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Abstract: A new approach for solving the fractal Euler-Bernoulli beam equation is proposed. The
mapping of fractal problems in non-differentiable fractals into the corresponding problems for the
fractal continuum applying the fractal continuum calculus (F3

dH
-CC) is carried out. The fractal Euler-

Bernoulli beam equation is derived as a generalization using F3
dH

-CC under analogous assumptions
as in the ordinary calculus and then it is solved analytically. To validate the spatial distribution
of self-similar beam response, three different classical beams with several fractal parameters are
analysed. Some mechanical implications are discussed.

Keywords: fractal continuum calculus; Hausdorff dimension; Euler-Bernoulli beam; transversal
displacement

1. Introduction

Fractal geometry has been widely used in many fields of science and technology
such as: medicine [1,2], hydrology [3,4], materials science [5–7], applied physics [8,9] and
mathematical modelling [10–12], among others.

The concept of fractal continuum was introduced in 2005 by Tarasov [13] and has
become popular in the last two decades. Many different methods of nonlocal and local
fractal continua have been formulated [14–26].

In this regard, the fractal continuum calculus, introduced by Balankin and
Elizarraraz [20,21], gives possibility to define generalized differential structures, which
are non-differentiable in ordinary sense. This formulation was validated on fractal materi-
als to solve the pressure-transient and Maxwell Equations [21,23]. Recently, this method
was applied to derive the fractal Euler-Bernoulli beam equation using the virtual work
principle [27].

In [22,28], fractal continuum calculus was firstly formulated based on classical Menger
sponge embedded in <3. Main definitions involve the assumption of a fractal contin-
uum F 3

dH
without pores or empty spaces defined as a three-dimensional object in <3 and

endowed with appropriate fractional measure, metric, and norm and a set of rules for
integro-differential calculus, as well as with a proper Laplacian, accounting for the metric,
connectivity, and topological properties of the fractal domain [28].

This concept enables us to map the fractal domain denoted by F dH
3 ⊂ <3 (see Figure 1),

whose properties are essentially discontinuous in the embedding space <3, into the fractal
continuum domain denoted by F 3

dH
⊂ <3 (see Figure 2), the properties of which behave

as analytic envelopes of non-analytic functions in the fractal object under study [20,21].
The generalization from F dH

3 to F 3
dH

using local fractional differential operators is called
fractal continuum calculus F 3

dH
-CC, and it has been adopted in order to solve different

engineering problems [20,23,27].
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The present manuscript shows applications of fractal Euler-Bernoulli equation using
F 3

dH
-CC to calculate the spatial distribution of rotation and transversal displacement in

classical beams with fractal geometry. The generalization from ordinary calculus to fractal
continuum calculus of Euler-Bernoulli beam equation is carried out using the engineering
mechanics approach based mainly on two assumptions: the constitutive law of isotropic
elasticity and the geometry of deformation [29], as an alternative approach to the principle
of virtual work. The total mechanical response caused by the fractal configuration of the
self-similar beams is highlighted.

The paper consists of 5 sections: following the "Introduction", we review the basic
tools required in Section 2. Whereas Section 3 is devoted to the formulation of fractal
Euler-Bernoulli beam equation. Proposed formulation is applied to classical beams and the
structural details are discussed in Section 4. Section 5 closes the paper with conclusions.

2. Mathematical Background

First, we review Menger’s sponge-like sets and their properties and then we summa-
rize F 3

dH
-CC.

2.1. Menger Sponge Fractals

The Menger spongeMη is a three-dimensional version of the middle-η Cantor fractal
set Cη ⊂ [0, 1] ⊂ < and the Sierpinski carpet Sη is its two-dimensional version (see
Figure 1), which are self-similar fractals.

The middle-η Cantor set Cη is constructed by iterative removal of open middle-η
segments from remaining segments of the previous iteration, starting from the unit interval
[0, 1] = L (divided in segments of size 0 < η < 1) ad infinitum [30].

In similar fashion, the Sierpinski carpet can be constructed by iterative process from
the unit square [0, 1]2, which is divided into η× η sub-squares of equal size and the interior
of β2 sub-squares are deleted. Iterating this process infinitely many times we obtain the
fractal Sη ⊂ [0, 1]2 ⊂ <2.

Finally, the Menger sponge is constructed starting from the unit cube [0, 1]3 ⊂ <3,
which is divided into η × η × η sub-cubes of equal size, after that, the interior of β3 sub-
cubes are deleted. In each of the remaining sub-cubes the same operation is repeated. This
procedure is iterated ad infinitum (see Figure 1).

(a) one-dimensional fractal FdH
1

(b) two-dimensional fractal FdH
2

(c) three-dimensional fractal FdH
3

Figure 1. Construction of three-dimensional fractal Menger sponge, (a) The middle-1/3 Cantor set:
C1/3 ⊂ <, (b) two-dimensional Cantor Set or Sierpinski carpet: S1/3 ⊂ <2, and (c) three-dimensional
Cantor set or Menger sponge:M1/3 ⊂ <3.
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Hausdorff dimension of the above fractals is given by [31]:

dH =
log(ηn − βn)

log η
, (1)

where the value of dH is constant for ξ0 < L ≤ ξC, where ξ0 and ξC are the lower and upper
cutoffs, respectively [32]; η = L/ξ0 denotes the size of box needed to cover the fractal mass,
β is the total number of boxes removed from the fractal mass and n = 1, 2, 3, defines the
Hausdorff dimension for the one, two and three-dimensional versions of Cantor middle-η,
respectively [27,31].

The connectivity and topology of Menger sponge are characterized by the chemical
fractal dimension d`, as any fractal F dH

3 can be covered by d`-dimensional boxes [33] of
size at most L/ξ`, such that [33]:

d` =
log N

(
L
ξ`

)
log L

ξ`

. (2)

The above equation implies that ξ` is measured with respect to the geodesic metric
onMη [34]. From Equations (1) and (2) it follows that ξ

d`
` ∼ ξ

dH
0 such that, the geodesic

distances between two points on the fractal Lg scales with the Euclidean distance between
these points in the embedding Euclidean space L as Lg ∼ Ldg , being dg = dH/d` = 1 the
geodesic dimension of Menger sponge [34]. Another characteristics of the fractal topology
are the fractal dimensions of cross-section areas dAi given by the intersections between
the fractal domain F dH

3 ⊂ <3 and two-dimensional Cartesian planes in <3 [20,21], where
the index i = 1, 2, 3 denotes the Cartesian plane orthogonal to i-axis. Fractal area of cross
section dA scales with its linear size L and so, for the Menger sponge where η = 1/3 we
have that 2 ≤ d` = dH = 2.72 ≤ 3 and AF is defined as [27,28]:

AF = ξ2
0

(
L
ξ0

)dA
; (3)

where dA = dH(S1/3) = 1.89. On the other hand, the fractal distance on xi(L) is given
by [28]:

xi(L) = ξ0

(
L
ξ0

)ζi

, (4)

where

ζi = dH − dA (5)

is the fractal dimension of the coordinate χi. Meanwhile, the fractal mass M scales with
respect to the linear size L ∈ (ξ0, ξC) as [13]:

M = ρ0xi(L)AF = ρ0ξ3
0

(
L
ξ0

)dH
, (6)

where ρ0 is the mass density.
The fractal measure ofMη is characterized by its Hausdorff dimension dH, whereas

the fractal metric is controlled by the fractal dimension of the coordinate χi given by
ζi = dH − dAi along with the chemical dimension d`.
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2.2. Mapping F dH
3 → F 3

dH

The F 3
dH

-CC consists in to make an approximation of non-differentiable functions

defined on fractals F dH
3 by differentiable analytic envelopes into fractal continuum F 3

dH
in the fractal object under study [20,21,28]. For this reason, F 3

dH
⊂ <3 is defined as a

three-dimensional region filled with continuous matter and so, its topological dimension
is dt = 3. In addition, it was endowed with the following local fractional differential
operators [28]:

i Fractional norm is given by ‖ A ‖=
(

∑3
i χ

2γ
ai

)1/2γ
, being γ = d`/3 ≤ 1 and

χi = ξ
1−ζi
0 xζi

i (7)

are the fractional coordinates in fractal continuum domain F dH
3 ⊂ <3 allied with the

Cartesian coordinates in <n (for i = 1, 2, 3).

ii Distance between two points A, B ∈ F dH
3 is given by ∆(A, B) =

(
∑3

i ∆2γ
i

)1/2γ
being

∆i =‖ χai − χbi ‖.
iii Local partial derivatives in F 3

dH
⊂ <3 so-called Hausdorff derivatives [28] can be

expressed in terms of conventional partial derivatives (∂/∂xi) in <3 as:

∇H
i f = lim

χi→χ′i

f (χ′i)− f (χi)

χ′i − χi
= lim

xi→x′i

f (x′i)− f (xi)

∆
(
x′i , xi

) =
∂

∂χi
f (χi) =

1
c1i

(
∂

∂xi
f
)

(8)

where c1i = ζiξ
1−ζi
0 xζi−1

i is the density of admissible states along the i-axis in
F 3

dH
⊂ <3.

iv Hausdorff del operator in F 3
dH

is defined as ~∇H = ~e1∇ζ
1 +~e2∇ζ

2 +~e3∇ζ
3, where~ei ∈ <3

are basis vectors.
v The divergence is given by:

divH f =
3

∑
i

1
c1i

∂ f
∂xi

, (9)

vi and the generalized Laplacian of scalar function is defined as:

∆F
H f = ∇H

i · ∇H
i f =

3

∑
i

c−2
1i

(
∂2 f
∂x2

i
+

γ− ζi
xi

∂ f
∂xi

)
(10)

while the infinitesimal volume element in F 3
dH
⊂ <3 can be generally decomposed as:

dVdH = dχi(xi)dA∂i(xj 6=i) = c1i(xi)c2i(xj 6=i)dxidA2i = c3(xk)V3 = c3dx1dx2dx3 (11)

where dA2i = dxjdxk and dA∂i are the infinitesimal area elements on the intersection
between F 3

dH
and two-dimensional plane normal to i-axis in <3 and in F 3

dH
⊂ <3,

respectively, c2i(xj 6=i) is the density of admissible states in the plane of this intersection,
and c3 = c1ic2i.

vii The measure in the fractal continuum is defined by the following relations∫
dV3c3∼ξ

3−dH
0 LdH ,

∫
dA2ic2i∼LdAi and

∫
dχi =

∫
dxic1i∼ξ

1−ζi
0 Lζi .
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On the other hand, the concept of elastic fractal continuum is governed by the
Equations [27]

divH σij + bi = 0,

εij = 1
2

(
∇Hj υi +∇Hi υj

)
= 1

2
1
c1

(
∂υi
∂xj

+
∂υj
∂xi

)
,

σij = Cijklεkl ,
ui = ûi,
σijnj = t̂i,

(12)

where σij is the Cauchy stress tensor and bi is the body force; εij is the infinitesimal strain
tensor; Cijkl is the stiffness tensor; nj is the outward unit normal vector; t is the Cauchy
traction vector; x is a material variable, u is the displacement and Ωu and Ωσ are parts of
boundary F 3

dH
where the displacements and the tractions are applied, respectively. We

have c1 = ζ1(x1/ξ0)
ζ1−1, and υi ∈ F 3

dH
are defined by [28] as:

υi = ζi

(
xi
ξ0

)ζi−1
ui (13)

where υi are the components of the displacement vector in fractal continuum domain.
In Figure 2 the relations between initial and deformed configurations on the mapping from
a fractal set to its corresponding fractal continuum, F dH

3 → F 3
dH

are presented.

Fractal continuum

Fractal set

Figure 2. Geometrical interpretation of mapping of Menger sponge F2.72
3 into the fractal continuum

F3
2.72 from the original to deformed configurations [22,28].

3. Differential Equations of Euler-Bernoulli Beam Using F 3
dH

-CC

This section is devoted to deduce the Euler-Bernoulli beam equation for fractal beams
by applying concepts reviewed in the behold section.

The fractal Euler-Bernoulli beam theory is based on the following assumptions [35]:



Fractal Fract. 2022, 6, 552 6 of 13

1. The cross-section is infinitely rigid in its own plane. This implies there is no deforma-
tions in the plane of the cross-section.

2. The cross-section of a beam remains plane after deformation: a transverse plane
section perpendicular to the centroidal axis of the beam before deformation remains
plane after bending.

3. The cross-section remains normal to the deformed axis of the beam, i.e., the cross
section is perpendicular to the bent centroidal axis after bending.

Governing equations of the Euler-Bernoulli beam in the mechanics of fractal contin-
uum are obtained under the analogous assumptions like those obtained in classical calculus.

Considering an infinitesimal beam element as is shown in Figure 3a, the following
equilibrium equations can be obtained, for the vertical equilibrium:

w(χ1) =
dQ
dχ1

, (14)

and for the moment equilibrium:

Q =
dM
dχ1

, (15)

On the other hand, the bending moment M is deduced by the integration of axial
stresses over the cross section as

M =
∫

A
−σχ3dA, (16)

for a geometrical illustration see the Figure 3b. Whereas that the relationship between the
axial strain and the transversal displacement of a beam element is given by

ε =
dυ1

dχ1
. (17)

In Figure 3c an infinitesimal beam element is plotted where it can be observed that the
axial displacement υ1 is related to the rotation θ of the cross-section. It is a straightforward
matter to see the axial displacement of each infinitesimally short fibre is

dυ1 = −dθχ3. (18)

Finally, the rotation θ is related to the transversal displacement υ3. The geometrical
interpretation of Figure 3d, shows that

tan θ =
dυ3

dχ1
≈ θ, (19)

which is possible because the deformations are sufficiently small so that tan θ ≈ θ. So,
the kinematics equation for the beam members is obtained as

ε =
dυ1

dχ1
= − dθ

dχ1
χ3 = −d2υ3

dχ2
1

χ3. (20)
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Q

M Q + dQ

M + dM

dχ1

w(χ1)

M Mχ1

χ3

negative compression stress
positive χ3-values

positive tension stress

negative χ3-values

χ1

χ3

Rdθ

beam axis

υ3

dχ1

dυ3

θ

θ

(a) (b)

(c) (d)

Figure 3. Strains, displacements and rotations on Euler-Bernoulli Beam, (a) equilibrium for in-
finitesimal beam element, (b) axial stress over the cross section, (c) a beam segment in bending and
(d) rotation of the cross section of a beam element.

This expression implies an approximation of the exact curvature of the beam. Math-
ematically, the curvature is defined as κ = 1/R, where R is the radius of curvature of
the beam. In the Euler-Bernoulli beam theory that is presented here, the curvature is
approximated by κ = dθ/dχ1 ≈ d2υ3/dχ2

1 (see Figure 2).
The differential equation for the beam bending is obtained substituting Equation (16)

in Equation (15) and substituting the result in Equation (14), so:

w(χ1) =
dQ
dχ1

=
d2M
dχ2

1
= − d2

dχ2
1

∫
A

σχ3dA, (21)

by applying the Hooke law σ = Eε and Equation (20) in the above equation, we obtain

w(χ1) = −
d2

dχ2
1

∫
A

Eεχ3dA = E
d2

dχ2
1

(
d2υ3

dχ2
1

) ∫
A

χ2
3dA = EI

d4υ3

dχ4
1

, (22)

where
∫

A χ2
3dA = I defines the moment of inertia. Then, the governing Equation (22) that

relates the deflection with the load applied to beam is obtained.
The generalization of Equations (19) and (22) from ordinary calculus to fractal contin-

uum calculus is carried out using Equations (7) and (13) in order to map the fractal beam
into fractal continuum beam, so the fractal rotation is

θ(χ1) =
dυ3

dχ1
= ξ

ζ1−1
0

du3

dxζ1
1

, (23)

and for the fractal Euler-Bernoulli bending beam

w (χ1) = EI
d4υ3

dχ4
1
= ξ

4ζ1−4
0 EI

d4u3

dx4ζ1
1

. (24)
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It is worth noting that for ζi = 1, the fractal Euler-Bernoulli beam equation takes the
form of the ordinary equation of Euler-Bernoulli beam w (x1) = EI

(
d4u3/dx4

1
)
. Moreover,

the generalized Euler-Bernoulli bending equation is valid only if the bending moment
acts on one of the principal axes of the cross-section and the bending axis acts on a sym-
metric cross-section; otherwise, combined bending occurs in both principal axes of the
cross-section. Therefore, this restriction must be taken into account when applying Euler-
Bernoulli’s bending theory. The resultant axial force on the cross-sectional area is equal
to zero only when the neutral axis passes through the centroid of the area, such that∫

A σdA = 0.

4. Bending of Self-Similar Beams

In this section we apply the fractal Euler-Bernoulli equation on classical beams with
different fractal geometry and several boundary conditions in order to demonstrate its
engineering implications.

4.1. Illustrative Examples

We consider three different beams presented in Figure 4. The fractal parameters of the
beams are given in Table 1; where η represents the mass removed in the corresponding
Cantor set from which the Sierpinski carpet and Menger sponge are constructed, i.e., for
the triadic Cantor set (η = 1/3), the classical Sierpinsky carpet and Menger sponge are
obtained (see Figure 1); while for η = 0, the corresponding Cantor set is the unitary interval
[0, 1], consequently, the Hausdorff dimension of Sierpinski carpet is two and the Menger
sponge has dH = 3, and the beam is a Euclidean solid beam. The beam is self-similar for all
cases where η > 0 (see Figure 4). Besides, each beam has the following data: L = 2.7 m,
h = b = 0.3 m, a = L/3, E = 30× 109 N/m2, w = 100 N/m.

Figure 4. Classical beams with fractal geometry and cross-section type Sierpinski carpet, (a) simply
supported, and (b) fixed, and (c) propped cantilever.
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Table 1. Fractal parameters of the beams.

Parameter η = 0 η = 1/9 η = 1/5 η = 2/8 η = 3/9 η = 1/3

dH 3 2.9841 2.9317 2.9182 2.8634 2.7268
dA 2 1.9943 1.9746 1.9689 1.9463 1.8927
ζi 1 0.9898 0.9571 0.9493 0.9171 0.8341
ξ0 0 2.7/34 2.7/34 2.7/34 2.7/34 2.7/34

ξ
1−ζ
0 Lζ 2.70 2.58 2.23 2.16 1.87 1.30

I (· · · × 10−6) 675 674.897 673.920 672.363 666.666 666.666

For the simply supported beam the structural analysis is carried out with the following
boundary conditions:

υ3(0) = M(0) = υ3(L) = M(L) = 0. (25)

Meanwhile for the fixed cantilever beam the boundary conditions are:

υ3(0) = θ(0) = υ3(L) = θ(L) = 0, (26)

and for the propped beam we have:

υ3(0) = θ(0) = υ3(L) = M(L) = 0, (27)

4.2. Fractal Response Details

By applying boundary conditions given in Equations (25)–(27) the transversal dis-
placement and rotation for the classical beams studied are obtained:

Simply supported beam. The transversal displacement in fractal coordinates is
given by:

υ3(χ1) =
wχ1

24EI

(
χ3

1 − 2Lχ2
1 + L3

)
(28)

and the map from FdH
3 into F3

dH
for the displacement is:

υ3(χ1) =
wξ

4−4ζ1
0 xζ1

1
24EI

(
x3ζ1

1 − 2Lζ1 x2ζ1
1 + L3ζ1

)
. (29)

Fixed beam. This beam has two ranges

υ3(χ1) =


w
EI

(
− 5L2

384 χ2
1 +

3L
192 χ3

1

)
, for 0 < χ1 ≤ L

2

w
EI

[
− 5L2

384 χ2
1 +

3L
192 χ3

1 −
1

24

(
χ1 − L

2

)4
]

, for L
2 < χ1 < L

(30)

and the fractal displacement in Cartesian coordinates is described by

υ3(χ1) =


wξ

4−4ζ1
0
EI

[
− 5L2ζ1

384 x2ζ1
1 + 3Lζ1

192 x3ζ1
1

]
, for 0 < x1 ≤ L

2

wξ
4−4ζ1
0
EI

[
− 5L2ζ1

384 x2ζ1
1 + 3Lζ1

192 x3ζ1
1 − 1

24

(
xζ1

1 −
Lζ1
2

)4
]

, for L
2 < x1 < L

(31)

Propped cantilever beam. Both displacements have three following ranges:
for 0 < χ1 ≤ L

3

υ3(χ1) =
w
EI

(
−101L2

6480
χ2

1 +
401L
19440

χ3
1

)
, (32)
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for L
3 < χ1 ≤ 2L

3

υ3(χ1) =
w
EI

[
−101L2

6480
χ2

1 +
401L
19440

χ3
1 −

1
24

(
χ1 −

L
3

)4
+

1
40L

(
χ1 −

L
3

)5
]

, (33)

for 2L
3 < χ1 ≤ L

υ3(χ1) =
w
EI

[
− 101L2

6480
χ2

1 +
401L
19440

χ3
1 −

1
24

(
χ1 −

L
3

)4

+
1

40L

(
χ1 −

L
3

)5

− 1
40L

(
χ1 −

2L
3

)5
]

, (34)

and the fractal displacement in Cartesian coordinates is described by
for 0 < x1 ≤ L

3

υ3(χ1) =
wξ

4−4ζ1
0
EI

(
− 101

6480
L2ζ1 x2ζ1

1 +
401

19440
Lζ1 x3ζ1

1

)
, (35)

for L
3 < x1 ≤ 2L

3

υ3(χ1) =
wξ

4−4ζ1
0
EI

[
− 101

6480
L2ζ1 x2ζ1

1 +
401

19440
Lζ1 x3ζ1

1 − 1
24

(
xζ1

1 −
Lζ1

3

)4

+
1

40Lζ1

(
xζ1

1 −
Lζ1

3

)5]
, (36)

for 2L
3 < x1 ≤ L

υ3(χ1) =
wξ

4−4ζ1
0
EI

[
− 101

6480
L2ζ1 x2ζ1

1 +
401

19440
Lζ1 x3ζ1

1 − 1
24

(
xζ1

1 −
Lζ1

3

)4

+
1

40Lζ1

(
xζ1

1 −
Lζ1

3

)5

− 1
40Lζ1

(
xζ1

1 −
2Lζ1

3

)5]
, (37)

Whereas that rotations are described for simply supported, fixed and propped can-
tilever beams respectively by:

θ(χ1) =
w ξ

3−3ζ1
0

24EI

(
4x3ζ1

1 − 6Lζ1 x2ζ1
1 + L3ζ1

)
, (38)

θ(χ1) =


w ξ

3−3ζ1
0

192EI

[
−5L2ζ1 xζ1

1 + 9Lζ1 x2ζ1
1

]
, for 0 < x1 ≤ L/2

w ξ
3−3ζ1
0

192EI

[
−5L2ζ1 xζ1

1 + 9Lζ1 x2ζ1
1 − 32

(
xζ1

1 −
Lζ1
2

)3
]

, for L/2 < x1 < L

(39)

θ(χ1) =



w ξ
3−3ζ1
0

6480EI

[
−202L2ζ1 xζ1

1 + 401Lζ1 x2ζ1
1

]
, for 0 < x1 ≤ L/3

w ξ
3−3ζ1
0

6480EI

[
−202L2ζ1 xζ1

1 + 401Lζ1 x2ζ1
1 − 1080

(
xζ1

1 −
Lζ1

3

)3
+ 810

Lζ1

(
xζ1

1 −
Lζ1

3

)4
]

, for L/3 < x1 < 2/3L

w ξ
3−3ζ1
0

6480EI

[
−202L2ζ1 xζ1

1 + 401Lζ1 x2ζ1
1 − 1080

(
xζ1

1 −
Lζ1

3

)3
+ 810

Lζ1

(
xζ1

1 −
Lζ1

3

)4
− 810

Lζ1

(
xζ1

1 −
2Lζ1

3

)4
]

, for 2L/3 < x1 < L

(40)

Total responses are plotted in Figures 5–7.
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Figure 5. Simply supported beam: (a) lateral displacement and (b) rotation.
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4.3. Discussion of Results

Three cases of the Euler-Bernoulli fractal beam problem with different boundary
conditions have been analysed.

The first case corresponds to a simply supported beam with uniformly distributed
load along the length of the beam, the maximum deflection occurs in the middle of the
beam (L/2), meanwhile the slope equation shows its maximum values at each of the pinned
supports. The equations are consistent with behavior of the standard Euler-Bernoulli beam.

In the second case, the beam is fixed at both ends and has a uniform load distributed
on the right half of the beam. As it was expected, the maximum value of beam deflection
corresponds to the points where the slope is zero. Also, the slope is equal to zero at both
fixed ends.

In the latter case, the beam is fixed at one end, pinned at the other one, and loaded
with a triangular linearly distributed load in the central part of the beam. The slope equals
to zero at the fixed end and have a non-zero value at the pinned end.

Also, it can be seen in Figures 5–7 that the fractal beam shows a greater bending
stiffness as the fractal dimension of coordinate χ1 decreases.

5. Conclusions

The Euler-Bernoulli beam equations were applied to a set of fractal beams with
different boundary conditions, a generalized formulation has been proposed by applying
the fractal continuum calculus, which is given in Equation (24). In addition, it was shown
that when ζ1 = 1 identical results as for the classical equation are obtained. A comparative
analysis was carried out by solving the standard Euler-Bernoulli beam equations and using
the fractal continuum calculus. The effects of fractality have been investigated using several
values of ζ1, as the fractional order is linked to the fractal dimensions of the beam (as it can
be seen in Equation (5), Table 1 and Figures 5–7). Also, a generalized rotational equation
was suggested in Equation (23).

The mapping of the non-differentiable bending functions defined on a fractal beam
using F 3

dH
-CC was developed. Three cases of beams with different boundary conditions

were analyzed; the slope and deflection equations were depicted and compared with the
classical beam. It can be seen that the parameter of the fractal dimension of the beam is
strongly related to the bending stiffness of the beam. It was found that the bending stiffness
of the beam increases when the fractal dimension of coordinate χ1 given by ζ1 decreases.

The equations for linear elastic isotropic fractal continuum were obtained by applying
the continuum fractal model to a static beam bending case. The mapping of the equations
can be extended to other cases, including the dynamical problems by extending the model
considering the inertia.
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