−Ls (A1)

Pn(s) =
1

τs + 1
e−L/ττs =

1
s′ + 1

e−L′s′ , (A2)

where s′ = τs and L′ = L/T. The parameter K in (2) can be normalized as 1, as the
steady-state gain of the plant can always be used as part of the gain of the PID controller.
Therefore, if the complete information of the achievable set of specifications phase margin
φm and gain crossover frequency wc is collected for the standard form of the control system
plant below:

Po(s) =
1

s + 1
e−Ls. (A3)

where L is equal to L′ in (A2), then the complete achievable region of the specifications φm
and wc can be easily found for the normalized FOPDT system (A2), with the proportional
change of the wc axis, wc = w c/T as s′ = Ts.

References
1. Skogestad, S. Plantwide control: The search for the self-optimizing control structure. J. Process Control 2000, 10, 487–507. [CrossRef]
2. Francisco, M.; Vega, P.; Skogestad, S. Nonlinear offset free MPC for self-optimizing control in wastewater treatment plants.

In Proceedings of the 19th International Conference on System Theory, Control and Computing (ICSTCC), Cheile Gradistei,
Romania, 14–16 October 2015; pp. 390–395.

3. Reza, M.; Mehdi, M.; Panahi, M. Convex reformulations for self-optimizing control optimization problem : Linear Matrix
Inequality approach. J. Process Control 2022, 116, 172–184. [CrossRef]

4. Ye, L.; Cao, Y.; Yang, S. Global self-optimizing control with active-set changes: A polynomial chaos approach. Comput. Chem. Eng.
2022, 159, 107662. [CrossRef]

5. Bariyur, K.; Krstic, M. Real-Time Optimization by Extremum-Seeking Control; Wiley-Interscience: Hoboken, NJ, USA 2003; p. 230.
[CrossRef]

6. Ahn, H.S.; Chen, Y.Q.; Moore, K.L. Iterative learning control: Brief survey and categorization. IEEE Trans. Syst. Man Cybern. Part
C Appl. Rev. 2007, 37, 1099–1121. [CrossRef]

7. Çıtmacı, B.; Luo, J.; Jang, J.B.; Canuso, V.; Richard, D.; Ren, Y.M.; Morales-Guio, C.G.; Christofides, P.D. Machine learning-based
ethylene concentration estimation, real-time optimization and feedback control of an experimental electrochemical reactor. Chem.
Eng. Res. Des. 2022, 185, 87–107. [CrossRef]

https://github.com/tartanus/FOSOCBenchmark
http://doi.org/10.1016/S0959-1524(00)00023-8
http://dx.doi.org/10.1016/j.jprocont.2022.06.003
http://dx.doi.org/10.1016/j.compchemeng.2022.107662
http://dx.doi.org/10.5860/choice.41-4064
http://dx.doi.org/10.1109/TSMCC.2007.905759
http://dx.doi.org/10.1016/j.cherd.2022.06.044

Fractal Fract. 2022, 6, 549 15 of 16

8. Yin, C.; Chen, Y.; Cheng, Y.; Zhong, S.M.; Tian, L. Maximum power point tracking in photovoltaic system through extremum
seeking control with fo switching technique. In Proceedings of the 2015 IEEE 54th Annual Conference on Decision and Control
(CDC), Osaka, Japan, 15–18 December 2015; Volume 9, pp. 5629–5634. [CrossRef]

9. Hollenbeck, D.; Chen, Y.Q. A more optimal stochastic extremum seeking control using fractional dithering for a class of smooth
convex functions. IFAC-PapersOnLine 2020, 53, 3737–3742. [CrossRef]

10. Malek, H.; Chen, Y. A single-stage three-phase grid-connected photovoltaic system with fractional order MPPT. In Proceedings of
the IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 16–20 March 2014; pp. 1793–1798.
[CrossRef]

11. Viola, J.; Hollenbeck, D.; Rodriguez, C.; Chen, Y. Fractional-Order Stochastic Extremum Seeking Control with Dithering Noise for
Plasma Impedance Matching. In Proceedings of the 2021 IEEE Conference on Control Technology and Applications (CCTA),
San Diego, CA, USA, 9–11 August 2021; pp. 247–252.

12. Tani, T.; Matsuo, K. Robust closed-loop real-time optimization for refinery utility plant with model predictive control for
constraint handling. In Proceedings of the 2009 IEEE International Conference on Industrial Technology, Churchill, VIC, Australia,
10–13 February 2009. [CrossRef]

13. Zgraggen, A.U.; Fagiano, L.; Morari, M. Real-time optimization and adaptation of the crosswind flight of tethered wings for
airborne wind energy. IEEE Trans. Control Syst. Technol. 2015, 23, 434–448. [CrossRef]

14. Shuofeng, Z.; Amini, M.R.; Sun, J.; Mi, C. A Two-Layer Real-Time Optimization Control Strategy for Integrated Battery Thermal
Management and HVAC System in Connected and Automated HEVs. IEEE Trans. Veh. Technol. 2021, 70, 6567–6576. [CrossRef]

15. Cimini, G.; Bernardini, D.; Levijoki, S.; Bemporad, A. Embedded Model Predictive Control with Certified Real-Time Optimization
for Synchronous Motors. IEEE Trans. Control Syst. Technol. 2021, 29, 893–900. [CrossRef]

16. Altbawi, S.M.A.; Mokhtar, A.S.B.; Jumani, T.A.; Khan, I.; Hamadneh, N.N.; Khan, A. Optimal design of Fractional order PID
controller based Automatic voltage regulator system using gradient-based optimization algorithm. J. King Saud Univ.-Eng.
Sci. 2021. [CrossRef]

17. Liu, Y.; Fan, K.; Ouyang, Q. Intelligent Traction Control Method Based on Model Predictive Fuzzy PID Control and Online
Optimization for Permanent Magnetic Maglev Trains. IEEE Access 2021, 9, 29032–29046. [CrossRef]

18. Farhan, M.; Ullah, N.; Ahmed, N. A single parameter self-tune fractional order PIλ controller for second order uncertain
dynamical system. In Proceedings of the ICET 2016—2016 International Conference on Emerging Technologies, Islamabad,
Pakistan, 18–19 October 2016; pp. 3–8. [CrossRef]

19. Izci, D.; Ekinci, S. An Efficient FOPID Controller Design for Vehicle Cruise Control System Using HHO Algorithm. In Proceedings
of the HORA 2021—3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications,
Ankara, Turkey, 11–13 June 2021. [CrossRef]

20. Hekimoglu, B. Optimal Tuning of Fractional Order PID Controller for DC Motor Speed Control via Chaotic Atom Search
Optimization Algorithm. IEEE Access 2019, 7, 38100–38114. [CrossRef]

21. Xu, C.; Liao, M.; Li, P.; Yao, L.; Qin, Q.; Shang, Y. Chaos Control for a Fractional-Order Jerk System via Time Delay Feedback
Controller and Mixed Controller. Fractal Fract. 2021, 5, 257. [CrossRef]

22. Chen, H.; Xie, W.; Chen, X.; Han, J.; Aït-Ahmed, N.; Zhou, Z.; Tang, T.; Benbouzid, M. Fractional-Order PI Control of DFIG-Based
Tidal Stream Turbine. J. Mar. Sci. Eng. 2020, 8, 309. [CrossRef]

23. Xu, K.; Chen, L.; Wang, M.; Lopes, A.M.; Tenreiro Machado, J.A.; Zhai, H. Improved Decentralized Fractional PD Control of
Structure Vibrations. Mathematics 2020, 8, 326. [CrossRef]

24. Alam, M.S.; Al-Ismail, F.S.; Abido, M.A. PV/Wind-Integrated Low-Inertia System Frequency Control: PSO-Optimized Fractional-
Order PI-Based SMES Approach. Sustainability 2021, 13, 7622. [CrossRef]

25. Gao, Z. A Tuning Method via Borges Derivative of a Neural Network-Based Discrete-Time Fractional-Order PID Controller with
Hausdorff Difference and Hausdorff Sum. Fractal Fract. 2021, 5, 23. [CrossRef]

26. Yin, C.; Chen, Y.; Zhong, S.M. Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems.
Automatica 2014, 50, 3173–3181. [CrossRef]

27. Wei, J.; Chen, Y.Q.; Yu, Y.; Chen, Y. Optimal randomness in swarm-based search. Mathematics 2019, 7, 828. [CrossRef]
28. Ahmed, W.A.E.M.; Mageed, H.M.A.; Mohamed, S.A.E.; Saleh, A.A. Fractional order Darwinian particle swarm optimization for

parameters identification of solar PV cells and modules. Alex. Eng. J. 2021 , 6, 1249–1263. [CrossRef]
29. Chen, Y.; Gao, Q.; Wei, Y.; Wang, Y. Study on fractional order gradient methods. Appl. Math. Comput. 2017, 314, 310–321.

[CrossRef]
30. Niu, H.; Wei, J.; Chen, Y. Optimal randomness for stochastic configuration network (SCN) with heavy-tailed distributions.

Entropy 2021, 23, 56. [CrossRef] [PubMed]
31. Zhang, G.; Chen, Y.Q. More Informed Random Sample Consensus. In Proceedings of the 2020 8th International Conference on

Control, Mechatronics and Automation (ICCMA 2020), Moscow, Russia, 6–8 November 2020; pp. 197–201. [CrossRef]
32. Merrikh-Bayat, F.; Mirebrahimi, N.; Khalili, M.R. Discrete-time fractional-order PID controller: Definition, tuning, digital

realization and some applications. Int. J. Control. Autom. Syst. 2015, 13, 81–90. [CrossRef]
33. Monje, C.A.; Chen, Y.Q.; Feliu-Batlle, V.; Xue, D.; Vinagre, B.M. Fractional-Order Systems and Controls Fundamentals and Applications;

Springer: London, UK, 2010; p. 430.

http://dx.doi.org/10.1115/DETC2015-47296
http://dx.doi.org/10.1016/j.ifacol.2020.12.2061
http://dx.doi.org/10.1109/APEC.2014.6803549
http://dx.doi.org/10.1109/ICIT.2009.4939534
http://dx.doi.org/10.1109/TCST.2014.2332537
http://dx.doi.org/10.1109/TVT.2021.3085938
http://dx.doi.org/10.1109/TCST.2020.2977295
http://dx.doi.org/10.1016/j.jksues.2021.07.009
http://dx.doi.org/10.1109/ACCESS.2021.3059443
http://dx.doi.org/10.1109/ICET.2016.7813211
http://dx.doi.org/10.1109/HORA52670.2021.9461336
http://dx.doi.org/10.1109/ACCESS.2019.2905961
http://dx.doi.org/10.3390/fractalfract5040257
http://dx.doi.org/10.3390/jmse8050309
http://dx.doi.org/10.3390/math8030326
http://dx.doi.org/10.3390/su13147622
http://dx.doi.org/10.3390/fractalfract5010023
http://dx.doi.org/10.1016/j.automatica.2014.10.027
http://dx.doi.org/10.3390/math7090828
http://dx.doi.org/10.1016/j.aej.2021.06.019
http://dx.doi.org/10.1016/j.amc.2017.07.023
http://dx.doi.org/10.3390/e23010056
http://www.ncbi.nlm.nih.gov/pubmed/33396383
http://dx.doi.org/10.1109/ICCMA51325.2020.9301545
http://dx.doi.org/10.1007/s12555-013-0335-y

Fractal Fract. 2022, 6, 549 16 of 16

34. Viola, J.; Chen, Y. A Fractional-Order On-line Self Optimizing Control Framework and a Benchmark Control System. In
Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA 2020), Warsaw, Poland,
6–8 September 2021; p. 6.

35. Viola, J.; Chen, Y. An Accelerated Self Optimizing Control Framework for Smart Process Control Using Fractional Order
Stochasticity. In Proceedings of the 2021 9th International Conference on Control, Mechatronics and Automation (ICCMA),
Luxembourg, 11–14 November 2021; pp. 104–109. [CrossRef]

36. Viola, J.; Angel, L.; Sebastian, J.M. Design and robust performance evaluation of a fractional order PID controller applied to a DC
motor. IEEE/CAA J. Autom. Sin. 2017, 4, 304–314. [CrossRef]

37. Gao, F.; Han, L. Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput. Optim. Appl. 2014, 51,
259—277 . [CrossRef]

38. Xue, D.; Chen, Y.; Atherton, D. Linear Feedback Control, Analysis and Design with MATLAB–Advances in Design and Control; SIAM:
Philadelphia, PA, USA, 2007; p. 354.

39. Chen, Y.Q.; Bhaskaran, T.; Xue, D. Practical tuning rule development for fractional order proportional and integral controllers. J.
Comput. Nonlinear Dyn. 2008, 3, 021403. [CrossRef]

40. Luo, Y.; Chen, Y.Q. Fractional Order Motion Controls; Wiley: Chichester, UK, 2012; p. 456.
41. Magin, R.L. Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 2004, 32, 1–104. [CrossRef]
42. Sheng, H.; Chen, Y.; Qiu, T. Fractional Processes and Fractional-Order Signal Processing Techniques and Applications; Springer:

Berlin/Heidelberg, Germany, 2012; p. 322.
43. Viola, J.; Chen, Y. A Self Optimizing Control Framework and a Benchmark for Smart Process Control. In Proceedings of the

2021 3rd International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China, 8–11 November 2021; pp. 1–6.
[CrossRef]

44. Killingsworth, N.; Krstic, M. PID tuning using extremum seeking: Online, model-free performance optimization. IEEE Control
Syst. Mag. 2006, 26, 70–79. [CrossRef]

45. Suardíaz Muro, J.; Al-Hadithi, B.M.; García, A.I. Controlador auto-parametrizable dedicado al control del caudal de un fluido.
IEEE Lat. Am. Trans. 2006, 4, 332–338. [CrossRef]

46. Rodriguez-Abreo, O.; Rodriguez-Resendiz, J.; Fuentes-Silva, C.; Hernandez-Alvarado, R.; Falcon, M.D.C.P.T. Self-Tuning Neural
Network PID with Dynamic Response Control. IEEE Access 2021, 9, 65206–65215. [CrossRef]

47. Meza, J.L.; Santibáñez, V.; Soto, R.; Llama, M.A. Fuzzy self-tuning PID semiglobal regulator for robot manipulators. IEEE Trans.
Ind. Electron. 2012, 59, 2709–2717. [CrossRef]

48. Kashyap, A.K.; Parhi, D.R. Particle Swarm Optimization aided PID gait controller design for a humanoid robot. ISA Trans. 2021,
114, 306–330. [CrossRef] [PubMed]

49. Relay Feedback Tuning of Robust PID Controllers With Iso-Damping Property. Proc. IEEE Conf. Decis. Control 2003, 3, 2180–2185.
50. Moradi, M. Self-tuning PID controller to three-axis stabilization of a satellite with unknown parameters. Int. J. Non-Linear Mech.

2013, 49, 50–56. [CrossRef]
51. Baz, R.; Majdoub, K.E.; Giri, F.; Taouni, A. Self-tuning fuzzy PID speed controller for quarter electric vehicle driven by In-wheel

BLDC motor and Pacejka’s tire model. IFAC-PapersOnLine 2022, 55, 598–603. [CrossRef]
52. de Moura Oliveira, P. Design of Digital PID Controllers using Particle Swarm Optimization: A Video Based Teaching Experiment.

IFAC-PapersOnLine 2018, 51, 298–303. [CrossRef]
53. Vanchinathan, K.; Selvaganesan, N. Adaptive fractional order PID controller tuning for brushless DC motor using Artificial Bee

Colony algorithm. Results Control Optim. 2021, 4, 100032. [CrossRef]
54. Altınten, A.; Ketevanlioğlu, F.; Erdoğan, S.; Hapoğlu, H.; Alpbaz, M. Self-tuning PID control of jacketed batch polystyrene reactor

using genetic algorithm. Chem. Eng. J. 2008, 138, 490–497. [CrossRef]

http://dx.doi.org/10.1109/ICCMA54375.2021.9646222
http://dx.doi.org/10.1109/JAS.2017.7510535
http://dx.doi.org/10.1007/s10589-010-9329-3
http://dx.doi.org/10.1115/1.2833934
http://dx.doi.org/10.1615/CritRevBiomedEng.v32.10
http://dx.doi.org/10.1109/IAI53119.2021.9619356
http://dx.doi.org/10.1109/MCS.2006.1580155
http://dx.doi.org/10.1109/TLA.2006.4472132
http://dx.doi.org/10.1109/ACCESS.2021.3075452
http://dx.doi.org/10.1109/TIE.2011.2168789
http://dx.doi.org/10.1016/j.isatra.2020.12.033
http://www.ncbi.nlm.nih.gov/pubmed/33358185
http://dx.doi.org/10.1016/j.ijnonlinmec.2012.09.002
http://dx.doi.org/10.1016/j.ifacol.2022.07.377
http://dx.doi.org/10.1016/j.ifacol.2018.06.081
http://dx.doi.org/10.1016/j.rico.2021.100032
http://dx.doi.org/10.1016/j.cej.2007.07.029

	Introduction
	Fractional-Order Self Optimizing Control Framework
	Globalized Constrained Nelder–Mead Optimization Algorithm
	Discrete FOPI Controller Implementation
	An SOC Benchmark for Smart Process Control
	Accelerating Self Optimizing Control for FOPI Controller with Fractional-Order Stochasticity
	Comparison of the FOSOC GCNM Controller with Other Self-Tuning PID Control Methods in the Literature
	Conclusions and Future Work
	Remark 11.31 luo2012fractional
	References

