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Abstract: In this article, we employed Mönch’s fixed point theorem to investigate the existence of
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1. Introduction

Fractional Calculus (FCs): Some consider this science a part of mathematical analysis
and deal with the applications of integration and derivation in the case of non-integer order.
As for this field (fractional differentiation), it helps us to find the derivative with order half
or 0.3 or 0.7. . . etc. see [1,2]. The origins of this trend lie in the seventeenth century when

Newton and Leibniz laid the foundations of calculus. Leibniz put the famous
dny
dxn to denote

the nth derivative of the function f, so Leibniz sent a message to L’Hopital telling him this
new symbol, but L’Hopital responded to the message with a confusing question: “What
if n= 1

2 ?” The letter was written in 1695 and is today the first appearance of the fractional
derivative (FDs). The mathematician Liouville began investigating and researching the
subject and issued a series of papers in the period 1832–1837, where he knew the first
operator of fractional integration, and after Riemann considered this subject and developed
on it, what is known today as the definition of Riemann appeared. An unprecedented
interest and development in this field followed. To learn more about the history of the
emergence of this branch of mathematics, we direct the reader to look at [3,4]. Whereas the
study of BVPs for equations with nonlinear fractional differentials has a prominent and
important role in the theory of fractional Calculus, and in the study of physical phenomena
through the physical interpretation of boundary conditions. To pass quickly on the practical
applications of FDs in various applied sciences, Refs. [5–14] present some valuable works
in applications of fractional calculus. .

Through the in-depth and comprehensive study of FDEs, the existence and uniqueness
of solutions to FDEs are proven using a set of fixed point theories such as Banach’s, Darbo’s,
Leary-Schuader alternative, and also Mönch’s.

Recently, many researchers have given a lot of attention to investigating the existence
of solutions to fractional differential equations, and most of these works were focused
on the Caputo fractional derivative, so the FDE involving derivatives of the Hadamard
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type did not gain that much attention, add to this, that a very large percentage used
Banach Contraction Mapping and Leray-Schauder’s alternative, whereas the Mönch’s fixed
point theorem is not mentioned much. In this work, we shed light on the differential
equations that combine the derivative and integral of the Hadamard fractional type and
study the existence of a solution to this system through the rarely used Mönch’s fixed
point theorem. Herein lies the originality and distinction of this work. Just as ordinary
differential equations have applications in various sciences, fractional differential equations
have found a place in these applications, and were even distinguished in some cases over
ordinary differential equations as they reduce the percentage error in estimation of the
variable of interest; see [15–20].

This fractional derivative is invariant with respect to dilation on the whole axis,
Hadamard fractional derivatives are nonlocal fractional derivatives with a singular log-
arithmic kernel with memory, and hence they are suitable to describe complex systems,
keeping in mind that, just like Riemann-Liouville, the Hadamard derivative has its own
disadvantages as well, one of which is the fact that the derivative of a constant is not equal
to zero; see [21].

The following fractional differential equation (FDE) comprises a Hadamard fractional
derivative (H-FD) of variable order. In [22], the authors employed Darbo’s fixed point
theorem to investigate the existence and stability of the solution.{

HDP1
1+ψ(τ) = F1(τ, ψ(τ)), τ ∈ [1, T ],

ψ(1) = ψ(T ) = 0,

where 1 < P1 ≤ 2,F1 : [1, T ]×Re → Re is a continuous function and HDP1
1+,HIP1

1+ are the
Hadamard fractional derivative (H-FD) and integral of variable-order ψ(τ), respectively.

In 2021, Ref. [23] Bashir Ahmad, et al. investigated the existence and uniqueness of
the following system of FDE involving H-FD{

HDP1 ψ(τ) = F1(τ, ψ(τ), v(τ)), τ ∈ [1, T ], 0 < P1 ≤ 1,
HDP2 v(τ) = F2(τ, ψ(τ), v(τ)), τ ∈ [1, T ], 0 < P2 ≤ 1,

with the following coupled BCs:
ψ(1) +

m

∑
ν=1

δ1νv(τν) = 0,

v(1) +
m

∑
ν=1

δ2νψ(τν) = 0,

where Dθ is the (H-FD) of order θ ∈ {P1,P2}, respectively F1,F2 : [1, T ]×R2
e → Re are

Carathéodory functions, τν are given points with 1 ≤ τ1 ≤ · · · ≤ τm < T and δ1, δ2 are real

number such that 1−
m

∑
ν=1

δ1ν

m

∑
ν=1

δ2ν 6= 0.

In [24], the authors studied the existence and uniqueness of a multipoint BVP with
H-FD (sequential type):

(HDP1 + λHDP1−1)ψ(τ) = F1(τ, ψ(τ)), τ ∈ [1, T ], 1 < P1 ≤ 2,

ψ(1) = 0, ψ(T ) =
m

∑
ν=1

δ1νv(τν),

where HDP1 is the (H-FD) of order P1, F1 : [1, T ]×Re → Re is a continuous function,
λ ∈ R+

e , τν, ν = 1, 2, · · ·m, are given points with 1 ≤ τ1 ≤ · · · ≤ τm < T , and δ1ν are
appropriate real numbers.
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The authors in [25] used the Banach and Schaefer theorems to establish the necessary
conditions that ensured the stability and existence of the subsequent FDE with H-FD
and solutions: {

DP1 ψ(κ) = F1(κ, ψ(κ), v(κ)), κ ∈ [1, T ], 0 < P1 ≤ 1,
DP1 v(κ) = F2(κ, ψ(κ), v(κ)), κ ∈ [1, T ], 0 < P1 ≤ 1,

with the following coupled BCs: {
ψ(1) = δ1v(T ),
v(1) = δ2ψ(T ),

where Dθ is the (H-FD) of order θ ∈ {P1,P2},F1,F2 : [1, T ]×R2
e → Re are appropriate

functions, and δ1, δ2 are real number with δ1δ2 6= 1.
Due to the importance of the subject and the possibility of employing it in various

scientific fields, many researchers in the field of fractional differential have studied the
systems of FDEs with a variety of serious conditions accompanying them. For more infor-
mation on these scientific papers, the reader can see [26–33], A large group of researchers
interested in FCs studies the stability of solutions for FDEs after studying the existence of
their solutions. To enrich the reader, it is possible to see [34–36].

In this study, in Section 3 we will employ Mönch’s theorem to prove the existence of a
solution to the system of FDEs mentioned below

HDP1 ψ(κ) = G1(κ, ψ(κ), v(κ)), κ ∈ (1, e), P1 ∈ (1, 2],

HDP2 v(κ) = G2(κ, ψ(κ), v(κ)),

ψ(1) = 0, ε1
HIQ1 ψ(ζ) + ε2ψ(e) = ε3,

v(1) = 0, δ1
HIQ2 v(ξ) + δ2v(e) = δ3,

(1)

where HDPi is the Hadamard fractional derivative of order Pi, i = 1, 2, Gi : [1, e]×Re
2 →

Re are given continuous functions, Qi > 0, i = 1, 2. εν, δν ∈ Re, ν = 1, 2, 3.1 < ζ < ξ < e.
HI (·) represent the Hadamard fractional integral.

In Section 2 preliminaries for this study are mentioned. In the Section 4, which looks
at the stability of this solution using the Ulam-Hyres stability technique, Section 5 will
represent an applied numerical example of the system of equations mentioned above.
Finally, a conclusion is obtained in the Section 6.

2. Preliminaries

This section introduces fundamental FCs concepts, principles, and initial results [1–3].

Definition 1 ([37]). The H-D of fractional order ψ for a function k: [1,∞)→Re is defined as

Dψk(κ) =
1

Γ(n− ψ)

(
κ

d
dκ

)n ∫ κ

1

(
log

κ

s

)n−ψ−1 k(s)
s

ds, n− 1 < q < n, n = [ψ] + 1,

where [ψ] denotes the integer part of the real number ψ and log(·) = loge(·).

Definition 2 ([37]). The Hadamard fractional integral of order ψ for a function k is defined as

Iψk(κ) =
1

Γ(ψ)

∫ κ

1

(
log

κ

s

)ψ−1 k(s)
s

ds, ψ > 0.
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Remark 1. If k ∈ Cn[0, ∞), then

cDψ
0+k(κ) =

1
Γ(n− ψ)

∫ κ

0

kn(ρ)

(κ − ρ)ψ+1−n ds = In−ψk(n)(κ), κ > 0, n− 1 < ψ < n,

Definition 3. The Kuratowski measure of non compactness k defined on bounded set ψ of Banach
space M̂∗ is :

k(ψ) := inf{r > 0 : ψ = ψi and diam (ψi) ≤ r for 1 ≤ i ≤ m}.

To discuss the problem in this paper, we need the following lemmas.

Lemma 1. Given the Banach space M̂∗ with ψ,V are two bounded proper subsets of M̂∗, then
the ensuing characteristics are true.

(1) If ψ ⊂ V , then k(ψ) ≤ k(V);
(2) k(ψ) = k(ψ̄) = k(convψ);
(3) ψ is relatively compact k(ψ) = 0;
(4) k(δψ) = |δ|k(ψ), δ ∈ Re;
(5) k(ψ ∪ V) = max{k(ψ), k(V)};
(6) k(ψ + V) = k(ψ) + k(V), ψ + V = {x|x = u+ v, u ∈ ψ, v ∈ V};
(7) k(ψ + y) = k(ψ), ∀y ∈ M̂∗.

For more details and the proof of these properties, see [38].

Lemma 2. Given an equicontinuous and bounded set W∗ ⊂ C([1, e],M̂∗), then the function
v � k(W∗(v)) is continuous on [1, e], kC(W∗) = max

v∈[1,e]
k(W∗(v)), and

k
(∫ T

a
x(κ)dκ

)
≤
(∫ T

a
(x(κ))dκ

)
,W∗(κ) = {x(κ) : x ∈ W∗}. (2)

Definition 4. Given the function Ψ : [1, e]× M̂∗ → M̂∗, Ψ satisfy Carathéodory’s conditions, if
the following conditions applies:

Ψ(v, z) is measurable in v for z ∈ M̂∗;

Ψ(v, z) is continuous in z ∈ M̂∗ for v ∈ [1, e].

Theorem 1. Given a bounded, closed, and convex subset Ω ⊂ M̂∗, such that 0 ∈ Ω, let also T be
a continuous mapping of Ω into itself. (Mönch’s fixed point theorem).

IfW∗ = convT (W∗), orW∗ = T (W∗) ∪ {0}, then k(W∗) = 0,

satisfied ∀ W∗ ⊂ Ω, then T has a fixed point.

Lemma 3. Assume thatH1 andH2 ∈ C([1, e],Re), the solution for the following system
HDP1 ψ(κ) = H1,
HDP2 v(κ) = H2,
ψ(1) = 0, ε1

HIQ1 ψ(ζ) + ε2ψ(e) = ε3,
v(1) = 0, δ1

HIQ2 v(ξ) + δ2v(e) = δ3.

(3)
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is

ψ(κ) = HI (P1)H1(κ) + (In κ)P1−1 ε3 − ε1
HI (Q1+P1)H1(ζ)− ε2

HIQ1H1(e)

ε2 +
ε1Γ(P1)

Γ(Q1 + P1)
(In ζ)Q1+P1−1

. (4)

v(κ) = HI (P2)H2(κ) + (In κ)P2−1 δ3 − δ1
HI (Q2+P2)H2(ξ)− δ2

HIQ2H2(e)

δ2 +
δ1Γ(P2)

Γ(Q2 + P2)
(In ξ)Q2+P2−1

. (5)

Proof. Applying HIP1 to

HDP1 ψ(κ) = H1,

gives

ψ(κ) = HI (P1)H1(κ) + b1(In κ)P1−1 + b2(In κ)P1−2, (6)

but ψ(1) = 0, yields b2 = 0 observe that

HIQ1 ψ(ζ) =HIQ1+P1H1(ζ) +
b1

Γ(Q1)

∫ ζ

1

(
In

ζ

r

)Q1−1(
In

r
r

)P1−1
dr

=HIQ1+P1H1(ζ) +
b1Γ(P1)

Γ(Q1 + P1)
(Inζ)Q1+P1−1.

The 2nd boundary condition gives

ε1
HIQ1+P1H1(ζ) + ε1

b1Γ(P1)

Γ(Q1 + P1)
(Inζ)Q1+P1−1 + ε2

HIP1H1(e) + ε2b1 = ε3,

implying that

b1 =
ε3 − ε1

HI (Q1+P1)H1(ζ)− ε2
HIQ1H1(e)

ε2 +
ε1Γ(P1)

Γ(Q1 + P1)
(In ζ)Q1+P1−1

,

substitute the values of b1, and b2 in (6) yields (4). In a similar way, we can obtain (5). This
completes the proof.

In view of Lemma (3), Equations (4) and (5) can be rewritten as

ψ(κ) =
1

Γ(P1)

∫ κ

1

(
In

κ

r

)P1−1 H1(r)
r

dr (7)

+
(In κ)P1−1

∆1

[
ε3 −

ε1

Γ(Q1 + P1)

∫ ζ

1

(
In

ζ

r

)Q1+P1−1 H1(r)
r

dr

− ε2

Γ(P1)

∫ e

1

(
In

e
r

)P1−1 H1(r)
r

dr
]

, κ ∈ [1, e],
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and

v(κ) =
1

Γ(P2)

∫ κ

1

(
In

κ

r

)P2−1 H2(r)
r

dr (8)

+
(In κ)P2−1

∆2

[
δ3 −

δ1

Γ(Q2 + P2)

∫ ξ

1

(
In

ξ

r

)Q2+P2−1 H2(r)
r

dr

− δ2

Γ(P2)

∫ e

1

(
In

e
r

)P2−1 H2(r)
r

dr
]

, κ ∈ [1, e],

with

∆1 = ε2 + ε1
Γ(P1)

Γ(P1 +Q1)
(Inζ)P1+Q1−1,

∆2 = δ2 + δ1
Γ(P2)

Γ(P2 +Q2)
(Inξ)P2+Q2−1.

3. Existence Results via Mönch’s Fixed Point Theorem

Let Ê = {(ψ(κ), v(κ))|(ψ, v) ∈ C([1, e],Re)× C([1, e],Re)}. Clearly, the aforemen-
tioned set Ê is Banach space endowed with the norm

||(ψ, v)||Ê = ||ψ||∞ + ||v||∞.

To show that our system (1) has a solution we set the following Assumptions,

(A1) Suppose that ψ, v : [1, e]× (Re)2 → Re satisfy Carathéodory conditions.
(A2) ∃ Uψ,Uv ∈ L1[1, e] × (Re)+, and ∃ Hψ,Hv : (Re)+ → (Re)+ such that ∀ κ ∈

[1, e], ∀(ψ, v ∈ Ê) we have

||ψ(κ, ψ, v)||∞ ≤ Uψ(κ)Hψ(||ψ||∞ + ||v||∞),

||v(κ, ψ, v)||∞ ≤ Uv(κ)Hv(||ψ||∞ + ||v||∞),

here Hψ, Hv are non-decreasing continuous functions.
(A3) Let S ⊂ Ê × Ê , assumed to be bounded, and

K(ψ(κ,S)) ≤ Uψ(κ)K(S),
K(v(κ,S)) ≤ Uv(κ)K(S).

For computational convenience, we set

O1 = sup
1≤κ≤e

{
1

Γ(P1)

∫ κ

1

(
In

κ

r

)P1−1 1
r

dr

+
(In κ)P1−1

∆1

[
ε3 −

ε1

Γ(Q1 + P1)

∫ ζ

1

(
In

ζ

r

)Q1+P1−1 1
r

dr

− ε2

Γ(P1)

∫ e

1

(
In

e
r

)P1−1 1
r

dr
]}

,

O1 ≤
1

Γ(P1 + 1)
+

1
|∆1|

[
|ε1|(In ζ)P1+Q1

Γ(P1 +Q1 + 1)
+

|ε2|
Γ(P1 + 1)

]
, (9)
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and

O2 ≤
1

Γ(P2 + 1)
+

1
|∆2|

[
|δ1|(In ξ)P2+Q2

Γ(P2 +Q2 + 1)
+

|δ2|
Γ(P2 + 1)

]
. (10)

Theorem 2. Assume that the Assumptions (A1), (A2), and (A3) are satisfied. If

max{U ∗ψO1,U ∗vO2} < 1, (11)

then the system of fractional differential equations given by (1) has at least one solution on [1, e].

Proof. The continuous operator T : Ê → Ê needs to be defined

T = T1(ψ, v)(κ), T2(ψ, v)(κ),

where

T1 =

{
1

Γ(P1)

∫ κ

1

(
In

κ

r

)P1−1G1(r, ψ(r), v(r))
r

dr

+
(In κ)P1−1

∆1

[
ε3 −

ε1

Γ(Q1 + P1)

∫ ζ

1

(
In

ζ

r

)Q1+P1−1G1(r, ψ(r), v(r))
r

dr

− ε2

Γ(P1)

∫ e

1

(
In

e
r

)P1−1G1(r, ψ(r), v(r))
r

dr
]}

, (12)

and

T2 =

{
1

Γ(P2)

∫ κ

1

(
In

κ

r

)P2−1G2(r, ψ(r), v(r))
r

dr

+
(In κ)P2−1

∆2

[
δ3 −

δ1

Γ(Q2 + P2)

∫ ζ

1

(
In

ζ

r

)Q2+P2−1G2(r, ψ(r), v(r))
r

dr

− δ2

Γ(P2)

∫ e

1

(
In

e
r

)P2−1G2(r, ψ(r), v(r))
r

dr
]}

. (13)

Operator T equation

(ψ, v) = T (ψ, v), (14)

is equivalent to (7) and (8), keeping in mind that showing the existence of a solution for (14)
is equivalent to showing the existence of solution for (1).

Next, we define SΘ = {(ψ, v) ∈ Ê : ||(ψ, v)||Ê ≤ Θ, Θ > 0} to be a closed bounded
convex ball in Ê with

Θ ≥ U ∗ψO1Hψ(Θ) + U ∗vO2Hv(Θ).

satisfy Mönch’s fixed point theorem condition we split our proof into four steps.
Step 1: We show that T SΘ ⊂ SΘ, let T ∈ [1, e] and ∀(ψ, v) ∈ SΘ, we have

||T1(ψ, v)||∞ =

{
1

Γ(P1)

∫ κ

1

(
In

κ

r

)P1−1 ||G1(r, ψ(r), v(r))||∞
r

dr

+
(In κ)P1−1

∆1

[
|ε3|+

|ε1|
Γ(Q1 + P1)

∫ ζ

1

(
In

ζ

r

)Q1+P1−1 ||G1(r, ψ(r), v(r))||∞
r

dr

+
|ε2|

Γ(P1)

∫ e

1

(
In

e
r

)P1−1 ||G1(r, ψ(r), v(r))||∞
r

dr
]}

, (15)
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using (A2), ∀κ ∈ [1, e] we have

||ψ(κ, ψ(κ), v(κ))||∞ ≤U ∗ψ(κ)Hψ(||ψ(κ)||∞ + ||v(κ)||∞)

≤U ∗ψHψ(Θ),

||T1(ψ, v)||∞ =

{
1

Γ(P1)

∫ κ

1

(
In

κ

r

)P1−1 U ∗ψ(κ)Hψ(||ψ(κ)||∞ + ||v(κ)||∞)

r
dr

+
(In κ)P1−1

∆1

[
|ε3|+

|ε1|
Γ(Q1 + P1)

∫ ζ

1

(
In

ζ

r

)Q1+P1−1 U ∗ψ(κ)Hψ(||ψ(κ)||∞ + ||v(κ)||∞)

r
dr

+
|ε2|

Γ(P1)

∫ e

1

(
In

e
r

)P1−1 U ∗ψ(κ)Hψ(||ψ(κ)||∞ + ||v(κ)||∞)

r
dr

]}
,

≤ U ∗ψHψ(Θ). (16)

Similarly,

||T2(ψ, v)||∞ =

{
1

Γ(P2)

∫ κ

1

(
In

κ

r

)P2−1 U ∗v(κ)Hv(||ψ(κ)||∞ + ||v(κ)||∞)

r
dr

+
(In κ)P2−1

∆2

[
|δ3|+

|δ1|
Γ(Q2 + P2)

∫ ζ

1

(
In

ζ

r

)Q2+P2−1 U ∗v(κ)Hv(||ψ(κ)||∞ + ||v(κ)||∞)

r
dr

+
|δ2|

Γ(P2)

∫ e

1

(
In

e
r

)P2−1 U ∗v(κ)Hv(||ψ(κ)||∞ + ||v(κ)||∞)

r
dr
]}

,

≤ U ∗vHv(Θ). (17)

(16) and (17) yields,

||T (ψ, v)||Ê =||T1(ψ, v)||∞ + ||T2(ψ, v)||∞
≤U ∗ψO1Hψ(Θ) + U ∗vO2Hv(Θ)

≤Θ, (18)

that is T SΘ ⊂ SΘ.
Step 2: We show the continuity of the operator T . To do this, we let the sequence

{Vn = (ψn, vn)} ∈ SΘ, and show that Vn → V = (ψ, v) as n→ ∞.

Because of Carathéodory continuity of ψ, it is clear that

ψ(·, ψn(·), vn(·))→ ψ(·, ψ(·), v(·)) as n→ ∞.

Recalling (A2), we deduce that(
In

κ

r

)P1−1
||ψ(r, ψn(r), vn(r))− ψ(r, ψ(r), v(r))||∞ ≤ U ∗ψHψ(Θ)

(
In

κ

r

)P1−1
. (19)

Additionally, by the function’s Lebesgue dominated convergence theorem and the fact that

M→ U ∗ψHψ(Θ)
(

In
κ

r

)P1−1
, (20)



Fractal Fract. 2022, 6, 586 9 of 15

is Lebesgue integrable on [1, e], we get

||T1(ψ, v)||∞ =

{
1

Γ(P1)

∫ κ

1

(
In

κ

r

)P1−1 ||ψ(r, ψn(r), vn(r))− ψ(r, ψ(r), v(r))||∞
r

dr

+
(In κ)P1−1

∆1

[
|ε3|+

|ε1|
Γ(Q1 + P1)

∫ ζ

1

(
In

ζ

r

)Q1+P1−1

×||ψ(r, ψn(r), vn(r))− ψ(r, ψ(r), v(r))||∞
r

dr (21)

+
|ε2|

Γ(P1)

∫ e

1

(
In

e
r

)P1−1 ||ψ(r, ψn(r), vn(r))− ψ(r, ψ(r), v(r))||∞
r

dr
]}

,

that is

||T1(ψn, vn)(κ)− T1(ψ, v)(κ)||∞ → 0 as n→ ∞ ∀ κ ∈ [1, e],

then

||T1(ψn, vn)− T1(ψ, v)||∞ → 0 as n→ ∞, (22)

which means that the operator T1 is continuous.
Similarly

||T2(ψn, vn)− T2(ψ, v)||∞ → 0 as n→ ∞, (23)

(22) and (23) yields,

||T (ψn, vn)− T (ψ, v)||Ê → 0 as n→ ∞. (24)

By getting (24) we conclude that the operator T is continuous.
Step 3: We show that T is equicontinuous. Let κ1, κ2 ∈ [1, e] and ∀(ψ, v) ∈ SΘ, then

||T1(ψ, v)(κ2)− T1(ψ, v)(κ1)||∞

=

{
1

Γ(P1)

∫ κ1

1

(
In

κ2
r

)P1−1
−
(

In
κ1
r

)P1−1 ||ψ(r, ψ(r), v(r))||∞
r

dr

+
1

Γ(P1)

∫ κ2

κ1

(
In

κ2
r

)P1−1 ||ψ(r, ψ(r), v(r))||∞
r

dr

+
(In κ2)

P1−1 − (In κ1)
P1−1

∆1
|ε3|

+
(In κ2)

P1−1 − (In κ1)
P1−1

∆1

|ε1|
Γ(Q1 + P1)

∫ ζ

1

(
In

ζ

r

)Q1+P1−1 ||ψ(r, ψ(r), v(r))||∞
r

dr

+
(In κ2)

P1−1 − (In κ1)
P1−1

∆1

|ε2|
Γ(P1)

∫ e

1

(
In

e
r

)P1−1 ||ψ(r, ψ(r), v(r))||∞
r

dr

}
, (25)

≤
{
U ∗ψHψ(Θ)

Γ(P1)

∫ κ1

1

[(
In

κ2

r

)P1−1
−
(

In
κ1

r

)P1−1
]

dr
r

+
1

Γ(P1)

∫ κ2

κ1

(
In

κ2

r

)P1−1 dr
r

+
(In κ2)

P1−1 − (In κ1)
P1−1

∆1
|ε3|

+
(In κ2)

P1−1 − (In κ1)
P1−1

∆1
U ∗ψHψ(Θ)×

[
|ε1|

Γ(Q1 + P1)

∫ ζ

1

(
In

ζ

r

)Q1+P1−1 dr
r

+
(In κ2)

P1−1 − (In κ1)
P1−1

∆1

|ε2|
Γ(P1)

∫ e

1

(
In

e
r

)P1−1 dr
r

]}
→ 0 as κ1 → κ2. (26)
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In a similar manner , we have

||T2(ψ, v)(κ2)− T2(ψ, v)(κ1)||∞

≤
{
U ∗vHv(Θ)

Γ(P2)

∫ κ1

1

[(
In

κ2

r

)P2−1
−
(

In
κ1

r

)P2−1
]

dr
r

+
1

Γ(P2)

∫ κ2

κ1

(
In

κ2

r

)P2−1 dr
r

+
(In κ2)

P2−1 − (In κ1)
P2−1

∆2
|δ3|

+
(In κ2)

P2−1 − (In κ1)
P2−1

∆2
U ∗vHv(Θ)×

[
|δ1|

Γ(Q2 + P2)

∫ ζ

1

(
In

ζ

r

)Q2+P2−1 dr
r

+
(In κ2)

P2−1 − (In κ1)
P2−1

∆2

|δ2|
Γ(P2)

∫ e

1

(
In

e
r

)P2−1 dr
r

]}
→ 0 as κ1 → κ2. (27)

From (26) and (27) we noted that both inequalities are independent of (ψ, v) ∈ SΘ, that led
us to deduce that the operator T is bounded and equicontinuous.

Step 4: To satisfy all conditions of Mönch’s fixed point, finally, we let Φ = Φ1 ∩
Φ2; Φ1, Φ2 ⊂ SΘ. Furthermore , Φ1 and Φ2 are assumed to be bounded and equicontinuous.

We show that

Φ1 ⊂ conv(T1(Φ1) ∪ {o}), and Φ2 ⊂ conv(T1(Φ1) ∪ {o}).

Thus, the functions

Π1(κ) = k(Φ1(κ)),

Π2(κ) = k(Φ2(κ)),

are continuous on [1, e]. By the Kuratowski Lemma (1) and (A3), we write

Π1(κ) =k(Φ1(κ))

≤k(conv(T1(Φ1) ∪ {o}))
≤k(T1Φ1(κ)) (28)

≤k
{

1
Γ(P1)

∫ κ

1

(
In

κ

r

)P1−1 ||ψ(r, ψ(r), v(r))||∞
r

dr

+
(In κ)P1−1

∆1

[
− |ε1|

Γ(Q1 + P1)

∫ ζ

1

(
In

ζ

r

)Q1+P1−1 ||ψ(r, ψ(r), v(r))||∞
r

dr

− |ε2|
Γ(P1)

∫ e

1

(
In

e
r

)P1−1 ||ψ(r, ψ(r), v(r))||∞
r

dr : (ψ, v) ∈ Φ
]}

, (29)

≤
{

1
Γ(P1)

∫ κ

1

(
In

κ

r

)P1−1 ψ(r, Φ1(r))
r

dr

+
(In κ)P1−1

∆1

[
− |ε1|

Γ(Q1 + P1)

∫ ζ

1

(
In

ζ

r

)Q1+P1−1 ψ(r, Φ1(r))
r

dr

− |ε2|
Γ(P1)

∫ e

1

(
In

e
r

)P1−1 ψ(r, Φ1(r))
r

dr : (ψ, v) ∈ Φ
]}

.

≤U ∗ψO1||Π1||∞.

That is

||Π1||∞ ≤ U ∗ψO1||Π1||∞,
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but it is supposed that max{U ∗ψO1,U ∗vO2} < 1, yields ||Π1||∞ = 0, so Π1(κ) = 0, ∀ κ ∈
[1, e], in a similar manner, we get Π2(κ) = 0, ∀ κ ∈ [1, e].

Consequently k(Φ(κ)) ≤ k(Φ1(κ)) = 0, and k(Φ(κ)) ≤ k(Φ1(κ)) = 0, implying Φ(κ)
is relatively compact in Ê × Ê , based on the Arzila–Ascoli theorem we obtain that Φ is
relatively compact in SΘ.

Now all conditions of Mönch’s fixed point Theorem applied, therefore T has fixed
point (ψ, v) on Sn.

4. Stability Results for the Problem

Let us define nonlinear operator Z1,Z2 ∈ C([1, e],Re)× C([1, e],Re)→ C([1, e],Re),
where T1 and T2 are define by (12) and (13){

HDP1 ψ(κ)− G1(κ, ψ(κ), v(κ)) = Z1(ψ, v)(κ), κ ∈ (1, e), P1 ∈ (1, 2],
HDP2 v(κ)− G2(κ, ψ(κ), v(κ)) = Z2(ψ, v)(κ).

For κ ∈ [1, e]. For some ς1, ς2 > 0, we consider the following inequities:

||Z1, (ψ, v)|| ≤ ς1, ||Z2, (ψ, v)|| ≤ ς2. (30)

Definition 5. The coupled system (1) is said to be stable in the H-U sense, ifM1,M2 > 0 exist
that there is a unique solution (ψ, v) ∈ C([1, e],Re)× C([1, e],Re) of problem (1) with

||(ψ, v)− (ψ̂, v̂)|| ≤ M1ς1 +M2ς2,

for every solution (ψ̂, v̂) belongs to C([1, e],Re)× C([1, e],Re) of inequality.

Theorem 3. Suppose that (A2) hold. Then the BVP (1) is H-U stable.

Proof. Let (ψ, v) ∈ C([1, e],Re)× ([1, e],Re) be the (1) the solution of the problem that
satisfies (4) and (5). Let (ψ̂, v̂) be any solution satisfying (30). For κ ∈ [1, e],{

HDP1 ψ(κ) = G1(κ, ψ(κ), v(κ)) +Z1(ψ, v)(κ),
HDP2 v(κ) = G2(κ, ψ(κ), v(κ)) +Z2(ψ, v)(κ).

Therefore,

ψ̂(κ) =T1(ψ̂, v̂)(κ) +

{
1

Γ(P1)

∫ κ

1

(
In

κ

r

)P1−1
Z1(r, ψ(r), v(r))

dr
r

+
(In κ)P1−1

∆1

[
|ε3|+

|ε1|
Γ(Q1 + P1)

∫ ζ

1

(
In

ζ

r

)Q1+P1−1
Z1(r, ψ(r), v(r))

dr
r

+
|ε2|

Γ(P1)

∫ e

1

(
In

e
r

)P1−1
Z1(r, ψ(r), v(r))

dr
r

]}
,
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it follows that

|T1(ψ̂, v̂)(κ)− ψ̂(κ)| ≤
{

1
Γ(P1)

∫ κ

1

(
In

κ

r

)P1−1
ς1

dr
r

+
(In κ)P1−1

∆1

[
|ε3|+

|ε1|
Γ(Q1 + P1)

∫ ζ

1

(
In

ζ

r

)Q1+P1−1
ς1

dr
r

+
|ε2|

Γ(P1)

∫ e

1

(
In

e
r

)P1−1
ς1

dr
r

]}
,

≤ 1
Γ(P1 + 1)

+
1
|∆1|

[
|ε1|(In ζ)P1+Q1

Γ(P1 +Q1 + 1)
+

|ε2|
Γ(P1 + 1)

]
ς1

≤O1ς1.

In a similar manner

|T2(ψ̂, v̂)(κ)− v̂(κ)| ≤
{

1
Γ(P2)

∫ κ

1

(
In

κ

r

)P2−1
ς2

dr
r

+
(In κ)P2−1

∆2

[
|δ3|+

|δ1|
Γ(Q2 + P2)

∫ ζ

1

(
In

ζ

r

)Q2+P2−1
ς2

dr
r

+
|δ2|

Γ(P2)

∫ e

1

(
In

e
r

)P2−1
ς2

dr
r

]}
,

≤ 1
Γ(P2 + 1)

+
1
|∆2|

[
|δ1|(In ζ)P2+Q2

Γ(P2 +Q2 + 1)
+

|δ2|
Γ(P2 + 1)

]
ς2

≤O2ς2.

Thus, the operator T , which is given by (12) and (13), can be extracted from the fixed point
property, as follows:

|ψ(κ)− ψ ∗ (κ)| =|ψ(κ)− T1(ψ∗, v∗)(κ) + T1(ψ∗, v∗)(κ)− ψ ∗ (κ)|
≤|T1(ψ, v)(κ)− T1(ψ∗, v∗)(κ)|+ |T1(ψ∗, v∗)(κ)− ψ ∗ (κ)|
≤((O1ϑ1 +O1ϑ̂1) + (O1ϑ2 +O1ϑ̂2))||(ψ, v)− (ψ∗, v∗)||
+O1ς̂1 +O1ς̂2. (31)

|v(κ)−v ∗ (κ)| =|vκ)− T2(ψ∗, v∗)(κ) + T2(ψ∗, v∗)(κ)−v ∗ (κ)|
≤|T2(ψ, v)(κ)− T2(ψ∗, v∗)(κ)|+ |T2(ψ∗, v∗)(κ)−v ∗ (κ)|
≤((O2ϑ1 +O2ϑ̂1) + (O2ϑ2 +O2ϑ̂2))||(ψ, v)− (ψ∗, v∗)||
+O2ς̂1 +O2ς̂2. (32)

From the above Equations (31) and (32) it follows that

||(ψ, v)− (ψ∗, v∗)|| ≤ (O1 +O2)ς̂1 + (O1 +O2)ς̂2

1− ((O1 +O2)(ϑ1 + ϑ2) + (O1 +O2)(ϑ̂1 + ϑ̂2))
,

≤V1ς̂1 + V2ς̂2,

with

V1 =
(O1 +O2)

1− ((O1 +O2)(ϑ1 + ϑ2) + (O1 +O2)(ϑ̂1 + ϑ̂2))
,

V2 =
(O1 +O2)

1− ((O1 +O2)(ϑ1 + ϑ2) + (O1 +O2)(ϑ̂1 + ϑ̂2))
.



Fractal Fract. 2022, 6, 586 13 of 15

Hence, the problem (1) is U-H stable.

5. Example

Define ψ0 = {ψ = (ψ1, ψ2, ψ3 · · · , ψn, · · · ) : lim
n→∞

ψn = 0}, it is obvious that ψ0 is a

Banach space with ||ψ||∞ = sup
n≥1
|ψn|.

Example 1. Consider the following system:

HDP1 ψ(κ) = G1(κ, ψ(κ), v(κ)), κ ∈ (1, e), P1 ∈ (1, 2],

HDP2 v(κ) = G2(κ, ψ(κ), v(κ)),

ψ(1) = 0, ε1
HIQ1 ψ(ζ) + ε2ψ(e) = ε3,

v(1) = 0, δ1
HIQ2 v(ξ) + δ2v(e) = δ3.

(33)

Here P1 = 97
50 ,P2 = 41

25 , ∆1 = 0.2387, ∆2 = 0.25357, ε1 = 1
8 , ε2 = 3

25 , ζ = 36
25 , ξ = 44

25 ,Q1 =
9

40 ,Q2 = 8
40 , and

G1(κ, ψ(κ), v(κ)) =

{
1

Inκ + 10

(
1
4n + In(1 + |ψn|+ |vn|)

)}
, n ≥ 1,

G2(κ, ψ(κ), v(κ)) =

{
1
10

(
1
n4 + In(1 + |ψn|+ |vn|)

)}
, n ≥ 1,

∀κ ∈ [1, 3] with {ψn}n≥1, {vn}n≥1 ∈ ψ0, the hypothesis A2 of theorem 2 is verified. Also,

||G1(κ, ψ(κ), v(κ))||∞ ≤
∥∥∥∥{ 1

Inκ + 10

(
1
4n + In(1 + |ψn|+ |vn|)

)}∥∥∥∥
∞

≤ 1
In κ + 10

(||ψ||+ 1)

= Uψ(κ)Hψ(||ψ||∞).

Similarly,

||G2(κ, ψ(κ), v(κ))||∞ ≤
∥∥∥∥{ 1

10

(
1
n4 + In(1 + |ψn|+ |vn|)

)}∥∥∥∥
∞

≤ 1
10

(||ψ||+ 1)

= Uv(κ)Hv(||v||∞).

as a result, Theorem 2 condition (A2) is also verified.
Next, by relying on the bounded subset S ⊂ Ê × Ê , we get to

K(ψ(κ,S)) ≤ Uψ(κ)K(S),
K(v(κ,S)) ≤ Uv(κ)K(S),

where in our case, we have Uψ(κ) =
1

In κ+9 , Uv(κ) =
κ
10 ; the latter two inequalities show that the

condition (A2) of the Theorem 2 is satisfied.
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Finally, we calculate

U ∗ψ(κ) =
1

10
,O1 ≤

1
Γ(P1 + 1)

+
1
|∆1|

[
|ε1|(In ζ)P1+Q1

Γ(P1 +Q1 + 1)
+

|ε2|
Γ(P1 + 1)

]
= 1.7961117138,

U ∗v(κ) =
3
10

,O2 ≤
1

Γ(P2 + 1)
+

1
|∆2|

[
|δ1|(In ξ)P2+Q2

Γ(P2 +Q2 + 1)
+

|δ2|
Γ(P2 + 1)

]
= 1.363009035,

then, max{O1Uv(κ),O2Uv(κ)} = max{0.1796111, 0.4089027} = 0.1796111 < 1. Thus,
the Theorem 2 requirements are all satisfied, that is the Equation (33) has at least one solution
(ψ, v) ∈ C([1, 3], ψ0)× C([1, 3], ψ0).

6. Conclusions

We have proved based on Mönch’s fixed point theorem that there is a solution to
the system of fractional differential equations. In addition to verifying the stability of the
solutions for this system using the method of Ulam-Hyers. We concluded the work with an
applied example that makes it easier for the reader to understand the theoretical results.
For future work, Those interested in the field can also investigate the existence of these
solutions for the studied system using new fractional derivatives such as Caputo-Hadmard,
Katugambula, and ψ-Caputo.

Author Contributions: All authors contributed equally to the writing of this paper. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Deanship of Scientific Research, Vice Presidency for Grad-
uate Studies and Scientific Research, King Faisal University, Saudi Arabia [Project No. GRANT1371],
through its KFU Research summer initiative.

Data Availability Statement: No new data were created this study.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Hinton, D. Handbook of Differential Equations (Daniel Zwillinger); SIAM Review; Society for Industrial and Applied Mathematics

Publications: Philadelphia, PA, USA, 1994; Volume 36, pp. 126–127.
2. Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974.
3. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993.
4. Samko, S.; Kilbas, A.A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science:

Yverdon, Switzerland, 1993.
5. Manigandan, M.; Subramanian, M.; Nandha Gopal, T.; Unyong, B. Existence and Stability Results for a Tripled System of the

Caputo Type with Multi-Point and Integral Boundary Conditions. Fractal Fract. 2022, 6, 285. [CrossRef]
6. Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.T.; Bates, J.H. The role of fractional calculus in modeling biological phenomena:

A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [CrossRef]
7. Magin, R.L. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 2010, 59, 1586–1593.

[CrossRef]
8. Toledo-Hernandez, R.; Rico-Ramirez, V.; Iglesias-Silva, G.A.; Diwekar, U.M. A fractional calculus approach to the dynamic

optimization of biological reactive systems. Part I Fract. Model. Biol. React. Chem. Eng. Sci. 2014, 117, 217–228.
9. Awadalla, M.; Manigandan, M. Existence and Stability Results for Caputo-Type Sequential Fractional Differential Equations with

New Kind of Boundary Conditions. Math. Probl. Eng. 2022, 2022, 3999829. [CrossRef]
10. Muthaiah, S.; Baleanu, D.; Murugesan, M.; Palanisamy, D. Existence of solutions for the Caputo-Hadamard fractional differential

equations and inclusions. J. Phys. Conf. Ser. 2021, 1850, 012107. [CrossRef]
11. Subramanian, M.; Manigandan, M.; Gopal, T.N. Fractional Differential Equations Involving Hadamard Fractional Derivatives

with Nonlocal Multi-point Boundary Conditions. Discontin. Nonlinearity Complex. 2020, 9, 421–431. [CrossRef]
12. Awadalla, M.; Abuasbeh, K.; Subramanian, M.; Manigandan, M. On a System of Φ-Caputo Hybrid Fractional Differential

Equations with Dirichlet Boundary Conditions. Mathematics 2022, 10, 1681. [CrossRef]
13. Manigandan, M.; Subramanian, M.; Duraisamy, P.; Gopal, T.N. On Caputo-Hadamard Type Fractional Differential Equations

with Nonlocal Discrete Boundary Conditions. Discontin. Nonlinearity Complex. 2021, 10, 185–194. [CrossRef]

http://doi.org/10.3390/fractalfract6060285
http://dx.doi.org/10.1016/j.cnsns.2017.04.001
http://dx.doi.org/10.1016/j.camwa.2009.08.039
http://dx.doi.org/10.1155/2022/3999829
http://dx.doi.org/10.1088/1742-6596/1850/1/012107
http://dx.doi.org/10.5890/DNC.2020.09.006
http://dx.doi.org/10.3390/math10101681
http://dx.doi.org/10.5890/DNC.2021.06.002


Fractal Fract. 2022, 6, 586 15 of 15

14. Manigandan, M.; Muthaiah, S.; Nandhagopal, T.; Vadivel, R.; Unyong, B.; Gunasekaran, N. Existence results for coupled system
of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. Aims Math. 2022, 7, 723–755.
[CrossRef]

15. González, C.; Jiménez-Melado, A.; Llorens-Fuster, E. A Mönch type fixed point theorem under the interior condition. J. Math.
Anal. Appl. 2009, 352, 816–821. [CrossRef]

16. Pata, V. Fixed Point Theorems and Applications; Springer: Cham, Switzerland, 2019; Volume 116.
17. Kimeu, J.M. Fractional Calculus: Definitions and Applications; Western Kentucky University: Bowling Green, KY, USA, 2009.
18. Abdelrahman, M.A.; Hassan, S.Z.; Alomair, R.A.; Alsaleh, D.M. Fundamental solutions for the conformable time fractional Phi-4

and space-time fractional simplified MCH equations. AIMS Math. 2021, 6, 6555–6568. [CrossRef]
19. Abdelrahman, M.A.; Sohaly, M.A.; Alharbi, Y.F. Fundamental stochastic solutions for the conformable fractional NLSE with

spatiotemporal dispersion via exponential distribution. Phys. Scr. 2021, 96, 125223. [CrossRef]
20. Wang, K.J.; Wang, G.D.; Zhu, H.W. A new perspective on the study of the fractal coupled Boussinesq–Burger equation in shallow

water. Fractals 2021, 29, 2150122. [CrossRef]
21. Abdalla, B.; Abdeljawad, T. On the oscillation of Caputo fractional differential equations with Mittag–Leffler nonsingular kernel.

Chaos Solitons Fractals 2019, 127, 173–177. [CrossRef]
22. Refice, A.; Souid, M.S.; Stamova, I. On the boundary value problems of Hadamard fractional differential equations of variable

order via Kuratowski MNC technique. Mathematics 2021, 9, 1134. [CrossRef]
23. Ahmad, B.; Ntouyas, S.K.; Alsaedi, A.; Albideewi, A.F. A study of a coupled system of Hadamard fractional differential equations

with nonlocal coupled initial-multipoint conditions. Adv. Differ. Equ. 2021, 2021, 1–16. [CrossRef]
24. Ahmad, B.; Albideewi, A.F.; Ntouyas, S.K.; Alsaedi, A. Existence results for a multipoint boundary value problem of nonlinear

sequential Hadamard fractional differential equations. Cubo 2021, 23, 225–237. [CrossRef]
25. Al-Mayyahi, S.Y.; Abdo, M.S.; Redhwan, S.S.; Abood, B.N. Boundary value problems for a coupled system of Hadamard-type

fractional differential equations. IAENG Int. J. Appl. Math. 2021, 51, 1–10.
26. Aljoudi, S.; Ahmad, B.; Nieto, J.J.; Alsaedi, A. A coupled system of Hadamard type sequential fractional differential equations

with coupled strip conditions. Chaos Solitons Fractals 2016, 91, 39–46. [CrossRef]
27. Tariboon, J.; Ntouyas, S.K.; Asawasamrit, S.; Promsakon, C. Positive solutions for Hadamard differential systems with fractional

integral conditions on an unbounded domain. Open Math. 2017, 15, 645–666.
28. Aljoudi, S.; Ahmad, B.; Nieto, J.J.; Alsaedi, A. On coupled Hadamard type sequential fractional differential equations with

variable coefficients and nonlocal integral boundary conditions. Filomat 2017, 31, 6041–6049. [CrossRef]
29. Zhai, C.; Wang, W.; Li, H. A uniqueness method to a new Hadamard fractional differential system with four-point boundary

conditions. J. Inequal. Appl. 2018, 2018, 207. [CrossRef]
30. Du, X.; Meng, Y.; Pang, H. Iterative positive solutions to a coupled Hadamard-type fractional differential system on infinite

domain with the multistrip and multipoint mixed boundary conditions. J. Funct. Spaces 2020, 2020, 6508075. [CrossRef]
31. Ma, L. On the kinetics of Hadamard-type fractional differential systems. Fract. Calc. Appl. Anal. 2020, 23, 553–570. [CrossRef]
32. Arab, M.; Awadalla, M. A Coupled System of Caputo-Hadamard Fractional Hybrid Differential Equations with Three-Point

Boundary Conditions. Math. Probl. Eng. 2022, 2022, 1500577. [CrossRef]
33. Awadalla, M. Applicability of Mönch’s Fixed Point Theorem on Existence of a Solution to a System of Mixed Sequential Fractional

Differential Equation. J. Funct. Spaces 2022, 2022, 5807120.
34. Khan, H.; Tunc, C.; Chen, W.; Khan, A. Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential

equations with p-Laplacian operator. J. Appl. Anal. Comput. 2018, 8, 1211–1226.
35. Ferraoun, S.; Dahmani, Z. Existence and stability of solutions of a class of hybrid fractional differential equations involving

RL-operator. J. Interdiscip. Math. 2020, 23, 885–903. [CrossRef]
36. Al-Sadi, W.; Zhenyou, H.; Alkhazzan, A. Existence and stability of a positive solution for nonlinear hybrid fractional differential

equations with singularity. J. Taibah Univ. Sci. 2019, 13, 951–960. [CrossRef]
37. Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012,

2012, 142. [CrossRef]
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