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Abstract: Porous alumina was prepared via a sacrificial template method using alumina as the matrix
and starch and carbon fibers as the pore-forming agents. After sintering, no residual pore-forming
agents were present. The density, porosity, and pore structure of the samples were measured using
the Archimedes’ method and mercury intrusion porosimetry (MIP). The results showed that the pore
size distribution of porous alumina was double-peak when the content of the pore-forming agent was
20, 30, or 50 vol.%, but was single-peak when the content was 40 vol.%. A fractal model based on the
measured MIP data was used to calculate and evaluate the fractal dimension (Ds) of porous alumina.
The Ds values decreased with an increase in the pore-forming agent content. Furthermore, Ds was
negatively correlated with porosity, most probable pore size, and median pore diameter and positively
correlated with the bending strength of porous alumina. Since porous alumina has obvious fractal
characteristics, the fractal theory can be used to quantitatively describe its complex distribution.
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1. Introduction

Recently, porous ceramics have become of great interest in porous material research be-
cause of their excellent filtration, adsorption, and desorption capabilities, high-temperature
resistance, oxidation resistance, thermal shock resistance, and chemical corrosion resis-
tance [1–5]. They are widely used in sensors, filters, molten metals, catalyst carriers, refrac-
tories, and biomedical materials [6–13]. Additionally, alumina is one of the most widely
used ceramic materials because of its high strength, hardness, wear resistance, etc. [14–17].
Nevertheless, the particle diffusion coefficient of alumina is low because of its strong ionic
bond (Al3+ diffusion coefficient is only 10−11 cm2/s at 1700 ◦C), and its sintering temper-
ature is higher than 1500 ◦C [18,19]. Sintering additives are used to reduce the sintering
temperature but can also serve as pore-forming agents.

The sacrificial template method is one technique used to prepare porous ceramics. In
this approach, an appropriate amount of pore-forming agent is mixed with ceramic powder.
The pore-forming agent is then removed by evaporation or combustion before or during
sintering so that pores remain in the ceramic body [20,21]. Specific pore structures can
be obtained using the sacrificial template method [22]. Starch is a type of polysaccharide
composed of amylose and amylopectin produced by plant photosynthesis. It is often used
as a biological pore-forming agent in ceramic technology because it easily burns away at low
temperatures and leaves no residue after sintering [23–26]. With the rapid development of
fiber materials, some researchers also use fibers as a pore-forming agent to prepare porous
materials. Zao et al. [27] prepared porous ceramics with a connecting channel structure
using polypropylene fibers (diameter of 120 µm and length of approximately 4 mm) as
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pore-forming agents, and the fibers were decomposed in a sintered body to form connecting
channels with a diameter of 100 µm. Corradetti et al. [28] successfully prepared lanthanum
carbide targets with enhanced permeability using 21.3 vol.% nylon 6/6 and 24.8 vol.%
polypropylene (average length of 500 µm and diameter of 18 and 20 µm, respectively)
as pore-forming agents. Biggemann et al. [29] successfully fabricated alumina ceramics
with multimodal pore networks using pyrolytic cellulose fibers (length of 150 µm and
diameter of 8 µm) and two isotropic phenolic resin spheres (diameter of 30 and 300 µm) as
pore-forming agents. The results showed that the type of sacrificial template is the main
factor affecting the mechanical properties of alumina ceramics. The properties of porous
materials are influenced by the type, shape, and size of the fibers. Carbon fibers can be
oxidized during the process of high-temperature sintering; thus, they can be discharged
from the matrix while retaining the pores. Porous ceramics with high porosity and excellent
performance can be prepared using carbon fibers with a large aspect ratio. Zhong et al. [30]
prepared highly porous LAS/SiC ceramics using carbon fibers (average aspect ratio of 5) as
the pore-forming agent and showed that overlapping carbon fibers could inhibit shrinkage
due to drying.

The properties of porous ceramics are closely related to their pore structure. Presently,
the main methods for pore structure characterization include scanning electron microscopy
(SEM), nuclear magnetic resonance, nitrogen adsorption/desorption, and mercury in-
trusion porosimetry (MIP) [31,32]. Nevertheless, the pore structure of porous ceramics
is complicated and irregular and is therefore difficult to describe by geometry. Fractal
geometry is a new branch of mathematics used to solve the problem of irregular and
fragmented patterns that cannot be analyzed by classical geometry. Since its establishment,
more and more researchers have used the fractal theory to study the pore structure of
materials; thus, the fractal dimension (Ds) is considered an important index to quantify
pore structures [33–35]. The Ds, which is related to the macroscopic properties of materials,
is calculated mathematically based on the MIP data and is a new index for characterizing
pore structures [36–40].

In this paper, porous alumina ceramics were prepared by a sacrificial template method
using alumina as the matrix and starch and carbon fiber as the pore-forming agents.
The surface Ds of porous alumina ceramics prepared using different pore-forming agent
quantities was evaluated using the obtained MIP data. The influence of the pore-forming
agent content on the physical properties, mechanical properties, and microstructure of
porous alumina ceramics and the relationships between the surface Ds, the pore structure,
and the mechanical properties were investigated in detail.

2. Materials and Methods
2.1. Raw Materials

An alpha-type calcined alumina powder (CT3000SG, Almatis GmbH in Ludwigshafen,
Germany) with an average particle size of 0.5 µm and a specific surface area of 7.50 m2/g
was used as the ceramic phase. Different quantities (20, 30, 40, and 50 vol.%) of a starch and
carbon fiber powder mixture (1:1 (v/v)) were added to the alumina powder as pore-forming
agents for the preparation of porous materials (samples A, B, C, and D, respectively). The
SEM images of the starch and carbon fibers are shown in Figure 1. The density of the
starch at room temperature (25 ◦C), measured by a Helium pycnometer (AccuPyc 1330,
Micromeritics GmbH, Unterschleißheim, Germany), was approximately 1.51 × 106 g/m3,
and the average diameter of the starch was 9.35 µm, as confirmed by light diffraction
(Mastersizer S, Malvern Instruments Ltd., Worcesterhire, UK). The milled carbon fibers
(Toho Tenax Europe GmbH in Wuppertal, Germany) had an average diameter of 7 µm and
a length of 50–150 µm.
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Figure 1. SEM photos of the pore-forming agents (a) starch and (b) carbon fibers.

2.2. Sample Preparation

Porous alumina ceramics were prepared by a sacrificial template method. The
starch/carbon fiber ratio in the mixed powder was 1:1 (v/v). The raw material ratios
of the different samples are shown in Table 1. For each sample, the alumina, starch, and
carbon fiber mixture was wetted with ethanol and mixed in the ball mill for 24 h (using an
Al2O3 grinding ball). The ethanol was then volatilized at a low temperature, and the sample
was dried at 110 ◦C for 12 h in an electric blast drying oven. The dried mixed powder was
screened using a 200-mesh screen, then put into a pressing mold (placed between the two
pressing sheets between the upper and the lower pressing heads of the mold sleeve) and
prepressed for 20 s with a rapid forming machine at 125 MPa for preliminary molding.
The sample was then transferred into a cold isostatic pressure machine for molding at 500
MPa and finally placed in a muffle furnace for sintering. During the sintering process,
combustion of the internal pore-forming agents took place, producing the porous Al2O3
ceramic material in situ.

Table 1. Ratios of the raw materials in the samples.

Sample Composition

A 80 vol.% Al2O3 + 20 vol.% Starch and carbon fiber (1:1 v/v)
B 70 vol.% Al2O3 + 30 vol.% Starch and carbon fiber (1:1 v/v)
C 60 vol.% Al2O3 + 40 vol.% Starch and carbon fiber (1:1 v/v)
D 50 vol.% Al2O3 + 50 vol.% Starch and carbon fiber (1:1 v/v)

The dried mixed powder was tested by thermogravimetry–differential thermogravi-
metric analysis (DTA, STA409, Netzsch GmbH, Selb, Germany). The phase composition of
the sintered sample was analyzed using a diffraction analyzer; then, the sample was ground
and polished into a 3 mm × 4 mm × 50 mm sample. The cross-sectional morphology of
the fractured samples was analyzed via SEM.

2.3. Sample Testing Methods

The density, total porosity, and open porosity of the samples were measured using the
Archimedes’ method and a glycerol solution according to ASTM C373–88. The four-point
bending method was used to measure the bending strength in this experiment. The av-
erage density, porosity, and bending strength values of 10 samples in each batch were
measured. The surface of the specimen was polished before the test to ensure that the
upper and lower surfaces were parallel and the sample was chamfered. The sample size
was 4 mm × 3 mm × 20 mm, the upper span was 10 mm, the lower span was 20 mm, and
the loading rate was 0.5 mm/min. The surface microstructures were observed via SEM
(LEO 1530 FESEM, Gemini/Zeiss, Oberkochen, Germany). The pore size distributions of
the samples were determined using MIP (AutoPore IV 9500 V1.04, Micromeritics GmbH,
Germany). Sample weights of 1.30–3.10 g were used for the measurements. The con-
tact angle and surface tension used in the calculation were 141.3◦ and 485 × 10−3 N/m,
respectively.
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2.4. Thermal Analysis

To study the physical and chemical changes during the sintering process in air, the
initial combustion temperature and the final sintering temperature of the pore-forming
agents were determined using DTA. Figure 2 shows the differential thermal changes of
starch and carbon fibers during sintering. When the temperature was increased from room
temperature, an endothermic peak occurred at approximately 100 ◦C due to the evaporation
of a small amount of adsorbed water in the sample. With the temperature increase, two
strong endothermic peaks occurred at 350 ◦C and 1000 ◦C, indicating the combustion of
starch and carbon fibers, respectively, in air. After determining the combustion temper-
atures of the pore-forming agents, the sintering temperature of Al2O3 could be selected.
According to Lapamnuayphon, the optimal sintering temperature of Al2O3 is 1550 ◦C.
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Figure 2. DTA curve for alumina with starch and carbon fibers.

3. Results and Discussion
3.1. Influence of the Pore-Forming Agent Content on Linear Shrinkage, Density, Porosity, and
Weight Loss of Porous Alumina

Figure 3 shows the density, linear shrinkage, mass loss, and porosity of the samples
sintered at 1550 ◦C using the Archimedes’ method when the content of the pore-forming
agents changed. The shape of the pore-forming agents (starch is polygonal granular, and
carbon fibers are fibrous) affects the structure and properties of porous ceramics after
sintering. For samples A–D, although the pore-forming agent content in the raw material
mixture increased, the linear shrinkage rate remained at approximately 18%. This indicated
that when starch and carbon fibers were used together as the pore-forming agents, the
linear shrinkage rate was unaffected by the pore-forming agent content.

Fractal Fract. 2022, 6, 574 5 of 15 
 

 

 
Figure 3. Density, linear shrinkage, mass loss, and porosity of porous alumina with different 
quantities of the pore-forming agent, sintered at 1550 °C. 

3.2. Effect of the Pore-Forming Agent Content on the Phase Composition and Microstructure of 
Porous Alumina 

The XRD spectra of samples A–D are shown in Figure 4. Only typical diffraction 
peaks of Al2O3 appeared after the samples were sintered at 1550 °C for 2 h, indicating 
that the pore-forming agents in all of the samples were completely removed during the 
sintering process. 

 
Figure 4. XRD patterns of the samples sintered at 1550 °C, composed of (A) 20 vol.% pore-forming 
agents + 80 vol.% alumina, (B) 30 vol.% pore-forming agents + 70 vol.% alumina, (C) 40 vol.% 
pore-forming agents + 60 vol.% alumina, and (D) 50 vol.% pore-forming agents + 50 vol.% alumina. 

The SEM images of the porous alumina samples obtained by adding different 
quantities of the pore-forming agents are shown in Figure 5. As shown in Figure 5(A1), 
the Al2O3 fracture morphology of the sample prepared using 20 vol.% pore-forming 
agents and 80 vol.% alumina mainly included transgranular and intergranular fractures. 
We observed that in the Al2O3 phase of the transgranular fracture, the gaps between the 
particles were not filled completely during the sintering process, and closed pores with 
sizes of 0.26–0.74 μm formed. Additionally, because the size of the pore-forming agent 
powder was much larger than that of the Al2O3 particles, the contact surfaces between the 
Al2O3 particles were relatively large during the sintering process, which promoted liquid 
phase sintering on the surface. Therefore, part of the Al2O3 particles in the sintered sam-

Figure 3. Density, linear shrinkage, mass loss, and porosity of porous alumina with different quantities
of the pore-forming agent, sintered at 1550 ◦C.



Fractal Fract. 2022, 6, 574 5 of 14

The linear shrinkage values were consistent among different samples because the
starch and carbon fiber were fully combusted at 1550 ◦C (as evidenced by the fact that
the mass of the product equaled the mass of the alumina in the raw material mixture).
However, the sample density decreased with an increasing pore-forming agent content
because the mass of alumina in the mixture decreased. Similarly, the mass loss and porosity
of the samples after sintering increased with an increase in the pore-forming agent content.

3.2. Effect of the Pore-Forming Agent Content on the Phase Composition and Microstructure of
Porous Alumina

The XRD spectra of samples A–D are shown in Figure 4. Only typical diffraction
peaks of Al2O3 appeared after the samples were sintered at 1550 ◦C for 2 h, indicating
that the pore-forming agents in all of the samples were completely removed during the
sintering process.
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pore-forming agents + 60 vol.% alumina, and (D) 50 vol.% pore-forming agents + 50 vol.% alumina.

The SEM images of the porous alumina samples obtained by adding different quan-
tities of the pore-forming agents are shown in Figure 5. As shown in Figure 5(A1), the
Al2O3 fracture morphology of the sample prepared using 20 vol.% pore-forming agents
and 80 vol.% alumina mainly included transgranular and intergranular fractures. We ob-
served that in the Al2O3 phase of the transgranular fracture, the gaps between the particles
were not filled completely during the sintering process, and closed pores with sizes of
0.26–0.74 µm formed. Additionally, because the size of the pore-forming agent powder
was much larger than that of the Al2O3 particles, the contact surfaces between the Al2O3
particles were relatively large during the sintering process, which promoted liquid phase
sintering on the surface. Therefore, part of the Al2O3 particles in the sintered sample
increased in size to 0.50–6.00 µm. For the morphology of the cutting surface (Figure 5(A2)),
Image J software was used to analyze the sample, with an average aperture of approxi-
mately 6.00 µm. Based on the linear shrinkage rate calculation and the diameter of the
pore-forming agent particles, the pore size of the sample was 5.32–7.67 µm, indicating
that the measured and calculated results were in good agreement. Moreover, the fracture
morphology of Al2O3 was mainly transformed from transgranular and intergranular frac-
ture to intergranular fracture, as shown in Figure 5(B1,C1,D1). Because the porosity of
the porous Al2O3 ceramics increased, the samples were easily fractured. Meanwhile, the
diameter of the Al2O3 particles in the samples was 0.50–3.00, 0.50–2.00, and 0.50–1.00 µm,
as shown in Figure 5(B1,C1,D1), respectively. With the increase in the pore-forming agent
content, the contact surface of the raw Al2O3 particles decreased correspondingly, resulting
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in no increase in the Al2O3 particle size in sample D. Thus, with the increase in the pore-
forming agent content, the size of the Al2O3 ceramic particles decreased correspondingly.
The higher the pore-forming agent content, the greater the distances between the Al2O3
ceramic particles during the sintering process, which was not conducive to the growth of
the Al2O3 ceramic particles. The pore size analysis of the fracture surfaces of the samples
in Figure 5(B2,C2,D2) was conducted using Image J software, and the average pore sizes
were 6.40, 7.30, and 7.80 µm, respectively. As the pore-forming agent content in the raw
material mixture increased, the content of starch and carbon fiber powder also increased.
During the mixing process, the probability of contact or overlap between the carbon fiber
and starch increased; thus, the average pore size obtained by sintering increased.
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3.3. Effect of the Pore-Forming Agent Content on the Pore Size Distribution of Porous Alumina

The pore size distribution of the porous alumina samples (A–D) prepared with dif-
ferent quantities of the pore-forming agent is shown in Figure 6. For pore-forming agent
contents of 20 vol.%, 30 vol.%, and 50 vol.%, the pore size distribution of porous alumina
showed two peaks, which was caused by the size difference between the two pore-forming
agents. The pore size distribution peaks appeared at 3 nm and 90 nm for sample A, 250 nm
and 18 µm for sample B, and 500 and 900 nm for sample D. These pore size values were
substantially smaller than those obtained by SEM analysis, which could be because MIP can
only measure the pore size at the time of injection, and the pore shape of the samples were
ink-bottle structures. In contrast, the pore size distribution of sample C was single-peak.
This is because the pore distribution showed greater uniformity, and the pore size was
more concentrated, as shown in Figure 5(C2). Additionally, at the sintering temperature
of 1550 ◦C, the gaps between particles were completely occupied due to the diffusion of
Al2O3 ceramic particles, and the holes left by the starch and the carbon fibers formed a
mesh or an ink-bottle structure after sintering.
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The physical properties of porous alumina measured by the Archimedes’ method and
MIP are shown in Figure 7, and the pore parameters measured by the MIP method are
shown in Table 2. The total porosity and open porosity of the samples increased with the
increase in the pore-forming agent content. The closed porosity of the samples decreased
first and then increased with the increase in the pore-forming agent content. When the
content of the pore-forming agents changed from 40% to 50%, the closed porosity of porous
alumina increased due to the interlap of the fibrous carbon fibers. There was very little
variation in porosity among the samples. However, the open porosity measured by MIP
was higher than that measured by the Archimedes’ method, indicating that MIP can be
used to measure the volume of small pores with values closer to the real value.
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Table 2. Pore structure parameters of porous alumina obtained by MIP.

Sample
Pore Size Distribution (%)

<10 nm 10–100 nm 100–1000 nm >1000 nm

A 5.25 69.96 15.96 8.82
B 0.49 3.14 90.48 5.89
C 0.00 1.46 93.57 4.67
D 1.25 0.17 81.28 17.17

3.4. Mechanical Properties and Weibull Distribution of Porous Alumina

Figure 8 shows the relationship between bending strength and porosity for the sintered
samples A–D. The bending strength of the sintered samples was 242, 168, 115, and 92 MPa
when the pore-forming agent content was 20, 30, 40, and 50 vol.%, respectively. The size of
the Al2O3 particles in the four sintered samples was quite similar. As the pore size in the
samples increased, the ability of porous alumina ceramics to resist bending deformation
decreased. The relationship between bending strength and porosity can be described using
the Ryskewitsch equation [σf = σ0 × exp(−np)], in which the theoretical bending strength
value (σ0) was 605 MPa, and the empirical constant (n) was 6.9.

The Weibull distribution of the porous alumina samples prepared with different pore-
forming agent contents is shown in Figure 9. The ceramic materials differed according
to the different raw materials, crack size, and shape. Even for a batch of samples, the
mechanical properties differed under the same experimental conditions. Generally, the
Weibull coefficient (m) value of ceramic materials (including porous ceramics) is in the
range of 5–30, with 10–20 being the most common measured value. The larger the m value,
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the smaller the deviation in its strength data, and the higher the reliability or measured
strength of the material. The calculated m values for samples A–D were 12.2, 15.9, 19.6, and
18.7, respectively, within the typical range of porous ceramics.
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3.5. Fractal Characteristics of Porous Alumina

To describe the pore structure and its effect on the mechanical properties of porous
ceramics accurately, the fractal theory was used to calculate the Ds values of the porous
surfaces. The principle of Zhang and Li’s fractal model is similar to the detection principle
of MIP, which makes this model reliable and widely used [41]. The Zhang and Li’s model
is based on the energy conservation relationship in the MIP test, which is the logarithmic
relationship between the cumulative intrusion work (Wn) and the cumulative mercury
intrusion surface (Qn), as shown in Equations (1)–(3).

ln(Wn) = C + ln(Qn) (1)
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Wn =
n

∑
i

Pi∆Vi (2)

Qn = r2−D
n VD/3

n (3)

Here, D is the actual pore surface size, n is the number of mercury injections as
determined by MIP, Pi is the pressure at the ith injection of mercury, and Vi is the volume
of the mercury injected at the ith mercury injection. Equations (1)–(3) can be arranged into
Equation (4) as follows:

ln
(

Wn

r2
n

)
= Ds ln

(
V1/3

n
rn

)
+ C (4)

The values of Wn, Vn, ln
(

Wn
r2

n

)
, and ln

(
V1/3

n
rn

)
can be calculated according to the

MIP detection results and Equations (2) and (3). From these values, a fitting curve for
Equation (1) can be drawn, whose slope is Ds. The closer the correlation coefficient (R2) is
to 1, the higher the accuracy of the calculated Ds.

Figure 10 shows the Ds and R2 values of the porous alumina samples with different
pore-forming agent contents. The Ds values of the samples A–D ranged from 2.89673 to
2.61442, and the R2 values were all higher than 0.99000, indicating that the pore distribution
of the porous alumina samples was heterogeneous and complex. Therefore, the pore
structure of porous alumina has obvious fractal characteristics that can be quantitatively
described by the fractal theory. Meanwhile, the Ds values of the porous alumina samples
decreased with the increase in the pore-forming agent contents because the contact area
between the pore-forming agents and the matrix increased, resulting in fewer small holes
and more large holes in the porous alumina samples. Thus, when the Ds value of the pores
was larger, the spatial distribution of the material was more complex, and the space-filling
capacity was stronger.
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Figure 11 shows the relationship between Ds and porosity, most probable pore size, and
median pore diameter for the porous alumina samples. The porosity, most probable pore
size, and median pore diameter decreased as the Ds value increased, with corresponding
R2 values of 0.40505, 0.88117, and 0.71016, respectively. As Ds increased, the most probable
pore size and the median pore diameter decreased, indicating that the number of small
pores increased and the distribution of the pores was more complex. The R2 value in
Figure 11a was not high because of the agglomeration of the two pore-forming agents
during the sintering process, resulting in an obvious change in the pore surface area with
the increase in the pore-forming agent content.
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pore diameter of porous alumina.

Figure 12 shows the relationship between bending strength and porosity measured
by MIP, most probable pore size, median pore size, and Ds of the porous alumina samples.
The bending strength of the samples decreased with the increase in porosity, most probable
pore size, and median pore diameter but increased with the increase in the Ds value. The
pore area is an important factor affecting the mechanical properties of porous ceramics. It
is negatively correlated with density because the pores reduce the effective cross-sectional
area of alumina ceramics, reducing their ability to bear a load and resist deformation.
Furthermore, the pore shapes formed during the sintering process differed depending on
the pore-forming agent content, which also affected the bending strength. With the increase
in the Ds value, the density of the samples increased, the pores became more complex, the
number of small pores increased, and the mechanical properties of the samples increased.
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4. Conclusions

Porous alumina materials were successfully prepared using 20–50 vol.% starch and
carbon fibers as the pore-forming agents. The structure and microstructure of porous
alumina were closely related to the content of the pore-forming agents. With the increase
in the pore-forming agent content, the porosity of porous alumina increased, the number
of pores decreased, the pore structure became simple, and the density and mass loss rate
decreased. When the pore structure and microstructure changed, the bending strength of
the porous alumina decreased as the porosity increased. The pore structure parameters
could be described by the Ds. The Ds values of the four samples were between 2.61442 and
2.89673, and all R2 values were higher than 0.99000, showing good fractal characteristics.
The Ds value decreased with an increasing pore-forming agent content. The values of Ds
and bending strength of the porous alumina samples decreased with increasing porosity,
most probable pore size, and median pore diameter. The Ds value of porous alumina was
positively correlated with the bending strength. Our results provide an experimental basis
for evaluating the pore structure and mechanical properties of porous materials.

Author Contributions: Conceptualization, C.C.; methodology, C.C.; validation, X.D.; formal analysis,
C.C. and X.D.; investigation, X.D. and P.Z.; resources, C.C.; data curation, C.C.; writing—original
draft preparation, X.D. and P.Z.; writing—review and editing, C.C. and Z.L; supervision, C.C.; project
administration, Y.W. and C.C.; funding acquisition, Y.W. and Z.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
51974218) and the Scientific Research Program Funded by Shaanxi Provincial Education Department
(No. 20JC023).

Data Availability Statement: The data are available from the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.



Fractal Fract. 2022, 6, 574 13 of 14

References
1. Wang, S.Y.; Yang, Z.; Luo, X.D.; Qi, X.; Zhang, L.; You, J.G. Preparation of calcium hexaluminate porous ceramics by gel–casting

method with polymethyl methacrylate as pore–forming agent. Ceram. Int. 2022, 48, 30356–30366. [CrossRef]
2. Wang, L.L.; Ma, B.Y.; Ren, X.M.; Yu, C.; Deng, C.J.; Liu, C.M.; Hu, C.B. ZrO2 and MxOy (M = La, Ce, and Nb) synergistically

reinforced porous cordierite ceramics synthesized via a facile solid–state reaction. Ceram. Int. 2022, 27, R713–R715. [CrossRef]
3. Ohji, T.; Fukushima, M. Macro–porous ceramics: Processing and properties. Int. Mater. Rev. 2013, 57, 115–131. [CrossRef]
4. Ha, J.H.; Lee, S.J.; Park, B.; Lee, J.; Song, I.H. Feasibility of as–prepared reticulated porous barium titanate without additional

radar–absorbing material coating in potential military applications. J. Aust. Ceram. Soc. 2020, 56, 1481–1491. [CrossRef]
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